Spaces:
Running
on
Zero
Running
on
Zero
Bobby
commited on
Commit
·
b85b7f4
1
Parent(s):
cbe7281
inpainting test
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .aidigestignore +10 -0
- app.py +64 -3
- codebase.md +843 -0
- controlnet_aux_local/canny/__init__.py +0 -36
- controlnet_aux_local/dwpose/__init__.py +0 -91
- controlnet_aux_local/dwpose/util.py +0 -303
- controlnet_aux_local/dwpose/wholebody.py +0 -121
- controlnet_aux_local/hed/__init__.py +0 -129
- controlnet_aux_local/leres/__init__.py +0 -118
- controlnet_aux_local/leres/leres/Resnet.py +0 -199
- controlnet_aux_local/leres/leres/Resnext_torch.py +0 -237
- controlnet_aux_local/leres/leres/__init__.py +0 -0
- controlnet_aux_local/leres/leres/depthmap.py +0 -548
- controlnet_aux_local/leres/leres/multi_depth_model_woauxi.py +0 -35
- controlnet_aux_local/leres/leres/net_tools.py +0 -54
- controlnet_aux_local/leres/leres/network_auxi.py +0 -417
- controlnet_aux_local/leres/pix2pix/__init__.py +0 -0
- controlnet_aux_local/leres/pix2pix/models/__init__.py +0 -67
- controlnet_aux_local/leres/pix2pix/models/base_model.py +0 -244
- controlnet_aux_local/leres/pix2pix/models/base_model_hg.py +0 -58
- controlnet_aux_local/leres/pix2pix/models/networks.py +0 -623
- controlnet_aux_local/leres/pix2pix/models/pix2pix4depth_model.py +0 -155
- controlnet_aux_local/leres/pix2pix/options/__init__.py +0 -1
- controlnet_aux_local/leres/pix2pix/options/base_options.py +0 -156
- controlnet_aux_local/leres/pix2pix/options/test_options.py +0 -22
- controlnet_aux_local/leres/pix2pix/util/__init__.py +0 -1
- controlnet_aux_local/leres/pix2pix/util/util.py +0 -105
- controlnet_aux_local/lineart/__init__.py +0 -167
- controlnet_aux_local/lineart_anime/__init__.py +0 -189
- controlnet_aux_local/mediapipe_face/__init__.py +0 -53
- controlnet_aux_local/mediapipe_face/mediapipe_face_common.py +0 -164
- controlnet_aux_local/midas/__init__.py +0 -95
- controlnet_aux_local/midas/api.py +0 -169
- controlnet_aux_local/midas/midas/__init__.py +0 -0
- controlnet_aux_local/midas/midas/base_model.py +0 -16
- controlnet_aux_local/midas/midas/blocks.py +0 -342
- controlnet_aux_local/midas/midas/dpt_depth.py +0 -109
- controlnet_aux_local/midas/midas/midas_net.py +0 -76
- controlnet_aux_local/midas/midas/midas_net_custom.py +0 -128
- controlnet_aux_local/midas/midas/transforms.py +0 -234
- controlnet_aux_local/midas/midas/vit.py +0 -491
- controlnet_aux_local/midas/utils.py +0 -189
- controlnet_aux_local/mlsd/__init__.py +0 -79
- controlnet_aux_local/mlsd/models/__init__.py +0 -0
- controlnet_aux_local/mlsd/models/mbv2_mlsd_large.py +0 -292
- controlnet_aux_local/mlsd/models/mbv2_mlsd_tiny.py +0 -275
- controlnet_aux_local/mlsd/utils.py +0 -584
- controlnet_aux_local/open_pose/__init__.py +0 -234
- controlnet_aux_local/open_pose/body.py +0 -260
- controlnet_aux_local/open_pose/face.py +0 -364
.aidigestignore
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
controlnet_aux_local/normalbae/*
|
2 |
+
requirements.txt
|
3 |
+
win.requirements.txt
|
4 |
+
web.html
|
5 |
+
client.py
|
6 |
+
local_app.py
|
7 |
+
README.md
|
8 |
+
Dockerfile
|
9 |
+
.gitignore
|
10 |
+
.gitattributes
|
app.py
CHANGED
@@ -15,11 +15,13 @@ import imageio
|
|
15 |
from huggingface_hub import HfApi
|
16 |
import gc
|
17 |
import torch
|
|
|
18 |
from PIL import Image
|
19 |
from diffusers import (
|
20 |
ControlNetModel,
|
21 |
DPMSolverMultistepScheduler,
|
22 |
StableDiffusionControlNetPipeline,
|
|
|
23 |
# AutoencoderKL,
|
24 |
)
|
25 |
from controlnet_aux_local import NormalBaeDetector
|
@@ -98,6 +100,19 @@ if gr.NO_RELOAD:
|
|
98 |
# vae=vae,
|
99 |
torch_dtype=torch.float16,
|
100 |
).to("cuda")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
|
102 |
print("loading preprocessor")
|
103 |
preprocessor = Preprocessor()
|
@@ -119,6 +134,21 @@ if gr.NO_RELOAD:
|
|
119 |
gc.collect()
|
120 |
print(f"CUDA memory allocated: {torch.cuda.max_memory_allocated(device='cuda') / 1e9:.2f} GB")
|
121 |
print("Model Compiled!")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
122 |
|
123 |
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
124 |
if randomize_seed:
|
@@ -422,15 +452,46 @@ def process_image(
|
|
422 |
print(prompt)
|
423 |
print(f"\n-------------------------Preprocess done in: {preprocess_time:.2f} seconds-------------------------")
|
424 |
start = time.time()
|
425 |
-
results = pipe(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
426 |
prompt=prompt,
|
427 |
negative_prompt=negative_prompt,
|
428 |
guidance_scale=guidance_scale,
|
429 |
-
num_images_per_prompt=
|
430 |
num_inference_steps=num_steps,
|
431 |
generator=generator,
|
432 |
image=control_image,
|
433 |
).images[0]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
434 |
print(f"\n-------------------------Inference done in: {time.time() - start:.2f} seconds-------------------------")
|
435 |
torch.cuda.empty_cache()
|
436 |
|
@@ -456,7 +517,7 @@ def process_image(
|
|
456 |
token=API_KEY,
|
457 |
run_as_future=True,
|
458 |
)
|
459 |
-
return
|
460 |
|
461 |
if prod:
|
462 |
demo.queue(max_size=20).launch(server_name="localhost", server_port=port)
|
|
|
15 |
from huggingface_hub import HfApi
|
16 |
import gc
|
17 |
import torch
|
18 |
+
import cv2
|
19 |
from PIL import Image
|
20 |
from diffusers import (
|
21 |
ControlNetModel,
|
22 |
DPMSolverMultistepScheduler,
|
23 |
StableDiffusionControlNetPipeline,
|
24 |
+
StableDiffusionInpaintPipeline,
|
25 |
# AutoencoderKL,
|
26 |
)
|
27 |
from controlnet_aux_local import NormalBaeDetector
|
|
|
100 |
# vae=vae,
|
101 |
torch_dtype=torch.float16,
|
102 |
).to("cuda")
|
103 |
+
|
104 |
+
print('loading inpainting pipe')
|
105 |
+
inpaint_pipe = StableDiffusionInpaintPipeline.from_pretrained(
|
106 |
+
"runwayml/stable-diffusion-inpainting",
|
107 |
+
torch_dtype=torch.float16,
|
108 |
+
).to("cuda")
|
109 |
+
|
110 |
+
print('loading controlnet inpainting pipe')
|
111 |
+
controlnet_inpaint_pipe = StableDiffusionControlNetInpaintPipeline.from_pretrained(
|
112 |
+
"runwayml/stable-diffusion-inpainting",
|
113 |
+
controlnet=controlnet,
|
114 |
+
torch_dtype=torch.float16,
|
115 |
+
).to("cuda")
|
116 |
|
117 |
print("loading preprocessor")
|
118 |
preprocessor = Preprocessor()
|
|
|
134 |
gc.collect()
|
135 |
print(f"CUDA memory allocated: {torch.cuda.max_memory_allocated(device='cuda') / 1e9:.2f} GB")
|
136 |
print("Model Compiled!")
|
137 |
+
|
138 |
+
def generate_furniture_mask(image, furniture_type):
|
139 |
+
image_np = np.array(image)
|
140 |
+
height, width = image_np.shape[:2]
|
141 |
+
|
142 |
+
mask = np.zeros((height, width), dtype=np.uint8)
|
143 |
+
|
144 |
+
if furniture_type == "sofa":
|
145 |
+
cv2.rectangle(mask, (width//4, int(height*0.6)), (width*3//4, height), 255, -1)
|
146 |
+
elif furniture_type == "table":
|
147 |
+
cv2.rectangle(mask, (width//3, height//3), (width*2//3, height*2//3), 255, -1)
|
148 |
+
elif furniture_type == "chair":
|
149 |
+
cv2.circle(mask, (width*3//5, height*2//3), height//6, 255, -1)
|
150 |
+
|
151 |
+
return Image.fromarray(mask)
|
152 |
|
153 |
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
154 |
if randomize_seed:
|
|
|
452 |
print(prompt)
|
453 |
print(f"\n-------------------------Preprocess done in: {preprocess_time:.2f} seconds-------------------------")
|
454 |
start = time.time()
|
455 |
+
# results = pipe(
|
456 |
+
# prompt=prompt,
|
457 |
+
# negative_prompt=negative_prompt,
|
458 |
+
# guidance_scale=guidance_scale,
|
459 |
+
# num_images_per_prompt=num_images,
|
460 |
+
# num_inference_steps=num_steps,
|
461 |
+
# generator=generator,
|
462 |
+
# image=control_image,
|
463 |
+
# ).images[0]
|
464 |
+
|
465 |
+
initial_result = pipe(
|
466 |
prompt=prompt,
|
467 |
negative_prompt=negative_prompt,
|
468 |
guidance_scale=guidance_scale,
|
469 |
+
num_images_per_prompt=1,
|
470 |
num_inference_steps=num_steps,
|
471 |
generator=generator,
|
472 |
image=control_image,
|
473 |
).images[0]
|
474 |
+
|
475 |
+
# Randomly choose whether to add furniture and which type
|
476 |
+
furniture_types = ["None", "sofa", "table", "chair"]
|
477 |
+
furniture_type = random.choice(furniture_types)
|
478 |
+
|
479 |
+
if furniture_type != "None":
|
480 |
+
furniture_mask = generate_furniture_mask(initial_result, furniture_type)
|
481 |
+
furniture_prompt = f"A {furniture_type} in the style of {style_selection}"
|
482 |
+
inpainted_image = controlnet_inpaint_pipe(
|
483 |
+
prompt=furniture_prompt,
|
484 |
+
image=initial_result,
|
485 |
+
mask_image=furniture_mask,
|
486 |
+
control_image=control_image,
|
487 |
+
negative_prompt=negative_prompt,
|
488 |
+
num_inference_steps=num_steps,
|
489 |
+
guidance_scale=guidance_scale,
|
490 |
+
generator=generator,
|
491 |
+
).images[0]
|
492 |
+
else:
|
493 |
+
inpainted_image = initial_result
|
494 |
+
|
495 |
print(f"\n-------------------------Inference done in: {time.time() - start:.2f} seconds-------------------------")
|
496 |
torch.cuda.empty_cache()
|
497 |
|
|
|
517 |
token=API_KEY,
|
518 |
run_as_future=True,
|
519 |
)
|
520 |
+
return inpainted_image
|
521 |
|
522 |
if prod:
|
523 |
demo.queue(max_size=20).launch(server_name="localhost", server_port=port)
|
codebase.md
ADDED
@@ -0,0 +1,843 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# preprocess.py
|
2 |
+
|
3 |
+
```py
|
4 |
+
import PIL.Image
|
5 |
+
import torch, gc
|
6 |
+
from controlnet_aux_local import NormalBaeDetector#, CannyDetector
|
7 |
+
|
8 |
+
class Preprocessor:
|
9 |
+
MODEL_ID = "lllyasviel/Annotators"
|
10 |
+
|
11 |
+
def __init__(self):
|
12 |
+
self.model = None
|
13 |
+
self.name = ""
|
14 |
+
|
15 |
+
def load(self, name: str) -> None:
|
16 |
+
if name == self.name:
|
17 |
+
return
|
18 |
+
elif name == "NormalBae":
|
19 |
+
print("Loading NormalBae")
|
20 |
+
self.model = NormalBaeDetector.from_pretrained(self.MODEL_ID).to("cuda")
|
21 |
+
torch.cuda.empty_cache()
|
22 |
+
self.name = name
|
23 |
+
else:
|
24 |
+
raise ValueError
|
25 |
+
return
|
26 |
+
|
27 |
+
def __call__(self, image: PIL.Image.Image, **kwargs) -> PIL.Image.Image:
|
28 |
+
return self.model(image, **kwargs)
|
29 |
+
```
|
30 |
+
|
31 |
+
# app.py
|
32 |
+
|
33 |
+
```py
|
34 |
+
prod = False
|
35 |
+
port = 8080
|
36 |
+
show_options = False
|
37 |
+
if prod:
|
38 |
+
port = 8081
|
39 |
+
# show_options = False
|
40 |
+
|
41 |
+
import os
|
42 |
+
import random
|
43 |
+
import time
|
44 |
+
import gradio as gr
|
45 |
+
import numpy as np
|
46 |
+
import spaces
|
47 |
+
import imageio
|
48 |
+
from huggingface_hub import HfApi
|
49 |
+
import gc
|
50 |
+
import torch
|
51 |
+
from PIL import Image
|
52 |
+
from diffusers import (
|
53 |
+
ControlNetModel,
|
54 |
+
DPMSolverMultistepScheduler,
|
55 |
+
StableDiffusionControlNetPipeline,
|
56 |
+
# AutoencoderKL,
|
57 |
+
)
|
58 |
+
from controlnet_aux_local import NormalBaeDetector
|
59 |
+
|
60 |
+
MAX_SEED = np.iinfo(np.int32).max
|
61 |
+
API_KEY = os.environ.get("API_KEY", None)
|
62 |
+
# os.environ['HF_HOME'] = '/data/.huggingface'
|
63 |
+
|
64 |
+
print("CUDA version:", torch.version.cuda)
|
65 |
+
print("loading everything")
|
66 |
+
compiled = False
|
67 |
+
api = HfApi()
|
68 |
+
|
69 |
+
class Preprocessor:
|
70 |
+
MODEL_ID = "lllyasviel/Annotators"
|
71 |
+
|
72 |
+
def __init__(self):
|
73 |
+
self.model = None
|
74 |
+
self.name = ""
|
75 |
+
|
76 |
+
def load(self, name: str) -> None:
|
77 |
+
if name == self.name:
|
78 |
+
return
|
79 |
+
elif name == "NormalBae":
|
80 |
+
print("Loading NormalBae")
|
81 |
+
self.model = NormalBaeDetector.from_pretrained(self.MODEL_ID).to("cuda")
|
82 |
+
torch.cuda.empty_cache()
|
83 |
+
self.name = name
|
84 |
+
else:
|
85 |
+
raise ValueError
|
86 |
+
return
|
87 |
+
|
88 |
+
def __call__(self, image: Image.Image, **kwargs) -> Image.Image:
|
89 |
+
return self.model(image, **kwargs)
|
90 |
+
|
91 |
+
if gr.NO_RELOAD:
|
92 |
+
# Controlnet Normal
|
93 |
+
model_id = "lllyasviel/control_v11p_sd15_normalbae"
|
94 |
+
print("initializing controlnet")
|
95 |
+
controlnet = ControlNetModel.from_pretrained(
|
96 |
+
model_id,
|
97 |
+
torch_dtype=torch.float16,
|
98 |
+
attn_implementation="flash_attention_2",
|
99 |
+
).to("cuda")
|
100 |
+
|
101 |
+
# Scheduler
|
102 |
+
scheduler = DPMSolverMultistepScheduler.from_pretrained(
|
103 |
+
"runwayml/stable-diffusion-v1-5",
|
104 |
+
solver_order=2,
|
105 |
+
subfolder="scheduler",
|
106 |
+
use_karras_sigmas=True,
|
107 |
+
final_sigmas_type="sigma_min",
|
108 |
+
algorithm_type="sde-dpmsolver++",
|
109 |
+
prediction_type="epsilon",
|
110 |
+
thresholding=False,
|
111 |
+
denoise_final=True,
|
112 |
+
device_map="cuda",
|
113 |
+
torch_dtype=torch.float16,
|
114 |
+
)
|
115 |
+
|
116 |
+
# Stable Diffusion Pipeline URL
|
117 |
+
# base_model_url = "https://huggingface.co/broyang/hentaidigitalart_v20/blob/main/realcartoon3d_v15.safetensors"
|
118 |
+
base_model_url = "https://huggingface.co/Lykon/AbsoluteReality/blob/main/AbsoluteReality_1.8.1_pruned.safetensors"
|
119 |
+
# vae_url = "https://huggingface.co/stabilityai/sd-vae-ft-mse-original/blob/main/vae-ft-mse-840000-ema-pruned.safetensors"
|
120 |
+
|
121 |
+
# print('loading vae')
|
122 |
+
# vae = AutoencoderKL.from_single_file(vae_url, torch_dtype=torch.float16).to("cuda")
|
123 |
+
# vae.to(memory_format=torch.channels_last)
|
124 |
+
|
125 |
+
print('loading pipe')
|
126 |
+
pipe = StableDiffusionControlNetPipeline.from_single_file(
|
127 |
+
base_model_url,
|
128 |
+
safety_checker=None,
|
129 |
+
controlnet=controlnet,
|
130 |
+
scheduler=scheduler,
|
131 |
+
# vae=vae,
|
132 |
+
torch_dtype=torch.float16,
|
133 |
+
).to("cuda")
|
134 |
+
|
135 |
+
print("loading preprocessor")
|
136 |
+
preprocessor = Preprocessor()
|
137 |
+
preprocessor.load("NormalBae")
|
138 |
+
# pipe.load_textual_inversion("broyang/hentaidigitalart_v20", weight_name="EasyNegativeV2.safetensors", token="EasyNegativeV2",)
|
139 |
+
# pipe.load_textual_inversion("broyang/hentaidigitalart_v20", weight_name="badhandv4.pt", token="badhandv4")
|
140 |
+
# pipe.load_textual_inversion("broyang/hentaidigitalart_v20", weight_name="fcNeg-neg.pt", token="fcNeg-neg")
|
141 |
+
# pipe.load_textual_inversion("broyang/hentaidigitalart_v20", weight_name="HDA_Ahegao.pt", token="HDA_Ahegao")
|
142 |
+
# pipe.load_textual_inversion("broyang/hentaidigitalart_v20", weight_name="HDA_Bondage.pt", token="HDA_Bondage")
|
143 |
+
# pipe.load_textual_inversion("broyang/hentaidigitalart_v20", weight_name="HDA_pet_play.pt", token="HDA_pet_play")
|
144 |
+
# pipe.load_textual_inversion("broyang/hentaidigitalart_v20", weight_name="HDA_unconventional maid.pt", token="HDA_unconventional_maid")
|
145 |
+
# pipe.load_textual_inversion("broyang/hentaidigitalart_v20", weight_name="HDA_NakedHoodie.pt", token="HDA_NakedHoodie")
|
146 |
+
# pipe.load_textual_inversion("broyang/hentaidigitalart_v20", weight_name="HDA_NunDress.pt", token="HDA_NunDress")
|
147 |
+
# pipe.load_textual_inversion("broyang/hentaidigitalart_v20", weight_name="HDA_Shibari.pt", token="HDA_Shibari")
|
148 |
+
pipe.to("cuda")
|
149 |
+
|
150 |
+
print("---------------Loaded controlnet pipeline---------------")
|
151 |
+
torch.cuda.empty_cache()
|
152 |
+
gc.collect()
|
153 |
+
print(f"CUDA memory allocated: {torch.cuda.max_memory_allocated(device='cuda') / 1e9:.2f} GB")
|
154 |
+
print("Model Compiled!")
|
155 |
+
|
156 |
+
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
157 |
+
if randomize_seed:
|
158 |
+
seed = random.randint(0, MAX_SEED)
|
159 |
+
return seed
|
160 |
+
|
161 |
+
def get_additional_prompt():
|
162 |
+
prompt = "hyperrealistic photography,extremely detailed,(intricate details),unity 8k wallpaper,ultra detailed"
|
163 |
+
top = ["tank top", "blouse", "button up shirt", "sweater", "corset top"]
|
164 |
+
bottom = ["short skirt", "athletic shorts", "jean shorts", "pleated skirt", "short skirt", "leggings", "high-waisted shorts"]
|
165 |
+
accessory = ["knee-high boots", "gloves", "Thigh-high stockings", "Garter belt", "choker", "necklace", "headband", "headphones"]
|
166 |
+
return f"{prompt}, {random.choice(top)}, {random.choice(bottom)}, {random.choice(accessory)}, score_9"
|
167 |
+
# outfit = ["schoolgirl outfit", "playboy outfit", "red dress", "gala dress", "cheerleader outfit", "nurse outfit", "Kimono"]
|
168 |
+
|
169 |
+
def get_prompt(prompt, additional_prompt):
|
170 |
+
interior = "design-style interior designed (interior space),tungsten white balance,captured with a DSLR camera using f/10 aperture, 1/60 sec shutter speed, ISO 400, 20mm focal length"
|
171 |
+
default = "hyperrealistic photography,extremely detailed,(intricate details),unity 8k wallpaper,ultra detailed"
|
172 |
+
default2 = f"professional 3d model {prompt},octane render,highly detailed,volumetric,dramatic lighting,hyperrealistic photography,extremely detailed,(intricate details),unity 8k wallpaper,ultra detailed"
|
173 |
+
randomize = get_additional_prompt()
|
174 |
+
# nude = "NSFW,((nude)),medium bare breasts,hyperrealistic photography,extremely detailed,(intricate details),unity 8k wallpaper,ultra detailed"
|
175 |
+
# bodypaint = "((fully naked with no clothes)),nude naked seethroughxray,invisiblebodypaint,rating_newd,NSFW"
|
176 |
+
lab_girl = "hyperrealistic photography, extremely detailed, shy assistant wearing minidress boots and gloves, laboratory background, score_9, 1girl"
|
177 |
+
pet_play = "hyperrealistic photography, extremely detailed, playful, blush, glasses, collar, score_9, HDA_pet_play"
|
178 |
+
bondage = "hyperrealistic photography, extremely detailed, submissive, glasses, score_9, HDA_Bondage"
|
179 |
+
# ahegao = "((invisible clothing)), hyperrealistic photography,exposed vagina,sexy,nsfw,HDA_Ahegao"
|
180 |
+
ahegao2 = "(invisiblebodypaint),rating_newd,HDA_Ahegao"
|
181 |
+
athleisure = "hyperrealistic photography, extremely detailed, 1girl athlete, exhausted embarrassed sweaty,outdoors, ((athleisure clothing)), score_9"
|
182 |
+
atompunk = "((atompunk world)), hyperrealistic photography, extremely detailed, short hair, bodysuit, glasses, neon cyberpunk background, score_9"
|
183 |
+
maid = "hyperrealistic photography, extremely detailed, shy, blushing, score_9, pastel background, HDA_unconventional_maid"
|
184 |
+
nundress = "hyperrealistic photography, extremely detailed, shy, blushing, fantasy background, score_9, HDA_NunDress"
|
185 |
+
naked_hoodie = "hyperrealistic photography, extremely detailed, medium hair, cityscape, (neon lights), score_9, HDA_NakedHoodie"
|
186 |
+
abg = "(1girl, asian body covered in words, words on body, tattoos of (words) on body),(masterpiece, best quality),medium breasts,(intricate details),unity 8k wallpaper,ultra detailed,(pastel colors),beautiful and aesthetic,see-through (clothes),detailed,solo"
|
187 |
+
# shibari = "extremely detailed, hyperrealistic photography, earrings, blushing, lace choker, tattoo, medium hair, score_9, HDA_Shibari"
|
188 |
+
shibari2 = "octane render, highly detailed, volumetric, HDA_Shibari"
|
189 |
+
|
190 |
+
if prompt == "":
|
191 |
+
girls = [randomize, pet_play, bondage, lab_girl, athleisure, atompunk, maid, nundress, naked_hoodie, abg, shibari2, ahegao2]
|
192 |
+
prompts_nsfw = [abg, shibari2, ahegao2]
|
193 |
+
prompt = f"{random.choice(girls)}"
|
194 |
+
prompt = f"boho chic"
|
195 |
+
# print(f"-------------{preset}-------------")
|
196 |
+
else:
|
197 |
+
prompt = f"Photo from Pinterest of {prompt} {interior}"
|
198 |
+
# prompt = default2
|
199 |
+
return f"{prompt} f{additional_prompt}"
|
200 |
+
|
201 |
+
style_list = [
|
202 |
+
{
|
203 |
+
"name": "None",
|
204 |
+
"prompt": ""
|
205 |
+
},
|
206 |
+
{
|
207 |
+
"name": "Minimalistic",
|
208 |
+
"prompt": "Minimalist interior design,clean lines,neutral colors,uncluttered space,functional furniture,lots of natural light"
|
209 |
+
},
|
210 |
+
{
|
211 |
+
"name": "Boho",
|
212 |
+
"prompt": "Bohemian chic interior,eclectic mix of patterns and textures,vintage furniture,plants,woven textiles,warm earthy colors"
|
213 |
+
},
|
214 |
+
{
|
215 |
+
"name": "Farmhouse",
|
216 |
+
"prompt": "Modern farmhouse interior,rustic wood elements,shiplap walls,neutral color palette,industrial accents,cozy textiles"
|
217 |
+
},
|
218 |
+
{
|
219 |
+
"name": "Saudi Prince",
|
220 |
+
"prompt": "Opulent gold interior,luxurious ornate furniture,crystal chandeliers,rich fabrics,marble floors,intricate Arabic patterns"
|
221 |
+
},
|
222 |
+
{
|
223 |
+
"name": "Neoclassical",
|
224 |
+
"prompt": "Neoclassical interior design,elegant columns,ornate moldings,symmetrical layout,refined furniture,muted color palette"
|
225 |
+
},
|
226 |
+
{
|
227 |
+
"name": "Eclectic",
|
228 |
+
"prompt": "Eclectic interior design,mix of styles and eras,bold color combinations,diverse furniture pieces,unique art objects"
|
229 |
+
},
|
230 |
+
{
|
231 |
+
"name": "Parisian",
|
232 |
+
"prompt": "Parisian apartment interior,all-white color scheme,ornate moldings,herringbone wood floors,elegant furniture,large windows"
|
233 |
+
},
|
234 |
+
{
|
235 |
+
"name": "Hollywood",
|
236 |
+
"prompt": "Hollywood Regency interior,glamorous and luxurious,bold colors,mirrored surfaces,velvet upholstery,gold accents"
|
237 |
+
},
|
238 |
+
{
|
239 |
+
"name": "Scandinavian",
|
240 |
+
"prompt": "Scandinavian interior design,light wood tones,white walls,minimalist furniture,cozy textiles,hygge atmosphere"
|
241 |
+
},
|
242 |
+
{
|
243 |
+
"name": "Beach",
|
244 |
+
"prompt": "Coastal beach house interior,light blue and white color scheme,weathered wood,nautical accents,sheer curtains,ocean view"
|
245 |
+
},
|
246 |
+
{
|
247 |
+
"name": "Japanese",
|
248 |
+
"prompt": "Traditional Japanese interior,tatami mats,shoji screens,low furniture,zen garden view,minimalist decor,natural materials"
|
249 |
+
},
|
250 |
+
{
|
251 |
+
"name": "Midcentury Modern",
|
252 |
+
"prompt": "Mid-century modern interior,1950s-60s style furniture,organic shapes,warm wood tones,bold accent colors,large windows"
|
253 |
+
},
|
254 |
+
{
|
255 |
+
"name": "Retro Futurism",
|
256 |
+
"prompt": "Neon (atompunk world) retro cyberpunk background",
|
257 |
+
},
|
258 |
+
{
|
259 |
+
"name": "Texan",
|
260 |
+
"prompt": "Western cowboy interior,rustic wood beams,leather furniture,cowhide rugs,antler chandeliers,southwestern patterns"
|
261 |
+
},
|
262 |
+
{
|
263 |
+
"name": "Matrix",
|
264 |
+
"prompt": "Futuristic cyberpunk interior,neon accent lighting,holographic plants,sleek black surfaces,advanced gaming setup,transparent screens,Blade Runner inspired decor,high-tech minimalist furniture"
|
265 |
+
}
|
266 |
+
]
|
267 |
+
|
268 |
+
styles = {k["name"]: (k["prompt"]) for k in style_list}
|
269 |
+
STYLE_NAMES = list(styles.keys())
|
270 |
+
|
271 |
+
def apply_style(style_name):
|
272 |
+
if style_name in styles:
|
273 |
+
p = styles.get(style_name, "none")
|
274 |
+
return p
|
275 |
+
|
276 |
+
|
277 |
+
css = """
|
278 |
+
h1, h2, h3 {
|
279 |
+
text-align: center;
|
280 |
+
display: block;
|
281 |
+
}
|
282 |
+
footer {
|
283 |
+
visibility: hidden;
|
284 |
+
}
|
285 |
+
.gradio-container {
|
286 |
+
max-width: 1100px !important;
|
287 |
+
}
|
288 |
+
.gr-image {
|
289 |
+
display: flex;
|
290 |
+
justify-content: center;
|
291 |
+
align-items: center;
|
292 |
+
width: 100%;
|
293 |
+
height: 512px;
|
294 |
+
overflow: hidden;
|
295 |
+
}
|
296 |
+
.gr-image img {
|
297 |
+
width: 100%;
|
298 |
+
height: 100%;
|
299 |
+
object-fit: cover;
|
300 |
+
object-position: center;
|
301 |
+
}
|
302 |
+
"""
|
303 |
+
with gr.Blocks(theme="bethecloud/storj_theme", css=css) as demo:
|
304 |
+
#############################################################################
|
305 |
+
with gr.Row():
|
306 |
+
with gr.Accordion("Advanced options", open=show_options, visible=show_options):
|
307 |
+
num_images = gr.Slider(
|
308 |
+
label="Images", minimum=1, maximum=4, value=1, step=1
|
309 |
+
)
|
310 |
+
image_resolution = gr.Slider(
|
311 |
+
label="Image resolution",
|
312 |
+
minimum=256,
|
313 |
+
maximum=1024,
|
314 |
+
value=512,
|
315 |
+
step=256,
|
316 |
+
)
|
317 |
+
preprocess_resolution = gr.Slider(
|
318 |
+
label="Preprocess resolution",
|
319 |
+
minimum=128,
|
320 |
+
maximum=1024,
|
321 |
+
value=512,
|
322 |
+
step=1,
|
323 |
+
)
|
324 |
+
num_steps = gr.Slider(
|
325 |
+
label="Number of steps", minimum=1, maximum=100, value=15, step=1
|
326 |
+
) # 20/4.5 or 12 without lora, 4 with lora
|
327 |
+
guidance_scale = gr.Slider(
|
328 |
+
label="Guidance scale", minimum=0.1, maximum=30.0, value=5.5, step=0.1
|
329 |
+
) # 5 without lora, 2 with lora
|
330 |
+
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
|
331 |
+
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
332 |
+
a_prompt = gr.Textbox(
|
333 |
+
label="Additional prompt",
|
334 |
+
value = "design-style interior designed (interior space), tungsten white balance, captured with a DSLR camera using f/10 aperture, 1/60 sec shutter speed, ISO 400, 20mm focal length"
|
335 |
+
)
|
336 |
+
n_prompt = gr.Textbox(
|
337 |
+
label="Negative prompt",
|
338 |
+
value="EasyNegativeV2, fcNeg, (badhandv4:1.4), (worst quality, low quality, bad quality, normal quality:2.0), (bad hands, missing fingers, extra fingers:2.0)",
|
339 |
+
)
|
340 |
+
#############################################################################
|
341 |
+
# input text
|
342 |
+
with gr.Column():
|
343 |
+
prompt = gr.Textbox(
|
344 |
+
label="Custom Design",
|
345 |
+
placeholder="Enter a description (optional)",
|
346 |
+
)
|
347 |
+
# design options
|
348 |
+
with gr.Row(visible=True):
|
349 |
+
style_selection = gr.Radio(
|
350 |
+
show_label=True,
|
351 |
+
container=True,
|
352 |
+
interactive=True,
|
353 |
+
choices=STYLE_NAMES,
|
354 |
+
value="None",
|
355 |
+
label="Design Styles",
|
356 |
+
)
|
357 |
+
# input image
|
358 |
+
with gr.Row(equal_height=True):
|
359 |
+
with gr.Column(scale=1, min_width=300):
|
360 |
+
image = gr.Image(
|
361 |
+
label="Input",
|
362 |
+
sources=["upload"],
|
363 |
+
show_label=True,
|
364 |
+
mirror_webcam=True,
|
365 |
+
type="pil",
|
366 |
+
)
|
367 |
+
# run button
|
368 |
+
with gr.Column():
|
369 |
+
run_button = gr.Button(value="Use this one", size="lg", visible=False)
|
370 |
+
# output image
|
371 |
+
with gr.Column(scale=1, min_width=300):
|
372 |
+
result = gr.Image(
|
373 |
+
label="Output",
|
374 |
+
interactive=False,
|
375 |
+
type="pil",
|
376 |
+
show_share_button= False,
|
377 |
+
)
|
378 |
+
# Use this image button
|
379 |
+
with gr.Column():
|
380 |
+
use_ai_button = gr.Button(value="Use this one", size="lg", visible=False)
|
381 |
+
config = [
|
382 |
+
image,
|
383 |
+
style_selection,
|
384 |
+
prompt,
|
385 |
+
a_prompt,
|
386 |
+
n_prompt,
|
387 |
+
num_images,
|
388 |
+
image_resolution,
|
389 |
+
preprocess_resolution,
|
390 |
+
num_steps,
|
391 |
+
guidance_scale,
|
392 |
+
seed,
|
393 |
+
]
|
394 |
+
|
395 |
+
with gr.Row():
|
396 |
+
helper_text = gr.Markdown("## Tap and hold (on mobile) to save the image.", visible=True)
|
397 |
+
|
398 |
+
# image processing
|
399 |
+
@gr.on(triggers=[image.upload, prompt.submit, run_button.click], inputs=config, outputs=result, show_progress="minimal")
|
400 |
+
def auto_process_image(image, style_selection, prompt, a_prompt, n_prompt, num_images, image_resolution, preprocess_resolution, num_steps, guidance_scale, seed, progress=gr.Progress(track_tqdm=True)):
|
401 |
+
return process_image(image, style_selection, prompt, a_prompt, n_prompt, num_images, image_resolution, preprocess_resolution, num_steps, guidance_scale, seed)
|
402 |
+
|
403 |
+
# AI image processing
|
404 |
+
@gr.on(triggers=[use_ai_button.click], inputs=[result] + config, outputs=[image, result], show_progress="minimal")
|
405 |
+
def submit(previous_result, image, style_selection, prompt, a_prompt, n_prompt, num_images, image_resolution, preprocess_resolution, num_steps, guidance_scale, seed, progress=gr.Progress(track_tqdm=True)):
|
406 |
+
# First, yield the previous result to update the input image immediately
|
407 |
+
yield previous_result, gr.update()
|
408 |
+
# Then, process the new input image
|
409 |
+
new_result = process_image(previous_result, style_selection, prompt, a_prompt, n_prompt, num_images, image_resolution, preprocess_resolution, num_steps, guidance_scale, seed)
|
410 |
+
# Finally, yield the new result
|
411 |
+
yield previous_result, new_result
|
412 |
+
|
413 |
+
# Turn off buttons when processing
|
414 |
+
@gr.on(triggers=[image.upload, use_ai_button.click, run_button.click], inputs=None, outputs=[run_button, use_ai_button], show_progress="hidden")
|
415 |
+
def turn_buttons_off():
|
416 |
+
return gr.update(visible=False), gr.update(visible=False)
|
417 |
+
|
418 |
+
# Turn on buttons when processing is complete
|
419 |
+
@gr.on(triggers=[result.change], inputs=None, outputs=[use_ai_button, run_button], show_progress="hidden")
|
420 |
+
def turn_buttons_on():
|
421 |
+
return gr.update(visible=True), gr.update(visible=True)
|
422 |
+
|
423 |
+
@spaces.GPU(duration=12)
|
424 |
+
@torch.inference_mode()
|
425 |
+
def process_image(
|
426 |
+
image,
|
427 |
+
style_selection,
|
428 |
+
prompt,
|
429 |
+
a_prompt,
|
430 |
+
n_prompt,
|
431 |
+
num_images,
|
432 |
+
image_resolution,
|
433 |
+
preprocess_resolution,
|
434 |
+
num_steps,
|
435 |
+
guidance_scale,
|
436 |
+
seed,
|
437 |
+
):
|
438 |
+
preprocess_start = time.time()
|
439 |
+
print("processing image")
|
440 |
+
|
441 |
+
seed = random.randint(0, MAX_SEED)
|
442 |
+
generator = torch.cuda.manual_seed(seed)
|
443 |
+
preprocessor.load("NormalBae")
|
444 |
+
control_image = preprocessor(
|
445 |
+
image=image,
|
446 |
+
image_resolution=image_resolution,
|
447 |
+
detect_resolution=preprocess_resolution,
|
448 |
+
)
|
449 |
+
preprocess_time = time.time() - preprocess_start
|
450 |
+
if style_selection is not None or style_selection != "None":
|
451 |
+
prompt = "Photo from Pinterest of " + apply_style(style_selection) + " " + prompt + "," + a_prompt
|
452 |
+
else:
|
453 |
+
prompt=str(get_prompt(prompt, a_prompt))
|
454 |
+
negative_prompt=str(n_prompt)
|
455 |
+
print(prompt)
|
456 |
+
print(f"\n-------------------------Preprocess done in: {preprocess_time:.2f} seconds-------------------------")
|
457 |
+
start = time.time()
|
458 |
+
results = pipe(
|
459 |
+
prompt=prompt,
|
460 |
+
negative_prompt=negative_prompt,
|
461 |
+
guidance_scale=guidance_scale,
|
462 |
+
num_images_per_prompt=num_images,
|
463 |
+
num_inference_steps=num_steps,
|
464 |
+
generator=generator,
|
465 |
+
image=control_image,
|
466 |
+
).images[0]
|
467 |
+
print(f"\n-------------------------Inference done in: {time.time() - start:.2f} seconds-------------------------")
|
468 |
+
torch.cuda.empty_cache()
|
469 |
+
|
470 |
+
# upload block
|
471 |
+
timestamp = int(time.time())
|
472 |
+
img_path = f"{timestamp}.jpg"
|
473 |
+
results_path = f"{timestamp}_out.jpg"
|
474 |
+
imageio.imsave(img_path, image)
|
475 |
+
imageio.imsave(results_path, results)
|
476 |
+
api.upload_file(
|
477 |
+
path_or_fileobj=img_path,
|
478 |
+
path_in_repo=img_path,
|
479 |
+
repo_id="broyang/interior-ai-outputs",
|
480 |
+
repo_type="dataset",
|
481 |
+
token=API_KEY,
|
482 |
+
run_as_future=True,
|
483 |
+
)
|
484 |
+
api.upload_file(
|
485 |
+
path_or_fileobj=results_path,
|
486 |
+
path_in_repo=results_path,
|
487 |
+
repo_id="broyang/interior-ai-outputs",
|
488 |
+
repo_type="dataset",
|
489 |
+
token=API_KEY,
|
490 |
+
run_as_future=True,
|
491 |
+
)
|
492 |
+
return results
|
493 |
+
|
494 |
+
if prod:
|
495 |
+
demo.queue(max_size=20).launch(server_name="localhost", server_port=port)
|
496 |
+
else:
|
497 |
+
demo.queue(api_open=False).launch(show_api=False)
|
498 |
+
```
|
499 |
+
|
500 |
+
# .aidigestignore
|
501 |
+
|
502 |
+
```
|
503 |
+
controlnet_aux_local/normalbae/*
|
504 |
+
requirements.txt
|
505 |
+
win.requirements.txt
|
506 |
+
web.html
|
507 |
+
client.py
|
508 |
+
local_app.py
|
509 |
+
README.md
|
510 |
+
Dockerfile
|
511 |
+
.gitignore
|
512 |
+
.gitattributes
|
513 |
+
```
|
514 |
+
|
515 |
+
# controlnet_aux_local/util.py
|
516 |
+
|
517 |
+
```py
|
518 |
+
import os
|
519 |
+
import random
|
520 |
+
|
521 |
+
import cv2
|
522 |
+
import numpy as np
|
523 |
+
import torch
|
524 |
+
|
525 |
+
annotator_ckpts_path = os.path.join(os.path.dirname(__file__), 'ckpts')
|
526 |
+
|
527 |
+
|
528 |
+
def HWC3(x):
|
529 |
+
assert x.dtype == np.uint8
|
530 |
+
if x.ndim == 2:
|
531 |
+
x = x[:, :, None]
|
532 |
+
assert x.ndim == 3
|
533 |
+
H, W, C = x.shape
|
534 |
+
assert C == 1 or C == 3 or C == 4
|
535 |
+
if C == 3:
|
536 |
+
return x
|
537 |
+
if C == 1:
|
538 |
+
return np.concatenate([x, x, x], axis=2)
|
539 |
+
if C == 4:
|
540 |
+
color = x[:, :, 0:3].astype(np.float32)
|
541 |
+
alpha = x[:, :, 3:4].astype(np.float32) / 255.0
|
542 |
+
y = color * alpha + 255.0 * (1.0 - alpha)
|
543 |
+
y = y.clip(0, 255).astype(np.uint8)
|
544 |
+
return y
|
545 |
+
|
546 |
+
|
547 |
+
def make_noise_disk(H, W, C, F):
|
548 |
+
noise = np.random.uniform(low=0, high=1, size=((H // F) + 2, (W // F) + 2, C))
|
549 |
+
noise = cv2.resize(noise, (W + 2 * F, H + 2 * F), interpolation=cv2.INTER_CUBIC)
|
550 |
+
noise = noise[F: F + H, F: F + W]
|
551 |
+
noise -= np.min(noise)
|
552 |
+
noise /= np.max(noise)
|
553 |
+
if C == 1:
|
554 |
+
noise = noise[:, :, None]
|
555 |
+
return noise
|
556 |
+
|
557 |
+
|
558 |
+
def nms(x, t, s):
|
559 |
+
x = cv2.GaussianBlur(x.astype(np.float32), (0, 0), s)
|
560 |
+
|
561 |
+
f1 = np.array([[0, 0, 0], [1, 1, 1], [0, 0, 0]], dtype=np.uint8)
|
562 |
+
f2 = np.array([[0, 1, 0], [0, 1, 0], [0, 1, 0]], dtype=np.uint8)
|
563 |
+
f3 = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]], dtype=np.uint8)
|
564 |
+
f4 = np.array([[0, 0, 1], [0, 1, 0], [1, 0, 0]], dtype=np.uint8)
|
565 |
+
|
566 |
+
y = np.zeros_like(x)
|
567 |
+
|
568 |
+
for f in [f1, f2, f3, f4]:
|
569 |
+
np.putmask(y, cv2.dilate(x, kernel=f) == x, x)
|
570 |
+
|
571 |
+
z = np.zeros_like(y, dtype=np.uint8)
|
572 |
+
z[y > t] = 255
|
573 |
+
return z
|
574 |
+
|
575 |
+
def min_max_norm(x):
|
576 |
+
x -= np.min(x)
|
577 |
+
x /= np.maximum(np.max(x), 1e-5)
|
578 |
+
return x
|
579 |
+
|
580 |
+
|
581 |
+
def safe_step(x, step=2):
|
582 |
+
y = x.astype(np.float32) * float(step + 1)
|
583 |
+
y = y.astype(np.int32).astype(np.float32) / float(step)
|
584 |
+
return y
|
585 |
+
|
586 |
+
|
587 |
+
def img2mask(img, H, W, low=10, high=90):
|
588 |
+
assert img.ndim == 3 or img.ndim == 2
|
589 |
+
assert img.dtype == np.uint8
|
590 |
+
|
591 |
+
if img.ndim == 3:
|
592 |
+
y = img[:, :, random.randrange(0, img.shape[2])]
|
593 |
+
else:
|
594 |
+
y = img
|
595 |
+
|
596 |
+
y = cv2.resize(y, (W, H), interpolation=cv2.INTER_CUBIC)
|
597 |
+
|
598 |
+
if random.uniform(0, 1) < 0.5:
|
599 |
+
y = 255 - y
|
600 |
+
|
601 |
+
return y < np.percentile(y, random.randrange(low, high))
|
602 |
+
|
603 |
+
|
604 |
+
def resize_image(input_image, resolution):
|
605 |
+
H, W, C = input_image.shape
|
606 |
+
H = float(H)
|
607 |
+
W = float(W)
|
608 |
+
k = float(resolution) / min(H, W)
|
609 |
+
H *= k
|
610 |
+
W *= k
|
611 |
+
H = int(np.round(H / 64.0)) * 64
|
612 |
+
W = int(np.round(W / 64.0)) * 64
|
613 |
+
img = cv2.resize(input_image, (W, H), interpolation=cv2.INTER_LANCZOS4 if k > 1 else cv2.INTER_AREA)
|
614 |
+
return img
|
615 |
+
|
616 |
+
|
617 |
+
def torch_gc():
|
618 |
+
if torch.cuda.is_available():
|
619 |
+
torch.cuda.empty_cache()
|
620 |
+
torch.cuda.ipc_collect()
|
621 |
+
|
622 |
+
|
623 |
+
def ade_palette():
|
624 |
+
"""ADE20K palette that maps each class to RGB values."""
|
625 |
+
return [[120, 120, 120], [180, 120, 120], [6, 230, 230], [80, 50, 50],
|
626 |
+
[4, 200, 3], [120, 120, 80], [140, 140, 140], [204, 5, 255],
|
627 |
+
[230, 230, 230], [4, 250, 7], [224, 5, 255], [235, 255, 7],
|
628 |
+
[150, 5, 61], [120, 120, 70], [8, 255, 51], [255, 6, 82],
|
629 |
+
[143, 255, 140], [204, 255, 4], [255, 51, 7], [204, 70, 3],
|
630 |
+
[0, 102, 200], [61, 230, 250], [255, 6, 51], [11, 102, 255],
|
631 |
+
[255, 7, 71], [255, 9, 224], [9, 7, 230], [220, 220, 220],
|
632 |
+
[255, 9, 92], [112, 9, 255], [8, 255, 214], [7, 255, 224],
|
633 |
+
[255, 184, 6], [10, 255, 71], [255, 41, 10], [7, 255, 255],
|
634 |
+
[224, 255, 8], [102, 8, 255], [255, 61, 6], [255, 194, 7],
|
635 |
+
[255, 122, 8], [0, 255, 20], [255, 8, 41], [255, 5, 153],
|
636 |
+
[6, 51, 255], [235, 12, 255], [160, 150, 20], [0, 163, 255],
|
637 |
+
[140, 140, 140], [250, 10, 15], [20, 255, 0], [31, 255, 0],
|
638 |
+
[255, 31, 0], [255, 224, 0], [153, 255, 0], [0, 0, 255],
|
639 |
+
[255, 71, 0], [0, 235, 255], [0, 173, 255], [31, 0, 255],
|
640 |
+
[11, 200, 200], [255, 82, 0], [0, 255, 245], [0, 61, 255],
|
641 |
+
[0, 255, 112], [0, 255, 133], [255, 0, 0], [255, 163, 0],
|
642 |
+
[255, 102, 0], [194, 255, 0], [0, 143, 255], [51, 255, 0],
|
643 |
+
[0, 82, 255], [0, 255, 41], [0, 255, 173], [10, 0, 255],
|
644 |
+
[173, 255, 0], [0, 255, 153], [255, 92, 0], [255, 0, 255],
|
645 |
+
[255, 0, 245], [255, 0, 102], [255, 173, 0], [255, 0, 20],
|
646 |
+
[255, 184, 184], [0, 31, 255], [0, 255, 61], [0, 71, 255],
|
647 |
+
[255, 0, 204], [0, 255, 194], [0, 255, 82], [0, 10, 255],
|
648 |
+
[0, 112, 255], [51, 0, 255], [0, 194, 255], [0, 122, 255],
|
649 |
+
[0, 255, 163], [255, 153, 0], [0, 255, 10], [255, 112, 0],
|
650 |
+
[143, 255, 0], [82, 0, 255], [163, 255, 0], [255, 235, 0],
|
651 |
+
[8, 184, 170], [133, 0, 255], [0, 255, 92], [184, 0, 255],
|
652 |
+
[255, 0, 31], [0, 184, 255], [0, 214, 255], [255, 0, 112],
|
653 |
+
[92, 255, 0], [0, 224, 255], [112, 224, 255], [70, 184, 160],
|
654 |
+
[163, 0, 255], [153, 0, 255], [71, 255, 0], [255, 0, 163],
|
655 |
+
[255, 204, 0], [255, 0, 143], [0, 255, 235], [133, 255, 0],
|
656 |
+
[255, 0, 235], [245, 0, 255], [255, 0, 122], [255, 245, 0],
|
657 |
+
[10, 190, 212], [214, 255, 0], [0, 204, 255], [20, 0, 255],
|
658 |
+
[255, 255, 0], [0, 153, 255], [0, 41, 255], [0, 255, 204],
|
659 |
+
[41, 0, 255], [41, 255, 0], [173, 0, 255], [0, 245, 255],
|
660 |
+
[71, 0, 255], [122, 0, 255], [0, 255, 184], [0, 92, 255],
|
661 |
+
[184, 255, 0], [0, 133, 255], [255, 214, 0], [25, 194, 194],
|
662 |
+
[102, 255, 0], [92, 0, 255]]
|
663 |
+
|
664 |
+
|
665 |
+
```
|
666 |
+
|
667 |
+
# controlnet_aux_local/processor.py
|
668 |
+
|
669 |
+
```py
|
670 |
+
"""
|
671 |
+
This file contains a Processor that can be used to process images with controlnet aux processors
|
672 |
+
"""
|
673 |
+
import io
|
674 |
+
import logging
|
675 |
+
from typing import Dict, Optional, Union
|
676 |
+
|
677 |
+
from PIL import Image
|
678 |
+
|
679 |
+
from controlnet_aux_local import (CannyDetector, ContentShuffleDetector, HEDdetector,
|
680 |
+
LeresDetector, LineartAnimeDetector,
|
681 |
+
LineartDetector, MediapipeFaceDetector,
|
682 |
+
MidasDetector, MLSDdetector, NormalBaeDetector,
|
683 |
+
OpenposeDetector, PidiNetDetector, ZoeDetector,
|
684 |
+
DWposeDetector)
|
685 |
+
|
686 |
+
LOGGER = logging.getLogger(__name__)
|
687 |
+
|
688 |
+
|
689 |
+
MODELS = {
|
690 |
+
# checkpoint models
|
691 |
+
'scribble_hed': {'class': HEDdetector, 'checkpoint': True},
|
692 |
+
'softedge_hed': {'class': HEDdetector, 'checkpoint': True},
|
693 |
+
'scribble_hedsafe': {'class': HEDdetector, 'checkpoint': True},
|
694 |
+
'softedge_hedsafe': {'class': HEDdetector, 'checkpoint': True},
|
695 |
+
'depth_midas': {'class': MidasDetector, 'checkpoint': True},
|
696 |
+
'mlsd': {'class': MLSDdetector, 'checkpoint': True},
|
697 |
+
'openpose': {'class': OpenposeDetector, 'checkpoint': True},
|
698 |
+
'openpose_face': {'class': OpenposeDetector, 'checkpoint': True},
|
699 |
+
'openpose_faceonly': {'class': OpenposeDetector, 'checkpoint': True},
|
700 |
+
'openpose_full': {'class': OpenposeDetector, 'checkpoint': True},
|
701 |
+
'openpose_hand': {'class': OpenposeDetector, 'checkpoint': True},
|
702 |
+
'dwpose': {'class': DWposeDetector, 'checkpoint': True},
|
703 |
+
'scribble_pidinet': {'class': PidiNetDetector, 'checkpoint': True},
|
704 |
+
'softedge_pidinet': {'class': PidiNetDetector, 'checkpoint': True},
|
705 |
+
'scribble_pidsafe': {'class': PidiNetDetector, 'checkpoint': True},
|
706 |
+
'softedge_pidsafe': {'class': PidiNetDetector, 'checkpoint': True},
|
707 |
+
'normal_bae': {'class': NormalBaeDetector, 'checkpoint': True},
|
708 |
+
'lineart_coarse': {'class': LineartDetector, 'checkpoint': True},
|
709 |
+
'lineart_realistic': {'class': LineartDetector, 'checkpoint': True},
|
710 |
+
'lineart_anime': {'class': LineartAnimeDetector, 'checkpoint': True},
|
711 |
+
'depth_zoe': {'class': ZoeDetector, 'checkpoint': True},
|
712 |
+
'depth_leres': {'class': LeresDetector, 'checkpoint': True},
|
713 |
+
'depth_leres++': {'class': LeresDetector, 'checkpoint': True},
|
714 |
+
# instantiate
|
715 |
+
'shuffle': {'class': ContentShuffleDetector, 'checkpoint': False},
|
716 |
+
'mediapipe_face': {'class': MediapipeFaceDetector, 'checkpoint': False},
|
717 |
+
'canny': {'class': CannyDetector, 'checkpoint': False},
|
718 |
+
}
|
719 |
+
|
720 |
+
|
721 |
+
MODEL_PARAMS = {
|
722 |
+
'scribble_hed': {'scribble': True},
|
723 |
+
'softedge_hed': {'scribble': False},
|
724 |
+
'scribble_hedsafe': {'scribble': True, 'safe': True},
|
725 |
+
'softedge_hedsafe': {'scribble': False, 'safe': True},
|
726 |
+
'depth_midas': {},
|
727 |
+
'mlsd': {},
|
728 |
+
'openpose': {'include_body': True, 'include_hand': False, 'include_face': False},
|
729 |
+
'openpose_face': {'include_body': True, 'include_hand': False, 'include_face': True},
|
730 |
+
'openpose_faceonly': {'include_body': False, 'include_hand': False, 'include_face': True},
|
731 |
+
'openpose_full': {'include_body': True, 'include_hand': True, 'include_face': True},
|
732 |
+
'openpose_hand': {'include_body': False, 'include_hand': True, 'include_face': False},
|
733 |
+
'dwpose': {},
|
734 |
+
'scribble_pidinet': {'safe': False, 'scribble': True},
|
735 |
+
'softedge_pidinet': {'safe': False, 'scribble': False},
|
736 |
+
'scribble_pidsafe': {'safe': True, 'scribble': True},
|
737 |
+
'softedge_pidsafe': {'safe': True, 'scribble': False},
|
738 |
+
'normal_bae': {},
|
739 |
+
'lineart_realistic': {'coarse': False},
|
740 |
+
'lineart_coarse': {'coarse': True},
|
741 |
+
'lineart_anime': {},
|
742 |
+
'canny': {},
|
743 |
+
'shuffle': {},
|
744 |
+
'depth_zoe': {},
|
745 |
+
'depth_leres': {'boost': False},
|
746 |
+
'depth_leres++': {'boost': True},
|
747 |
+
'mediapipe_face': {},
|
748 |
+
}
|
749 |
+
|
750 |
+
CHOICES = f"Choices for the processor are {list(MODELS.keys())}"
|
751 |
+
|
752 |
+
|
753 |
+
class Processor:
|
754 |
+
def __init__(self, processor_id: str, params: Optional[Dict] = None) -> None:
|
755 |
+
"""Processor that can be used to process images with controlnet aux processors
|
756 |
+
|
757 |
+
Args:
|
758 |
+
processor_id (str): processor name, options are 'hed, midas, mlsd, openpose,
|
759 |
+
pidinet, normalbae, lineart, lineart_coarse, lineart_anime,
|
760 |
+
canny, content_shuffle, zoe, mediapipe_face
|
761 |
+
params (Optional[Dict]): parameters for the processor
|
762 |
+
"""
|
763 |
+
LOGGER.info(f"Loading {processor_id}")
|
764 |
+
|
765 |
+
if processor_id not in MODELS:
|
766 |
+
raise ValueError(f"{processor_id} is not a valid processor id. Please make sure to choose one of {', '.join(MODELS.keys())}")
|
767 |
+
|
768 |
+
self.processor_id = processor_id
|
769 |
+
self.processor = self.load_processor(self.processor_id)
|
770 |
+
|
771 |
+
# load default params
|
772 |
+
self.params = MODEL_PARAMS[self.processor_id]
|
773 |
+
# update with user params
|
774 |
+
if params:
|
775 |
+
self.params.update(params)
|
776 |
+
|
777 |
+
def load_processor(self, processor_id: str) -> 'Processor':
|
778 |
+
"""Load controlnet aux processors
|
779 |
+
|
780 |
+
Args:
|
781 |
+
processor_id (str): processor name
|
782 |
+
|
783 |
+
Returns:
|
784 |
+
Processor: controlnet aux processor
|
785 |
+
"""
|
786 |
+
processor = MODELS[processor_id]['class']
|
787 |
+
|
788 |
+
# check if the proecssor is a checkpoint model
|
789 |
+
if MODELS[processor_id]['checkpoint']:
|
790 |
+
processor = processor.from_pretrained("lllyasviel/Annotators")
|
791 |
+
else:
|
792 |
+
processor = processor()
|
793 |
+
return processor
|
794 |
+
|
795 |
+
def __call__(self, image: Union[Image.Image, bytes],
|
796 |
+
to_pil: bool = True) -> Union[Image.Image, bytes]:
|
797 |
+
"""processes an image with a controlnet aux processor
|
798 |
+
|
799 |
+
Args:
|
800 |
+
image (Union[Image.Image, bytes]): input image in bytes or PIL Image
|
801 |
+
to_pil (bool): whether to return bytes or PIL Image
|
802 |
+
|
803 |
+
Returns:
|
804 |
+
Union[Image.Image, bytes]: processed image in bytes or PIL Image
|
805 |
+
"""
|
806 |
+
# check if bytes or PIL Image
|
807 |
+
if isinstance(image, bytes):
|
808 |
+
image = Image.open(io.BytesIO(image)).convert("RGB")
|
809 |
+
|
810 |
+
processed_image = self.processor(image, **self.params)
|
811 |
+
|
812 |
+
if to_pil:
|
813 |
+
return processed_image
|
814 |
+
else:
|
815 |
+
output_bytes = io.BytesIO()
|
816 |
+
processed_image.save(output_bytes, format='JPEG')
|
817 |
+
return output_bytes.getvalue()
|
818 |
+
|
819 |
+
```
|
820 |
+
|
821 |
+
# controlnet_aux_local/__init__.py
|
822 |
+
|
823 |
+
```py
|
824 |
+
__version__ = "0.0.8"
|
825 |
+
|
826 |
+
# from .hed import HEDdetector
|
827 |
+
# from .leres import LeresDetector
|
828 |
+
# from .lineart import LineartDetector
|
829 |
+
# from .lineart_anime import LineartAnimeDetector
|
830 |
+
# from .midas import MidasDetector
|
831 |
+
# from .mlsd import MLSDdetector
|
832 |
+
from .normalbae import NormalBaeDetector
|
833 |
+
# from .open_pose import OpenposeDetector
|
834 |
+
# from .pidi import PidiNetDetector
|
835 |
+
# from .zoe import ZoeDetector
|
836 |
+
|
837 |
+
# from .canny import CannyDetector
|
838 |
+
# from .mediapipe_face import MediapipeFaceDetector
|
839 |
+
# from .segment_anything import SamDetector
|
840 |
+
# from .shuffle import ContentShuffleDetector
|
841 |
+
# from .dwpose import DWposeDetector
|
842 |
+
```
|
843 |
+
|
controlnet_aux_local/canny/__init__.py
DELETED
@@ -1,36 +0,0 @@
|
|
1 |
-
import warnings
|
2 |
-
import cv2
|
3 |
-
import numpy as np
|
4 |
-
from PIL import Image
|
5 |
-
from ..util import HWC3, resize_image
|
6 |
-
|
7 |
-
class CannyDetector:
|
8 |
-
def __call__(self, input_image=None, low_threshold=100, high_threshold=200, detect_resolution=512, image_resolution=512, output_type=None, **kwargs):
|
9 |
-
if "img" in kwargs:
|
10 |
-
warnings.warn("img is deprecated, please use `input_image=...` instead.", DeprecationWarning)
|
11 |
-
input_image = kwargs.pop("img")
|
12 |
-
|
13 |
-
if input_image is None:
|
14 |
-
raise ValueError("input_image must be defined.")
|
15 |
-
|
16 |
-
if not isinstance(input_image, np.ndarray):
|
17 |
-
input_image = np.array(input_image, dtype=np.uint8)
|
18 |
-
output_type = output_type or "pil"
|
19 |
-
else:
|
20 |
-
output_type = output_type or "np"
|
21 |
-
|
22 |
-
input_image = HWC3(input_image)
|
23 |
-
input_image = resize_image(input_image, detect_resolution)
|
24 |
-
|
25 |
-
detected_map = cv2.Canny(input_image, low_threshold, high_threshold)
|
26 |
-
detected_map = HWC3(detected_map)
|
27 |
-
|
28 |
-
img = resize_image(input_image, image_resolution)
|
29 |
-
H, W, C = img.shape
|
30 |
-
|
31 |
-
detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_LINEAR)
|
32 |
-
|
33 |
-
if output_type == "pil":
|
34 |
-
detected_map = Image.fromarray(detected_map)
|
35 |
-
|
36 |
-
return detected_map
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
controlnet_aux_local/dwpose/__init__.py
DELETED
@@ -1,91 +0,0 @@
|
|
1 |
-
# Openpose
|
2 |
-
# Original from CMU https://github.com/CMU-Perceptual-Computing-Lab/openpose
|
3 |
-
# 2nd Edited by https://github.com/Hzzone/pytorch-openpose
|
4 |
-
# 3rd Edited by ControlNet
|
5 |
-
# 4th Edited by ControlNet (added face and correct hands)
|
6 |
-
|
7 |
-
import os
|
8 |
-
os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE"
|
9 |
-
|
10 |
-
import cv2
|
11 |
-
import torch
|
12 |
-
import numpy as np
|
13 |
-
from PIL import Image
|
14 |
-
|
15 |
-
from ..util import HWC3, resize_image
|
16 |
-
from . import util
|
17 |
-
|
18 |
-
|
19 |
-
def draw_pose(pose, H, W):
|
20 |
-
bodies = pose['bodies']
|
21 |
-
faces = pose['faces']
|
22 |
-
hands = pose['hands']
|
23 |
-
candidate = bodies['candidate']
|
24 |
-
subset = bodies['subset']
|
25 |
-
|
26 |
-
canvas = np.zeros(shape=(H, W, 3), dtype=np.uint8)
|
27 |
-
canvas = util.draw_bodypose(canvas, candidate, subset)
|
28 |
-
canvas = util.draw_handpose(canvas, hands)
|
29 |
-
canvas = util.draw_facepose(canvas, faces)
|
30 |
-
|
31 |
-
return canvas
|
32 |
-
|
33 |
-
class DWposeDetector:
|
34 |
-
def __init__(self, det_config=None, det_ckpt=None, pose_config=None, pose_ckpt=None, device="cpu"):
|
35 |
-
from .wholebody import Wholebody
|
36 |
-
|
37 |
-
self.pose_estimation = Wholebody(det_config, det_ckpt, pose_config, pose_ckpt, device)
|
38 |
-
|
39 |
-
def to(self, device):
|
40 |
-
self.pose_estimation.to(device)
|
41 |
-
return self
|
42 |
-
|
43 |
-
def __call__(self, input_image, detect_resolution=512, image_resolution=512, output_type="pil", **kwargs):
|
44 |
-
|
45 |
-
input_image = cv2.cvtColor(np.array(input_image, dtype=np.uint8), cv2.COLOR_RGB2BGR)
|
46 |
-
|
47 |
-
input_image = HWC3(input_image)
|
48 |
-
input_image = resize_image(input_image, detect_resolution)
|
49 |
-
H, W, C = input_image.shape
|
50 |
-
|
51 |
-
with torch.no_grad():
|
52 |
-
candidate, subset = self.pose_estimation(input_image)
|
53 |
-
nums, keys, locs = candidate.shape
|
54 |
-
candidate[..., 0] /= float(W)
|
55 |
-
candidate[..., 1] /= float(H)
|
56 |
-
body = candidate[:,:18].copy()
|
57 |
-
body = body.reshape(nums*18, locs)
|
58 |
-
score = subset[:,:18]
|
59 |
-
|
60 |
-
for i in range(len(score)):
|
61 |
-
for j in range(len(score[i])):
|
62 |
-
if score[i][j] > 0.3:
|
63 |
-
score[i][j] = int(18*i+j)
|
64 |
-
else:
|
65 |
-
score[i][j] = -1
|
66 |
-
|
67 |
-
un_visible = subset<0.3
|
68 |
-
candidate[un_visible] = -1
|
69 |
-
|
70 |
-
foot = candidate[:,18:24]
|
71 |
-
|
72 |
-
faces = candidate[:,24:92]
|
73 |
-
|
74 |
-
hands = candidate[:,92:113]
|
75 |
-
hands = np.vstack([hands, candidate[:,113:]])
|
76 |
-
|
77 |
-
bodies = dict(candidate=body, subset=score)
|
78 |
-
pose = dict(bodies=bodies, hands=hands, faces=faces)
|
79 |
-
|
80 |
-
detected_map = draw_pose(pose, H, W)
|
81 |
-
detected_map = HWC3(detected_map)
|
82 |
-
|
83 |
-
img = resize_image(input_image, image_resolution)
|
84 |
-
H, W, C = img.shape
|
85 |
-
|
86 |
-
detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_LINEAR)
|
87 |
-
|
88 |
-
if output_type == "pil":
|
89 |
-
detected_map = Image.fromarray(detected_map)
|
90 |
-
|
91 |
-
return detected_map
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
controlnet_aux_local/dwpose/util.py
DELETED
@@ -1,303 +0,0 @@
|
|
1 |
-
import math
|
2 |
-
import numpy as np
|
3 |
-
import cv2
|
4 |
-
|
5 |
-
|
6 |
-
eps = 0.01
|
7 |
-
|
8 |
-
|
9 |
-
def smart_resize(x, s):
|
10 |
-
Ht, Wt = s
|
11 |
-
if x.ndim == 2:
|
12 |
-
Ho, Wo = x.shape
|
13 |
-
Co = 1
|
14 |
-
else:
|
15 |
-
Ho, Wo, Co = x.shape
|
16 |
-
if Co == 3 or Co == 1:
|
17 |
-
k = float(Ht + Wt) / float(Ho + Wo)
|
18 |
-
return cv2.resize(x, (int(Wt), int(Ht)), interpolation=cv2.INTER_AREA if k < 1 else cv2.INTER_LANCZOS4)
|
19 |
-
else:
|
20 |
-
return np.stack([smart_resize(x[:, :, i], s) for i in range(Co)], axis=2)
|
21 |
-
|
22 |
-
|
23 |
-
def smart_resize_k(x, fx, fy):
|
24 |
-
if x.ndim == 2:
|
25 |
-
Ho, Wo = x.shape
|
26 |
-
Co = 1
|
27 |
-
else:
|
28 |
-
Ho, Wo, Co = x.shape
|
29 |
-
Ht, Wt = Ho * fy, Wo * fx
|
30 |
-
if Co == 3 or Co == 1:
|
31 |
-
k = float(Ht + Wt) / float(Ho + Wo)
|
32 |
-
return cv2.resize(x, (int(Wt), int(Ht)), interpolation=cv2.INTER_AREA if k < 1 else cv2.INTER_LANCZOS4)
|
33 |
-
else:
|
34 |
-
return np.stack([smart_resize_k(x[:, :, i], fx, fy) for i in range(Co)], axis=2)
|
35 |
-
|
36 |
-
|
37 |
-
def padRightDownCorner(img, stride, padValue):
|
38 |
-
h = img.shape[0]
|
39 |
-
w = img.shape[1]
|
40 |
-
|
41 |
-
pad = 4 * [None]
|
42 |
-
pad[0] = 0 # up
|
43 |
-
pad[1] = 0 # left
|
44 |
-
pad[2] = 0 if (h % stride == 0) else stride - (h % stride) # down
|
45 |
-
pad[3] = 0 if (w % stride == 0) else stride - (w % stride) # right
|
46 |
-
|
47 |
-
img_padded = img
|
48 |
-
pad_up = np.tile(img_padded[0:1, :, :]*0 + padValue, (pad[0], 1, 1))
|
49 |
-
img_padded = np.concatenate((pad_up, img_padded), axis=0)
|
50 |
-
pad_left = np.tile(img_padded[:, 0:1, :]*0 + padValue, (1, pad[1], 1))
|
51 |
-
img_padded = np.concatenate((pad_left, img_padded), axis=1)
|
52 |
-
pad_down = np.tile(img_padded[-2:-1, :, :]*0 + padValue, (pad[2], 1, 1))
|
53 |
-
img_padded = np.concatenate((img_padded, pad_down), axis=0)
|
54 |
-
pad_right = np.tile(img_padded[:, -2:-1, :]*0 + padValue, (1, pad[3], 1))
|
55 |
-
img_padded = np.concatenate((img_padded, pad_right), axis=1)
|
56 |
-
|
57 |
-
return img_padded, pad
|
58 |
-
|
59 |
-
|
60 |
-
def transfer(model, model_weights):
|
61 |
-
transfered_model_weights = {}
|
62 |
-
for weights_name in model.state_dict().keys():
|
63 |
-
transfered_model_weights[weights_name] = model_weights['.'.join(weights_name.split('.')[1:])]
|
64 |
-
return transfered_model_weights
|
65 |
-
|
66 |
-
|
67 |
-
def draw_bodypose(canvas, candidate, subset):
|
68 |
-
H, W, C = canvas.shape
|
69 |
-
candidate = np.array(candidate)
|
70 |
-
subset = np.array(subset)
|
71 |
-
|
72 |
-
stickwidth = 4
|
73 |
-
|
74 |
-
limbSeq = [[2, 3], [2, 6], [3, 4], [4, 5], [6, 7], [7, 8], [2, 9], [9, 10], \
|
75 |
-
[10, 11], [2, 12], [12, 13], [13, 14], [2, 1], [1, 15], [15, 17], \
|
76 |
-
[1, 16], [16, 18], [3, 17], [6, 18]]
|
77 |
-
|
78 |
-
colors = [[255, 0, 0], [255, 85, 0], [255, 170, 0], [255, 255, 0], [170, 255, 0], [85, 255, 0], [0, 255, 0], \
|
79 |
-
[0, 255, 85], [0, 255, 170], [0, 255, 255], [0, 170, 255], [0, 85, 255], [0, 0, 255], [85, 0, 255], \
|
80 |
-
[170, 0, 255], [255, 0, 255], [255, 0, 170], [255, 0, 85]]
|
81 |
-
|
82 |
-
for i in range(17):
|
83 |
-
for n in range(len(subset)):
|
84 |
-
index = subset[n][np.array(limbSeq[i]) - 1]
|
85 |
-
if -1 in index:
|
86 |
-
continue
|
87 |
-
Y = candidate[index.astype(int), 0] * float(W)
|
88 |
-
X = candidate[index.astype(int), 1] * float(H)
|
89 |
-
mX = np.mean(X)
|
90 |
-
mY = np.mean(Y)
|
91 |
-
length = ((X[0] - X[1]) ** 2 + (Y[0] - Y[1]) ** 2) ** 0.5
|
92 |
-
angle = math.degrees(math.atan2(X[0] - X[1], Y[0] - Y[1]))
|
93 |
-
polygon = cv2.ellipse2Poly((int(mY), int(mX)), (int(length / 2), stickwidth), int(angle), 0, 360, 1)
|
94 |
-
cv2.fillConvexPoly(canvas, polygon, colors[i])
|
95 |
-
|
96 |
-
canvas = (canvas * 0.6).astype(np.uint8)
|
97 |
-
|
98 |
-
for i in range(18):
|
99 |
-
for n in range(len(subset)):
|
100 |
-
index = int(subset[n][i])
|
101 |
-
if index == -1:
|
102 |
-
continue
|
103 |
-
x, y = candidate[index][0:2]
|
104 |
-
x = int(x * W)
|
105 |
-
y = int(y * H)
|
106 |
-
cv2.circle(canvas, (int(x), int(y)), 4, colors[i], thickness=-1)
|
107 |
-
|
108 |
-
return canvas
|
109 |
-
|
110 |
-
|
111 |
-
def draw_handpose(canvas, all_hand_peaks):
|
112 |
-
import matplotlib
|
113 |
-
|
114 |
-
H, W, C = canvas.shape
|
115 |
-
|
116 |
-
edges = [[0, 1], [1, 2], [2, 3], [3, 4], [0, 5], [5, 6], [6, 7], [7, 8], [0, 9], [9, 10], \
|
117 |
-
[10, 11], [11, 12], [0, 13], [13, 14], [14, 15], [15, 16], [0, 17], [17, 18], [18, 19], [19, 20]]
|
118 |
-
|
119 |
-
# (person_number*2, 21, 2)
|
120 |
-
for i in range(len(all_hand_peaks)):
|
121 |
-
peaks = all_hand_peaks[i]
|
122 |
-
peaks = np.array(peaks)
|
123 |
-
|
124 |
-
for ie, e in enumerate(edges):
|
125 |
-
|
126 |
-
x1, y1 = peaks[e[0]]
|
127 |
-
x2, y2 = peaks[e[1]]
|
128 |
-
|
129 |
-
x1 = int(x1 * W)
|
130 |
-
y1 = int(y1 * H)
|
131 |
-
x2 = int(x2 * W)
|
132 |
-
y2 = int(y2 * H)
|
133 |
-
if x1 > eps and y1 > eps and x2 > eps and y2 > eps:
|
134 |
-
cv2.line(canvas, (x1, y1), (x2, y2), matplotlib.colors.hsv_to_rgb([ie / float(len(edges)), 1.0, 1.0]) * 255, thickness=2)
|
135 |
-
|
136 |
-
for _, keyponit in enumerate(peaks):
|
137 |
-
x, y = keyponit
|
138 |
-
|
139 |
-
x = int(x * W)
|
140 |
-
y = int(y * H)
|
141 |
-
if x > eps and y > eps:
|
142 |
-
cv2.circle(canvas, (x, y), 4, (0, 0, 255), thickness=-1)
|
143 |
-
return canvas
|
144 |
-
|
145 |
-
|
146 |
-
def draw_facepose(canvas, all_lmks):
|
147 |
-
H, W, C = canvas.shape
|
148 |
-
for lmks in all_lmks:
|
149 |
-
lmks = np.array(lmks)
|
150 |
-
for lmk in lmks:
|
151 |
-
x, y = lmk
|
152 |
-
x = int(x * W)
|
153 |
-
y = int(y * H)
|
154 |
-
if x > eps and y > eps:
|
155 |
-
cv2.circle(canvas, (x, y), 3, (255, 255, 255), thickness=-1)
|
156 |
-
return canvas
|
157 |
-
|
158 |
-
|
159 |
-
# detect hand according to body pose keypoints
|
160 |
-
# please refer to https://github.com/CMU-Perceptual-Computing-Lab/openpose/blob/master/src/openpose/hand/handDetector.cpp
|
161 |
-
def handDetect(candidate, subset, oriImg):
|
162 |
-
# right hand: wrist 4, elbow 3, shoulder 2
|
163 |
-
# left hand: wrist 7, elbow 6, shoulder 5
|
164 |
-
ratioWristElbow = 0.33
|
165 |
-
detect_result = []
|
166 |
-
image_height, image_width = oriImg.shape[0:2]
|
167 |
-
for person in subset.astype(int):
|
168 |
-
# if any of three not detected
|
169 |
-
has_left = np.sum(person[[5, 6, 7]] == -1) == 0
|
170 |
-
has_right = np.sum(person[[2, 3, 4]] == -1) == 0
|
171 |
-
if not (has_left or has_right):
|
172 |
-
continue
|
173 |
-
hands = []
|
174 |
-
#left hand
|
175 |
-
if has_left:
|
176 |
-
left_shoulder_index, left_elbow_index, left_wrist_index = person[[5, 6, 7]]
|
177 |
-
x1, y1 = candidate[left_shoulder_index][:2]
|
178 |
-
x2, y2 = candidate[left_elbow_index][:2]
|
179 |
-
x3, y3 = candidate[left_wrist_index][:2]
|
180 |
-
hands.append([x1, y1, x2, y2, x3, y3, True])
|
181 |
-
# right hand
|
182 |
-
if has_right:
|
183 |
-
right_shoulder_index, right_elbow_index, right_wrist_index = person[[2, 3, 4]]
|
184 |
-
x1, y1 = candidate[right_shoulder_index][:2]
|
185 |
-
x2, y2 = candidate[right_elbow_index][:2]
|
186 |
-
x3, y3 = candidate[right_wrist_index][:2]
|
187 |
-
hands.append([x1, y1, x2, y2, x3, y3, False])
|
188 |
-
|
189 |
-
for x1, y1, x2, y2, x3, y3, is_left in hands:
|
190 |
-
# pos_hand = pos_wrist + ratio * (pos_wrist - pos_elbox) = (1 + ratio) * pos_wrist - ratio * pos_elbox
|
191 |
-
# handRectangle.x = posePtr[wrist*3] + ratioWristElbow * (posePtr[wrist*3] - posePtr[elbow*3]);
|
192 |
-
# handRectangle.y = posePtr[wrist*3+1] + ratioWristElbow * (posePtr[wrist*3+1] - posePtr[elbow*3+1]);
|
193 |
-
# const auto distanceWristElbow = getDistance(poseKeypoints, person, wrist, elbow);
|
194 |
-
# const auto distanceElbowShoulder = getDistance(poseKeypoints, person, elbow, shoulder);
|
195 |
-
# handRectangle.width = 1.5f * fastMax(distanceWristElbow, 0.9f * distanceElbowShoulder);
|
196 |
-
x = x3 + ratioWristElbow * (x3 - x2)
|
197 |
-
y = y3 + ratioWristElbow * (y3 - y2)
|
198 |
-
distanceWristElbow = math.sqrt((x3 - x2) ** 2 + (y3 - y2) ** 2)
|
199 |
-
distanceElbowShoulder = math.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)
|
200 |
-
width = 1.5 * max(distanceWristElbow, 0.9 * distanceElbowShoulder)
|
201 |
-
# x-y refers to the center --> offset to topLeft point
|
202 |
-
# handRectangle.x -= handRectangle.width / 2.f;
|
203 |
-
# handRectangle.y -= handRectangle.height / 2.f;
|
204 |
-
x -= width / 2
|
205 |
-
y -= width / 2 # width = height
|
206 |
-
# overflow the image
|
207 |
-
if x < 0: x = 0
|
208 |
-
if y < 0: y = 0
|
209 |
-
width1 = width
|
210 |
-
width2 = width
|
211 |
-
if x + width > image_width: width1 = image_width - x
|
212 |
-
if y + width > image_height: width2 = image_height - y
|
213 |
-
width = min(width1, width2)
|
214 |
-
# the max hand box value is 20 pixels
|
215 |
-
if width >= 20:
|
216 |
-
detect_result.append([int(x), int(y), int(width), is_left])
|
217 |
-
|
218 |
-
'''
|
219 |
-
return value: [[x, y, w, True if left hand else False]].
|
220 |
-
width=height since the network require squared input.
|
221 |
-
x, y is the coordinate of top left
|
222 |
-
'''
|
223 |
-
return detect_result
|
224 |
-
|
225 |
-
|
226 |
-
# Written by Lvmin
|
227 |
-
def faceDetect(candidate, subset, oriImg):
|
228 |
-
# left right eye ear 14 15 16 17
|
229 |
-
detect_result = []
|
230 |
-
image_height, image_width = oriImg.shape[0:2]
|
231 |
-
for person in subset.astype(int):
|
232 |
-
has_head = person[0] > -1
|
233 |
-
if not has_head:
|
234 |
-
continue
|
235 |
-
|
236 |
-
has_left_eye = person[14] > -1
|
237 |
-
has_right_eye = person[15] > -1
|
238 |
-
has_left_ear = person[16] > -1
|
239 |
-
has_right_ear = person[17] > -1
|
240 |
-
|
241 |
-
if not (has_left_eye or has_right_eye or has_left_ear or has_right_ear):
|
242 |
-
continue
|
243 |
-
|
244 |
-
head, left_eye, right_eye, left_ear, right_ear = person[[0, 14, 15, 16, 17]]
|
245 |
-
|
246 |
-
width = 0.0
|
247 |
-
x0, y0 = candidate[head][:2]
|
248 |
-
|
249 |
-
if has_left_eye:
|
250 |
-
x1, y1 = candidate[left_eye][:2]
|
251 |
-
d = max(abs(x0 - x1), abs(y0 - y1))
|
252 |
-
width = max(width, d * 3.0)
|
253 |
-
|
254 |
-
if has_right_eye:
|
255 |
-
x1, y1 = candidate[right_eye][:2]
|
256 |
-
d = max(abs(x0 - x1), abs(y0 - y1))
|
257 |
-
width = max(width, d * 3.0)
|
258 |
-
|
259 |
-
if has_left_ear:
|
260 |
-
x1, y1 = candidate[left_ear][:2]
|
261 |
-
d = max(abs(x0 - x1), abs(y0 - y1))
|
262 |
-
width = max(width, d * 1.5)
|
263 |
-
|
264 |
-
if has_right_ear:
|
265 |
-
x1, y1 = candidate[right_ear][:2]
|
266 |
-
d = max(abs(x0 - x1), abs(y0 - y1))
|
267 |
-
width = max(width, d * 1.5)
|
268 |
-
|
269 |
-
x, y = x0, y0
|
270 |
-
|
271 |
-
x -= width
|
272 |
-
y -= width
|
273 |
-
|
274 |
-
if x < 0:
|
275 |
-
x = 0
|
276 |
-
|
277 |
-
if y < 0:
|
278 |
-
y = 0
|
279 |
-
|
280 |
-
width1 = width * 2
|
281 |
-
width2 = width * 2
|
282 |
-
|
283 |
-
if x + width > image_width:
|
284 |
-
width1 = image_width - x
|
285 |
-
|
286 |
-
if y + width > image_height:
|
287 |
-
width2 = image_height - y
|
288 |
-
|
289 |
-
width = min(width1, width2)
|
290 |
-
|
291 |
-
if width >= 20:
|
292 |
-
detect_result.append([int(x), int(y), int(width)])
|
293 |
-
|
294 |
-
return detect_result
|
295 |
-
|
296 |
-
|
297 |
-
# get max index of 2d array
|
298 |
-
def npmax(array):
|
299 |
-
arrayindex = array.argmax(1)
|
300 |
-
arrayvalue = array.max(1)
|
301 |
-
i = arrayvalue.argmax()
|
302 |
-
j = arrayindex[i]
|
303 |
-
return i, j
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
controlnet_aux_local/dwpose/wholebody.py
DELETED
@@ -1,121 +0,0 @@
|
|
1 |
-
# Copyright (c) OpenMMLab. All rights reserved.
|
2 |
-
import os
|
3 |
-
import numpy as np
|
4 |
-
import warnings
|
5 |
-
|
6 |
-
try:
|
7 |
-
import mmcv
|
8 |
-
except ImportError:
|
9 |
-
warnings.warn(
|
10 |
-
"The module 'mmcv' is not installed. The package will have limited functionality. Please install it using the command: mim install 'mmcv>=2.0.1'"
|
11 |
-
)
|
12 |
-
|
13 |
-
try:
|
14 |
-
from mmpose.apis import inference_topdown
|
15 |
-
from mmpose.apis import init_model as init_pose_estimator
|
16 |
-
from mmpose.evaluation.functional import nms
|
17 |
-
from mmpose.utils import adapt_mmdet_pipeline
|
18 |
-
from mmpose.structures import merge_data_samples
|
19 |
-
except ImportError:
|
20 |
-
warnings.warn(
|
21 |
-
"The module 'mmpose' is not installed. The package will have limited functionality. Please install it using the command: mim install 'mmpose>=1.1.0'"
|
22 |
-
)
|
23 |
-
|
24 |
-
try:
|
25 |
-
from mmdet.apis import inference_detector, init_detector
|
26 |
-
except ImportError:
|
27 |
-
warnings.warn(
|
28 |
-
"The module 'mmdet' is not installed. The package will have limited functionality. Please install it using the command: mim install 'mmdet>=3.1.0'"
|
29 |
-
)
|
30 |
-
|
31 |
-
|
32 |
-
class Wholebody:
|
33 |
-
def __init__(self,
|
34 |
-
det_config=None, det_ckpt=None,
|
35 |
-
pose_config=None, pose_ckpt=None,
|
36 |
-
device="cpu"):
|
37 |
-
|
38 |
-
if det_config is None:
|
39 |
-
det_config = os.path.join(os.path.dirname(__file__), "yolox_config/yolox_l_8xb8-300e_coco.py")
|
40 |
-
|
41 |
-
if pose_config is None:
|
42 |
-
pose_config = os.path.join(os.path.dirname(__file__), "dwpose_config/dwpose-l_384x288.py")
|
43 |
-
|
44 |
-
if det_ckpt is None:
|
45 |
-
det_ckpt = 'https://download.openmmlab.com/mmdetection/v2.0/yolox/yolox_l_8x8_300e_coco/yolox_l_8x8_300e_coco_20211126_140236-d3bd2b23.pth'
|
46 |
-
|
47 |
-
if pose_ckpt is None:
|
48 |
-
pose_ckpt = "https://huggingface.co/wanghaofan/dw-ll_ucoco_384/resolve/main/dw-ll_ucoco_384.pth"
|
49 |
-
|
50 |
-
# build detector
|
51 |
-
self.detector = init_detector(det_config, det_ckpt, device=device)
|
52 |
-
self.detector.cfg = adapt_mmdet_pipeline(self.detector.cfg)
|
53 |
-
|
54 |
-
# build pose estimator
|
55 |
-
self.pose_estimator = init_pose_estimator(
|
56 |
-
pose_config,
|
57 |
-
pose_ckpt,
|
58 |
-
device=device)
|
59 |
-
|
60 |
-
def to(self, device):
|
61 |
-
self.detector.to(device)
|
62 |
-
self.pose_estimator.to(device)
|
63 |
-
return self
|
64 |
-
|
65 |
-
def __call__(self, oriImg):
|
66 |
-
# predict bbox
|
67 |
-
det_result = inference_detector(self.detector, oriImg)
|
68 |
-
pred_instance = det_result.pred_instances.cpu().numpy()
|
69 |
-
bboxes = np.concatenate(
|
70 |
-
(pred_instance.bboxes, pred_instance.scores[:, None]), axis=1)
|
71 |
-
bboxes = bboxes[np.logical_and(pred_instance.labels == 0,
|
72 |
-
pred_instance.scores > 0.5)]
|
73 |
-
|
74 |
-
# set NMS threshold
|
75 |
-
bboxes = bboxes[nms(bboxes, 0.7), :4]
|
76 |
-
|
77 |
-
# predict keypoints
|
78 |
-
if len(bboxes) == 0:
|
79 |
-
pose_results = inference_topdown(self.pose_estimator, oriImg)
|
80 |
-
else:
|
81 |
-
pose_results = inference_topdown(self.pose_estimator, oriImg, bboxes)
|
82 |
-
preds = merge_data_samples(pose_results)
|
83 |
-
preds = preds.pred_instances
|
84 |
-
|
85 |
-
# preds = pose_results[0].pred_instances
|
86 |
-
keypoints = preds.get('transformed_keypoints',
|
87 |
-
preds.keypoints)
|
88 |
-
if 'keypoint_scores' in preds:
|
89 |
-
scores = preds.keypoint_scores
|
90 |
-
else:
|
91 |
-
scores = np.ones(keypoints.shape[:-1])
|
92 |
-
|
93 |
-
if 'keypoints_visible' in preds:
|
94 |
-
visible = preds.keypoints_visible
|
95 |
-
else:
|
96 |
-
visible = np.ones(keypoints.shape[:-1])
|
97 |
-
keypoints_info = np.concatenate(
|
98 |
-
(keypoints, scores[..., None], visible[..., None]),
|
99 |
-
axis=-1)
|
100 |
-
# compute neck joint
|
101 |
-
neck = np.mean(keypoints_info[:, [5, 6]], axis=1)
|
102 |
-
# neck score when visualizing pred
|
103 |
-
neck[:, 2:4] = np.logical_and(
|
104 |
-
keypoints_info[:, 5, 2:4] > 0.3,
|
105 |
-
keypoints_info[:, 6, 2:4] > 0.3).astype(int)
|
106 |
-
new_keypoints_info = np.insert(
|
107 |
-
keypoints_info, 17, neck, axis=1)
|
108 |
-
mmpose_idx = [
|
109 |
-
17, 6, 8, 10, 7, 9, 12, 14, 16, 13, 15, 2, 1, 4, 3
|
110 |
-
]
|
111 |
-
openpose_idx = [
|
112 |
-
1, 2, 3, 4, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17
|
113 |
-
]
|
114 |
-
new_keypoints_info[:, openpose_idx] = \
|
115 |
-
new_keypoints_info[:, mmpose_idx]
|
116 |
-
keypoints_info = new_keypoints_info
|
117 |
-
|
118 |
-
keypoints, scores, visible = keypoints_info[
|
119 |
-
..., :2], keypoints_info[..., 2], keypoints_info[..., 3]
|
120 |
-
|
121 |
-
return keypoints, scores
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
controlnet_aux_local/hed/__init__.py
DELETED
@@ -1,129 +0,0 @@
|
|
1 |
-
# This is an improved version and model of HED edge detection with Apache License, Version 2.0.
|
2 |
-
# Please use this implementation in your products
|
3 |
-
# This implementation may produce slightly different results from Saining Xie's official implementations,
|
4 |
-
# but it generates smoother edges and is more suitable for ControlNet as well as other image-to-image translations.
|
5 |
-
# Different from official models and other implementations, this is an RGB-input model (rather than BGR)
|
6 |
-
# and in this way it works better for gradio's RGB protocol
|
7 |
-
|
8 |
-
import os
|
9 |
-
import warnings
|
10 |
-
|
11 |
-
import cv2
|
12 |
-
import numpy as np
|
13 |
-
import torch
|
14 |
-
from einops import rearrange
|
15 |
-
from huggingface_hub import hf_hub_download
|
16 |
-
from PIL import Image
|
17 |
-
|
18 |
-
from ..util import HWC3, nms, resize_image, safe_step
|
19 |
-
|
20 |
-
|
21 |
-
class DoubleConvBlock(torch.nn.Module):
|
22 |
-
def __init__(self, input_channel, output_channel, layer_number):
|
23 |
-
super().__init__()
|
24 |
-
self.convs = torch.nn.Sequential()
|
25 |
-
self.convs.append(torch.nn.Conv2d(in_channels=input_channel, out_channels=output_channel, kernel_size=(3, 3), stride=(1, 1), padding=1))
|
26 |
-
for i in range(1, layer_number):
|
27 |
-
self.convs.append(torch.nn.Conv2d(in_channels=output_channel, out_channels=output_channel, kernel_size=(3, 3), stride=(1, 1), padding=1))
|
28 |
-
self.projection = torch.nn.Conv2d(in_channels=output_channel, out_channels=1, kernel_size=(1, 1), stride=(1, 1), padding=0)
|
29 |
-
|
30 |
-
def __call__(self, x, down_sampling=False):
|
31 |
-
h = x
|
32 |
-
if down_sampling:
|
33 |
-
h = torch.nn.functional.max_pool2d(h, kernel_size=(2, 2), stride=(2, 2))
|
34 |
-
for conv in self.convs:
|
35 |
-
h = conv(h)
|
36 |
-
h = torch.nn.functional.relu(h)
|
37 |
-
return h, self.projection(h)
|
38 |
-
|
39 |
-
|
40 |
-
class ControlNetHED_Apache2(torch.nn.Module):
|
41 |
-
def __init__(self):
|
42 |
-
super().__init__()
|
43 |
-
self.norm = torch.nn.Parameter(torch.zeros(size=(1, 3, 1, 1)))
|
44 |
-
self.block1 = DoubleConvBlock(input_channel=3, output_channel=64, layer_number=2)
|
45 |
-
self.block2 = DoubleConvBlock(input_channel=64, output_channel=128, layer_number=2)
|
46 |
-
self.block3 = DoubleConvBlock(input_channel=128, output_channel=256, layer_number=3)
|
47 |
-
self.block4 = DoubleConvBlock(input_channel=256, output_channel=512, layer_number=3)
|
48 |
-
self.block5 = DoubleConvBlock(input_channel=512, output_channel=512, layer_number=3)
|
49 |
-
|
50 |
-
def __call__(self, x):
|
51 |
-
h = x - self.norm
|
52 |
-
h, projection1 = self.block1(h)
|
53 |
-
h, projection2 = self.block2(h, down_sampling=True)
|
54 |
-
h, projection3 = self.block3(h, down_sampling=True)
|
55 |
-
h, projection4 = self.block4(h, down_sampling=True)
|
56 |
-
h, projection5 = self.block5(h, down_sampling=True)
|
57 |
-
return projection1, projection2, projection3, projection4, projection5
|
58 |
-
|
59 |
-
class HEDdetector:
|
60 |
-
def __init__(self, netNetwork):
|
61 |
-
self.netNetwork = netNetwork
|
62 |
-
|
63 |
-
@classmethod
|
64 |
-
def from_pretrained(cls, pretrained_model_or_path, filename=None, cache_dir=None, local_files_only=False):
|
65 |
-
filename = filename or "ControlNetHED.pth"
|
66 |
-
|
67 |
-
if os.path.isdir(pretrained_model_or_path):
|
68 |
-
model_path = os.path.join(pretrained_model_or_path, filename)
|
69 |
-
else:
|
70 |
-
model_path = hf_hub_download(pretrained_model_or_path, filename, cache_dir=cache_dir, local_files_only=local_files_only)
|
71 |
-
|
72 |
-
netNetwork = ControlNetHED_Apache2()
|
73 |
-
netNetwork.load_state_dict(torch.load(model_path, map_location='cpu'))
|
74 |
-
netNetwork.float().eval()
|
75 |
-
|
76 |
-
return cls(netNetwork)
|
77 |
-
|
78 |
-
def to(self, device):
|
79 |
-
self.netNetwork.to(device)
|
80 |
-
return self
|
81 |
-
|
82 |
-
def __call__(self, input_image, detect_resolution=512, image_resolution=512, safe=False, output_type="pil", scribble=False, **kwargs):
|
83 |
-
if "return_pil" in kwargs:
|
84 |
-
warnings.warn("return_pil is deprecated. Use output_type instead.", DeprecationWarning)
|
85 |
-
output_type = "pil" if kwargs["return_pil"] else "np"
|
86 |
-
if type(output_type) is bool:
|
87 |
-
warnings.warn("Passing `True` or `False` to `output_type` is deprecated and will raise an error in future versions")
|
88 |
-
if output_type:
|
89 |
-
output_type = "pil"
|
90 |
-
|
91 |
-
device = next(iter(self.netNetwork.parameters())).device
|
92 |
-
if not isinstance(input_image, np.ndarray):
|
93 |
-
input_image = np.array(input_image, dtype=np.uint8)
|
94 |
-
|
95 |
-
input_image = HWC3(input_image)
|
96 |
-
input_image = resize_image(input_image, detect_resolution)
|
97 |
-
|
98 |
-
assert input_image.ndim == 3
|
99 |
-
H, W, C = input_image.shape
|
100 |
-
with torch.no_grad():
|
101 |
-
image_hed = torch.from_numpy(input_image.copy()).float().to(device)
|
102 |
-
image_hed = rearrange(image_hed, 'h w c -> 1 c h w')
|
103 |
-
edges = self.netNetwork(image_hed)
|
104 |
-
edges = [e.detach().cpu().numpy().astype(np.float32)[0, 0] for e in edges]
|
105 |
-
edges = [cv2.resize(e, (W, H), interpolation=cv2.INTER_LINEAR) for e in edges]
|
106 |
-
edges = np.stack(edges, axis=2)
|
107 |
-
edge = 1 / (1 + np.exp(-np.mean(edges, axis=2).astype(np.float64)))
|
108 |
-
if safe:
|
109 |
-
edge = safe_step(edge)
|
110 |
-
edge = (edge * 255.0).clip(0, 255).astype(np.uint8)
|
111 |
-
|
112 |
-
detected_map = edge
|
113 |
-
detected_map = HWC3(detected_map)
|
114 |
-
|
115 |
-
img = resize_image(input_image, image_resolution)
|
116 |
-
H, W, C = img.shape
|
117 |
-
|
118 |
-
detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_LINEAR)
|
119 |
-
|
120 |
-
if scribble:
|
121 |
-
detected_map = nms(detected_map, 127, 3.0)
|
122 |
-
detected_map = cv2.GaussianBlur(detected_map, (0, 0), 3.0)
|
123 |
-
detected_map[detected_map > 4] = 255
|
124 |
-
detected_map[detected_map < 255] = 0
|
125 |
-
|
126 |
-
if output_type == "pil":
|
127 |
-
detected_map = Image.fromarray(detected_map)
|
128 |
-
|
129 |
-
return detected_map
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
controlnet_aux_local/leres/__init__.py
DELETED
@@ -1,118 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
|
3 |
-
import cv2
|
4 |
-
import numpy as np
|
5 |
-
import torch
|
6 |
-
from huggingface_hub import hf_hub_download
|
7 |
-
from PIL import Image
|
8 |
-
|
9 |
-
from ..util import HWC3, resize_image
|
10 |
-
from .leres.depthmap import estimateboost, estimateleres
|
11 |
-
from .leres.multi_depth_model_woauxi import RelDepthModel
|
12 |
-
from .leres.net_tools import strip_prefix_if_present
|
13 |
-
from .pix2pix.models.pix2pix4depth_model import Pix2Pix4DepthModel
|
14 |
-
from .pix2pix.options.test_options import TestOptions
|
15 |
-
|
16 |
-
|
17 |
-
class LeresDetector:
|
18 |
-
def __init__(self, model, pix2pixmodel):
|
19 |
-
self.model = model
|
20 |
-
self.pix2pixmodel = pix2pixmodel
|
21 |
-
|
22 |
-
@classmethod
|
23 |
-
def from_pretrained(cls, pretrained_model_or_path, filename=None, pix2pix_filename=None, cache_dir=None, local_files_only=False):
|
24 |
-
filename = filename or "res101.pth"
|
25 |
-
pix2pix_filename = pix2pix_filename or "latest_net_G.pth"
|
26 |
-
|
27 |
-
if os.path.isdir(pretrained_model_or_path):
|
28 |
-
model_path = os.path.join(pretrained_model_or_path, filename)
|
29 |
-
else:
|
30 |
-
model_path = hf_hub_download(pretrained_model_or_path, filename, cache_dir=cache_dir, local_files_only=local_files_only)
|
31 |
-
|
32 |
-
checkpoint = torch.load(model_path, map_location=torch.device('cpu'))
|
33 |
-
|
34 |
-
model = RelDepthModel(backbone='resnext101')
|
35 |
-
model.load_state_dict(strip_prefix_if_present(checkpoint['depth_model'], "module."), strict=True)
|
36 |
-
del checkpoint
|
37 |
-
|
38 |
-
if os.path.isdir(pretrained_model_or_path):
|
39 |
-
model_path = os.path.join(pretrained_model_or_path, pix2pix_filename)
|
40 |
-
else:
|
41 |
-
model_path = hf_hub_download(pretrained_model_or_path, pix2pix_filename, cache_dir=cache_dir, local_files_only=local_files_only)
|
42 |
-
|
43 |
-
opt = TestOptions().parse()
|
44 |
-
if not torch.cuda.is_available():
|
45 |
-
opt.gpu_ids = [] # cpu mode
|
46 |
-
pix2pixmodel = Pix2Pix4DepthModel(opt)
|
47 |
-
pix2pixmodel.save_dir = os.path.dirname(model_path)
|
48 |
-
pix2pixmodel.load_networks('latest')
|
49 |
-
pix2pixmodel.eval()
|
50 |
-
|
51 |
-
return cls(model, pix2pixmodel)
|
52 |
-
|
53 |
-
def to(self, device):
|
54 |
-
self.model.to(device)
|
55 |
-
# TODO - refactor pix2pix implementation to support device migration
|
56 |
-
# self.pix2pixmodel.to(device)
|
57 |
-
return self
|
58 |
-
|
59 |
-
def __call__(self, input_image, thr_a=0, thr_b=0, boost=False, detect_resolution=512, image_resolution=512, output_type="pil"):
|
60 |
-
device = next(iter(self.model.parameters())).device
|
61 |
-
if not isinstance(input_image, np.ndarray):
|
62 |
-
input_image = np.array(input_image, dtype=np.uint8)
|
63 |
-
|
64 |
-
input_image = HWC3(input_image)
|
65 |
-
input_image = resize_image(input_image, detect_resolution)
|
66 |
-
|
67 |
-
assert input_image.ndim == 3
|
68 |
-
height, width, dim = input_image.shape
|
69 |
-
|
70 |
-
with torch.no_grad():
|
71 |
-
|
72 |
-
if boost:
|
73 |
-
depth = estimateboost(input_image, self.model, 0, self.pix2pixmodel, max(width, height))
|
74 |
-
else:
|
75 |
-
depth = estimateleres(input_image, self.model, width, height)
|
76 |
-
|
77 |
-
numbytes=2
|
78 |
-
depth_min = depth.min()
|
79 |
-
depth_max = depth.max()
|
80 |
-
max_val = (2**(8*numbytes))-1
|
81 |
-
|
82 |
-
# check output before normalizing and mapping to 16 bit
|
83 |
-
if depth_max - depth_min > np.finfo("float").eps:
|
84 |
-
out = max_val * (depth - depth_min) / (depth_max - depth_min)
|
85 |
-
else:
|
86 |
-
out = np.zeros(depth.shape)
|
87 |
-
|
88 |
-
# single channel, 16 bit image
|
89 |
-
depth_image = out.astype("uint16")
|
90 |
-
|
91 |
-
# convert to uint8
|
92 |
-
depth_image = cv2.convertScaleAbs(depth_image, alpha=(255.0/65535.0))
|
93 |
-
|
94 |
-
# remove near
|
95 |
-
if thr_a != 0:
|
96 |
-
thr_a = ((thr_a/100)*255)
|
97 |
-
depth_image = cv2.threshold(depth_image, thr_a, 255, cv2.THRESH_TOZERO)[1]
|
98 |
-
|
99 |
-
# invert image
|
100 |
-
depth_image = cv2.bitwise_not(depth_image)
|
101 |
-
|
102 |
-
# remove bg
|
103 |
-
if thr_b != 0:
|
104 |
-
thr_b = ((thr_b/100)*255)
|
105 |
-
depth_image = cv2.threshold(depth_image, thr_b, 255, cv2.THRESH_TOZERO)[1]
|
106 |
-
|
107 |
-
detected_map = depth_image
|
108 |
-
detected_map = HWC3(detected_map)
|
109 |
-
|
110 |
-
img = resize_image(input_image, image_resolution)
|
111 |
-
H, W, C = img.shape
|
112 |
-
|
113 |
-
detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_LINEAR)
|
114 |
-
|
115 |
-
if output_type == "pil":
|
116 |
-
detected_map = Image.fromarray(detected_map)
|
117 |
-
|
118 |
-
return detected_map
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
controlnet_aux_local/leres/leres/Resnet.py
DELETED
@@ -1,199 +0,0 @@
|
|
1 |
-
import torch.nn as nn
|
2 |
-
import torch.nn as NN
|
3 |
-
|
4 |
-
__all__ = ['ResNet', 'resnet18', 'resnet34', 'resnet50', 'resnet101',
|
5 |
-
'resnet152']
|
6 |
-
|
7 |
-
|
8 |
-
model_urls = {
|
9 |
-
'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth',
|
10 |
-
'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth',
|
11 |
-
'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth',
|
12 |
-
'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth',
|
13 |
-
'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth',
|
14 |
-
}
|
15 |
-
|
16 |
-
|
17 |
-
def conv3x3(in_planes, out_planes, stride=1):
|
18 |
-
"""3x3 convolution with padding"""
|
19 |
-
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
|
20 |
-
padding=1, bias=False)
|
21 |
-
|
22 |
-
|
23 |
-
class BasicBlock(nn.Module):
|
24 |
-
expansion = 1
|
25 |
-
|
26 |
-
def __init__(self, inplanes, planes, stride=1, downsample=None):
|
27 |
-
super(BasicBlock, self).__init__()
|
28 |
-
self.conv1 = conv3x3(inplanes, planes, stride)
|
29 |
-
self.bn1 = NN.BatchNorm2d(planes) #NN.BatchNorm2d
|
30 |
-
self.relu = nn.ReLU(inplace=True)
|
31 |
-
self.conv2 = conv3x3(planes, planes)
|
32 |
-
self.bn2 = NN.BatchNorm2d(planes) #NN.BatchNorm2d
|
33 |
-
self.downsample = downsample
|
34 |
-
self.stride = stride
|
35 |
-
|
36 |
-
def forward(self, x):
|
37 |
-
residual = x
|
38 |
-
|
39 |
-
out = self.conv1(x)
|
40 |
-
out = self.bn1(out)
|
41 |
-
out = self.relu(out)
|
42 |
-
|
43 |
-
out = self.conv2(out)
|
44 |
-
out = self.bn2(out)
|
45 |
-
|
46 |
-
if self.downsample is not None:
|
47 |
-
residual = self.downsample(x)
|
48 |
-
|
49 |
-
out += residual
|
50 |
-
out = self.relu(out)
|
51 |
-
|
52 |
-
return out
|
53 |
-
|
54 |
-
|
55 |
-
class Bottleneck(nn.Module):
|
56 |
-
expansion = 4
|
57 |
-
|
58 |
-
def __init__(self, inplanes, planes, stride=1, downsample=None):
|
59 |
-
super(Bottleneck, self).__init__()
|
60 |
-
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
|
61 |
-
self.bn1 = NN.BatchNorm2d(planes) #NN.BatchNorm2d
|
62 |
-
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride,
|
63 |
-
padding=1, bias=False)
|
64 |
-
self.bn2 = NN.BatchNorm2d(planes) #NN.BatchNorm2d
|
65 |
-
self.conv3 = nn.Conv2d(planes, planes * self.expansion, kernel_size=1, bias=False)
|
66 |
-
self.bn3 = NN.BatchNorm2d(planes * self.expansion) #NN.BatchNorm2d
|
67 |
-
self.relu = nn.ReLU(inplace=True)
|
68 |
-
self.downsample = downsample
|
69 |
-
self.stride = stride
|
70 |
-
|
71 |
-
def forward(self, x):
|
72 |
-
residual = x
|
73 |
-
|
74 |
-
out = self.conv1(x)
|
75 |
-
out = self.bn1(out)
|
76 |
-
out = self.relu(out)
|
77 |
-
|
78 |
-
out = self.conv2(out)
|
79 |
-
out = self.bn2(out)
|
80 |
-
out = self.relu(out)
|
81 |
-
|
82 |
-
out = self.conv3(out)
|
83 |
-
out = self.bn3(out)
|
84 |
-
|
85 |
-
if self.downsample is not None:
|
86 |
-
residual = self.downsample(x)
|
87 |
-
|
88 |
-
out += residual
|
89 |
-
out = self.relu(out)
|
90 |
-
|
91 |
-
return out
|
92 |
-
|
93 |
-
|
94 |
-
class ResNet(nn.Module):
|
95 |
-
|
96 |
-
def __init__(self, block, layers, num_classes=1000):
|
97 |
-
self.inplanes = 64
|
98 |
-
super(ResNet, self).__init__()
|
99 |
-
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3,
|
100 |
-
bias=False)
|
101 |
-
self.bn1 = NN.BatchNorm2d(64) #NN.BatchNorm2d
|
102 |
-
self.relu = nn.ReLU(inplace=True)
|
103 |
-
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
|
104 |
-
self.layer1 = self._make_layer(block, 64, layers[0])
|
105 |
-
self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
|
106 |
-
self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
|
107 |
-
self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
|
108 |
-
#self.avgpool = nn.AvgPool2d(7, stride=1)
|
109 |
-
#self.fc = nn.Linear(512 * block.expansion, num_classes)
|
110 |
-
|
111 |
-
for m in self.modules():
|
112 |
-
if isinstance(m, nn.Conv2d):
|
113 |
-
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
|
114 |
-
elif isinstance(m, nn.BatchNorm2d):
|
115 |
-
nn.init.constant_(m.weight, 1)
|
116 |
-
nn.init.constant_(m.bias, 0)
|
117 |
-
|
118 |
-
def _make_layer(self, block, planes, blocks, stride=1):
|
119 |
-
downsample = None
|
120 |
-
if stride != 1 or self.inplanes != planes * block.expansion:
|
121 |
-
downsample = nn.Sequential(
|
122 |
-
nn.Conv2d(self.inplanes, planes * block.expansion,
|
123 |
-
kernel_size=1, stride=stride, bias=False),
|
124 |
-
NN.BatchNorm2d(planes * block.expansion), #NN.BatchNorm2d
|
125 |
-
)
|
126 |
-
|
127 |
-
layers = []
|
128 |
-
layers.append(block(self.inplanes, planes, stride, downsample))
|
129 |
-
self.inplanes = planes * block.expansion
|
130 |
-
for i in range(1, blocks):
|
131 |
-
layers.append(block(self.inplanes, planes))
|
132 |
-
|
133 |
-
return nn.Sequential(*layers)
|
134 |
-
|
135 |
-
def forward(self, x):
|
136 |
-
features = []
|
137 |
-
|
138 |
-
x = self.conv1(x)
|
139 |
-
x = self.bn1(x)
|
140 |
-
x = self.relu(x)
|
141 |
-
x = self.maxpool(x)
|
142 |
-
|
143 |
-
x = self.layer1(x)
|
144 |
-
features.append(x)
|
145 |
-
x = self.layer2(x)
|
146 |
-
features.append(x)
|
147 |
-
x = self.layer3(x)
|
148 |
-
features.append(x)
|
149 |
-
x = self.layer4(x)
|
150 |
-
features.append(x)
|
151 |
-
|
152 |
-
return features
|
153 |
-
|
154 |
-
|
155 |
-
def resnet18(pretrained=True, **kwargs):
|
156 |
-
"""Constructs a ResNet-18 model.
|
157 |
-
Args:
|
158 |
-
pretrained (bool): If True, returns a model pre-trained on ImageNet
|
159 |
-
"""
|
160 |
-
model = ResNet(BasicBlock, [2, 2, 2, 2], **kwargs)
|
161 |
-
return model
|
162 |
-
|
163 |
-
|
164 |
-
def resnet34(pretrained=True, **kwargs):
|
165 |
-
"""Constructs a ResNet-34 model.
|
166 |
-
Args:
|
167 |
-
pretrained (bool): If True, returns a model pre-trained on ImageNet
|
168 |
-
"""
|
169 |
-
model = ResNet(BasicBlock, [3, 4, 6, 3], **kwargs)
|
170 |
-
return model
|
171 |
-
|
172 |
-
|
173 |
-
def resnet50(pretrained=True, **kwargs):
|
174 |
-
"""Constructs a ResNet-50 model.
|
175 |
-
Args:
|
176 |
-
pretrained (bool): If True, returns a model pre-trained on ImageNet
|
177 |
-
"""
|
178 |
-
model = ResNet(Bottleneck, [3, 4, 6, 3], **kwargs)
|
179 |
-
|
180 |
-
return model
|
181 |
-
|
182 |
-
|
183 |
-
def resnet101(pretrained=True, **kwargs):
|
184 |
-
"""Constructs a ResNet-101 model.
|
185 |
-
Args:
|
186 |
-
pretrained (bool): If True, returns a model pre-trained on ImageNet
|
187 |
-
"""
|
188 |
-
model = ResNet(Bottleneck, [3, 4, 23, 3], **kwargs)
|
189 |
-
|
190 |
-
return model
|
191 |
-
|
192 |
-
|
193 |
-
def resnet152(pretrained=True, **kwargs):
|
194 |
-
"""Constructs a ResNet-152 model.
|
195 |
-
Args:
|
196 |
-
pretrained (bool): If True, returns a model pre-trained on ImageNet
|
197 |
-
"""
|
198 |
-
model = ResNet(Bottleneck, [3, 8, 36, 3], **kwargs)
|
199 |
-
return model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
controlnet_aux_local/leres/leres/Resnext_torch.py
DELETED
@@ -1,237 +0,0 @@
|
|
1 |
-
#!/usr/bin/env python
|
2 |
-
# coding: utf-8
|
3 |
-
import torch.nn as nn
|
4 |
-
|
5 |
-
try:
|
6 |
-
from urllib import urlretrieve
|
7 |
-
except ImportError:
|
8 |
-
from urllib.request import urlretrieve
|
9 |
-
|
10 |
-
__all__ = ['resnext101_32x8d']
|
11 |
-
|
12 |
-
|
13 |
-
model_urls = {
|
14 |
-
'resnext50_32x4d': 'https://download.pytorch.org/models/resnext50_32x4d-7cdf4587.pth',
|
15 |
-
'resnext101_32x8d': 'https://download.pytorch.org/models/resnext101_32x8d-8ba56ff5.pth',
|
16 |
-
}
|
17 |
-
|
18 |
-
|
19 |
-
def conv3x3(in_planes, out_planes, stride=1, groups=1, dilation=1):
|
20 |
-
"""3x3 convolution with padding"""
|
21 |
-
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
|
22 |
-
padding=dilation, groups=groups, bias=False, dilation=dilation)
|
23 |
-
|
24 |
-
|
25 |
-
def conv1x1(in_planes, out_planes, stride=1):
|
26 |
-
"""1x1 convolution"""
|
27 |
-
return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)
|
28 |
-
|
29 |
-
|
30 |
-
class BasicBlock(nn.Module):
|
31 |
-
expansion = 1
|
32 |
-
|
33 |
-
def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1,
|
34 |
-
base_width=64, dilation=1, norm_layer=None):
|
35 |
-
super(BasicBlock, self).__init__()
|
36 |
-
if norm_layer is None:
|
37 |
-
norm_layer = nn.BatchNorm2d
|
38 |
-
if groups != 1 or base_width != 64:
|
39 |
-
raise ValueError('BasicBlock only supports groups=1 and base_width=64')
|
40 |
-
if dilation > 1:
|
41 |
-
raise NotImplementedError("Dilation > 1 not supported in BasicBlock")
|
42 |
-
# Both self.conv1 and self.downsample layers downsample the input when stride != 1
|
43 |
-
self.conv1 = conv3x3(inplanes, planes, stride)
|
44 |
-
self.bn1 = norm_layer(planes)
|
45 |
-
self.relu = nn.ReLU(inplace=True)
|
46 |
-
self.conv2 = conv3x3(planes, planes)
|
47 |
-
self.bn2 = norm_layer(planes)
|
48 |
-
self.downsample = downsample
|
49 |
-
self.stride = stride
|
50 |
-
|
51 |
-
def forward(self, x):
|
52 |
-
identity = x
|
53 |
-
|
54 |
-
out = self.conv1(x)
|
55 |
-
out = self.bn1(out)
|
56 |
-
out = self.relu(out)
|
57 |
-
|
58 |
-
out = self.conv2(out)
|
59 |
-
out = self.bn2(out)
|
60 |
-
|
61 |
-
if self.downsample is not None:
|
62 |
-
identity = self.downsample(x)
|
63 |
-
|
64 |
-
out += identity
|
65 |
-
out = self.relu(out)
|
66 |
-
|
67 |
-
return out
|
68 |
-
|
69 |
-
|
70 |
-
class Bottleneck(nn.Module):
|
71 |
-
# Bottleneck in torchvision places the stride for downsampling at 3x3 convolution(self.conv2)
|
72 |
-
# while original implementation places the stride at the first 1x1 convolution(self.conv1)
|
73 |
-
# according to "Deep residual learning for image recognition"https://arxiv.org/abs/1512.03385.
|
74 |
-
# This variant is also known as ResNet V1.5 and improves accuracy according to
|
75 |
-
# https://ngc.nvidia.com/catalog/model-scripts/nvidia:resnet_50_v1_5_for_pytorch.
|
76 |
-
|
77 |
-
expansion = 4
|
78 |
-
|
79 |
-
def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1,
|
80 |
-
base_width=64, dilation=1, norm_layer=None):
|
81 |
-
super(Bottleneck, self).__init__()
|
82 |
-
if norm_layer is None:
|
83 |
-
norm_layer = nn.BatchNorm2d
|
84 |
-
width = int(planes * (base_width / 64.)) * groups
|
85 |
-
# Both self.conv2 and self.downsample layers downsample the input when stride != 1
|
86 |
-
self.conv1 = conv1x1(inplanes, width)
|
87 |
-
self.bn1 = norm_layer(width)
|
88 |
-
self.conv2 = conv3x3(width, width, stride, groups, dilation)
|
89 |
-
self.bn2 = norm_layer(width)
|
90 |
-
self.conv3 = conv1x1(width, planes * self.expansion)
|
91 |
-
self.bn3 = norm_layer(planes * self.expansion)
|
92 |
-
self.relu = nn.ReLU(inplace=True)
|
93 |
-
self.downsample = downsample
|
94 |
-
self.stride = stride
|
95 |
-
|
96 |
-
def forward(self, x):
|
97 |
-
identity = x
|
98 |
-
|
99 |
-
out = self.conv1(x)
|
100 |
-
out = self.bn1(out)
|
101 |
-
out = self.relu(out)
|
102 |
-
|
103 |
-
out = self.conv2(out)
|
104 |
-
out = self.bn2(out)
|
105 |
-
out = self.relu(out)
|
106 |
-
|
107 |
-
out = self.conv3(out)
|
108 |
-
out = self.bn3(out)
|
109 |
-
|
110 |
-
if self.downsample is not None:
|
111 |
-
identity = self.downsample(x)
|
112 |
-
|
113 |
-
out += identity
|
114 |
-
out = self.relu(out)
|
115 |
-
|
116 |
-
return out
|
117 |
-
|
118 |
-
|
119 |
-
class ResNet(nn.Module):
|
120 |
-
|
121 |
-
def __init__(self, block, layers, num_classes=1000, zero_init_residual=False,
|
122 |
-
groups=1, width_per_group=64, replace_stride_with_dilation=None,
|
123 |
-
norm_layer=None):
|
124 |
-
super(ResNet, self).__init__()
|
125 |
-
if norm_layer is None:
|
126 |
-
norm_layer = nn.BatchNorm2d
|
127 |
-
self._norm_layer = norm_layer
|
128 |
-
|
129 |
-
self.inplanes = 64
|
130 |
-
self.dilation = 1
|
131 |
-
if replace_stride_with_dilation is None:
|
132 |
-
# each element in the tuple indicates if we should replace
|
133 |
-
# the 2x2 stride with a dilated convolution instead
|
134 |
-
replace_stride_with_dilation = [False, False, False]
|
135 |
-
if len(replace_stride_with_dilation) != 3:
|
136 |
-
raise ValueError("replace_stride_with_dilation should be None "
|
137 |
-
"or a 3-element tuple, got {}".format(replace_stride_with_dilation))
|
138 |
-
self.groups = groups
|
139 |
-
self.base_width = width_per_group
|
140 |
-
self.conv1 = nn.Conv2d(3, self.inplanes, kernel_size=7, stride=2, padding=3,
|
141 |
-
bias=False)
|
142 |
-
self.bn1 = norm_layer(self.inplanes)
|
143 |
-
self.relu = nn.ReLU(inplace=True)
|
144 |
-
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
|
145 |
-
self.layer1 = self._make_layer(block, 64, layers[0])
|
146 |
-
self.layer2 = self._make_layer(block, 128, layers[1], stride=2,
|
147 |
-
dilate=replace_stride_with_dilation[0])
|
148 |
-
self.layer3 = self._make_layer(block, 256, layers[2], stride=2,
|
149 |
-
dilate=replace_stride_with_dilation[1])
|
150 |
-
self.layer4 = self._make_layer(block, 512, layers[3], stride=2,
|
151 |
-
dilate=replace_stride_with_dilation[2])
|
152 |
-
#self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
|
153 |
-
#self.fc = nn.Linear(512 * block.expansion, num_classes)
|
154 |
-
|
155 |
-
for m in self.modules():
|
156 |
-
if isinstance(m, nn.Conv2d):
|
157 |
-
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
|
158 |
-
elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
|
159 |
-
nn.init.constant_(m.weight, 1)
|
160 |
-
nn.init.constant_(m.bias, 0)
|
161 |
-
|
162 |
-
# Zero-initialize the last BN in each residual branch,
|
163 |
-
# so that the residual branch starts with zeros, and each residual block behaves like an identity.
|
164 |
-
# This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677
|
165 |
-
if zero_init_residual:
|
166 |
-
for m in self.modules():
|
167 |
-
if isinstance(m, Bottleneck):
|
168 |
-
nn.init.constant_(m.bn3.weight, 0)
|
169 |
-
elif isinstance(m, BasicBlock):
|
170 |
-
nn.init.constant_(m.bn2.weight, 0)
|
171 |
-
|
172 |
-
def _make_layer(self, block, planes, blocks, stride=1, dilate=False):
|
173 |
-
norm_layer = self._norm_layer
|
174 |
-
downsample = None
|
175 |
-
previous_dilation = self.dilation
|
176 |
-
if dilate:
|
177 |
-
self.dilation *= stride
|
178 |
-
stride = 1
|
179 |
-
if stride != 1 or self.inplanes != planes * block.expansion:
|
180 |
-
downsample = nn.Sequential(
|
181 |
-
conv1x1(self.inplanes, planes * block.expansion, stride),
|
182 |
-
norm_layer(planes * block.expansion),
|
183 |
-
)
|
184 |
-
|
185 |
-
layers = []
|
186 |
-
layers.append(block(self.inplanes, planes, stride, downsample, self.groups,
|
187 |
-
self.base_width, previous_dilation, norm_layer))
|
188 |
-
self.inplanes = planes * block.expansion
|
189 |
-
for _ in range(1, blocks):
|
190 |
-
layers.append(block(self.inplanes, planes, groups=self.groups,
|
191 |
-
base_width=self.base_width, dilation=self.dilation,
|
192 |
-
norm_layer=norm_layer))
|
193 |
-
|
194 |
-
return nn.Sequential(*layers)
|
195 |
-
|
196 |
-
def _forward_impl(self, x):
|
197 |
-
# See note [TorchScript super()]
|
198 |
-
features = []
|
199 |
-
x = self.conv1(x)
|
200 |
-
x = self.bn1(x)
|
201 |
-
x = self.relu(x)
|
202 |
-
x = self.maxpool(x)
|
203 |
-
|
204 |
-
x = self.layer1(x)
|
205 |
-
features.append(x)
|
206 |
-
|
207 |
-
x = self.layer2(x)
|
208 |
-
features.append(x)
|
209 |
-
|
210 |
-
x = self.layer3(x)
|
211 |
-
features.append(x)
|
212 |
-
|
213 |
-
x = self.layer4(x)
|
214 |
-
features.append(x)
|
215 |
-
|
216 |
-
#x = self.avgpool(x)
|
217 |
-
#x = torch.flatten(x, 1)
|
218 |
-
#x = self.fc(x)
|
219 |
-
|
220 |
-
return features
|
221 |
-
|
222 |
-
def forward(self, x):
|
223 |
-
return self._forward_impl(x)
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
def resnext101_32x8d(pretrained=True, **kwargs):
|
228 |
-
"""Constructs a ResNet-152 model.
|
229 |
-
Args:
|
230 |
-
pretrained (bool): If True, returns a model pre-trained on ImageNet
|
231 |
-
"""
|
232 |
-
kwargs['groups'] = 32
|
233 |
-
kwargs['width_per_group'] = 8
|
234 |
-
|
235 |
-
model = ResNet(Bottleneck, [3, 4, 23, 3], **kwargs)
|
236 |
-
return model
|
237 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
controlnet_aux_local/leres/leres/__init__.py
DELETED
File without changes
|
controlnet_aux_local/leres/leres/depthmap.py
DELETED
@@ -1,548 +0,0 @@
|
|
1 |
-
# Author: thygate
|
2 |
-
# https://github.com/thygate/stable-diffusion-webui-depthmap-script
|
3 |
-
|
4 |
-
import gc
|
5 |
-
from operator import getitem
|
6 |
-
|
7 |
-
import cv2
|
8 |
-
import numpy as np
|
9 |
-
import skimage.measure
|
10 |
-
import torch
|
11 |
-
from torchvision.transforms import transforms
|
12 |
-
|
13 |
-
from ...util import torch_gc
|
14 |
-
|
15 |
-
whole_size_threshold = 1600 # R_max from the paper
|
16 |
-
pix2pixsize = 1024
|
17 |
-
|
18 |
-
def scale_torch(img):
|
19 |
-
"""
|
20 |
-
Scale the image and output it in torch.tensor.
|
21 |
-
:param img: input rgb is in shape [H, W, C], input depth/disp is in shape [H, W]
|
22 |
-
:param scale: the scale factor. float
|
23 |
-
:return: img. [C, H, W]
|
24 |
-
"""
|
25 |
-
if len(img.shape) == 2:
|
26 |
-
img = img[np.newaxis, :, :]
|
27 |
-
if img.shape[2] == 3:
|
28 |
-
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.485, 0.456, 0.406) , (0.229, 0.224, 0.225) )])
|
29 |
-
img = transform(img.astype(np.float32))
|
30 |
-
else:
|
31 |
-
img = img.astype(np.float32)
|
32 |
-
img = torch.from_numpy(img)
|
33 |
-
return img
|
34 |
-
|
35 |
-
def estimateleres(img, model, w, h):
|
36 |
-
device = next(iter(model.parameters())).device
|
37 |
-
# leres transform input
|
38 |
-
rgb_c = img[:, :, ::-1].copy()
|
39 |
-
A_resize = cv2.resize(rgb_c, (w, h))
|
40 |
-
img_torch = scale_torch(A_resize)[None, :, :, :]
|
41 |
-
|
42 |
-
# compute
|
43 |
-
with torch.no_grad():
|
44 |
-
img_torch = img_torch.to(device)
|
45 |
-
prediction = model.depth_model(img_torch)
|
46 |
-
|
47 |
-
prediction = prediction.squeeze().cpu().numpy()
|
48 |
-
prediction = cv2.resize(prediction, (img.shape[1], img.shape[0]), interpolation=cv2.INTER_CUBIC)
|
49 |
-
|
50 |
-
return prediction
|
51 |
-
|
52 |
-
def generatemask(size):
|
53 |
-
# Generates a Guassian mask
|
54 |
-
mask = np.zeros(size, dtype=np.float32)
|
55 |
-
sigma = int(size[0]/16)
|
56 |
-
k_size = int(2 * np.ceil(2 * int(size[0]/16)) + 1)
|
57 |
-
mask[int(0.15*size[0]):size[0] - int(0.15*size[0]), int(0.15*size[1]): size[1] - int(0.15*size[1])] = 1
|
58 |
-
mask = cv2.GaussianBlur(mask, (int(k_size), int(k_size)), sigma)
|
59 |
-
mask = (mask - mask.min()) / (mask.max() - mask.min())
|
60 |
-
mask = mask.astype(np.float32)
|
61 |
-
return mask
|
62 |
-
|
63 |
-
def resizewithpool(img, size):
|
64 |
-
i_size = img.shape[0]
|
65 |
-
n = int(np.floor(i_size/size))
|
66 |
-
|
67 |
-
out = skimage.measure.block_reduce(img, (n, n), np.max)
|
68 |
-
return out
|
69 |
-
|
70 |
-
def rgb2gray(rgb):
|
71 |
-
# Converts rgb to gray
|
72 |
-
return np.dot(rgb[..., :3], [0.2989, 0.5870, 0.1140])
|
73 |
-
|
74 |
-
def calculateprocessingres(img, basesize, confidence=0.1, scale_threshold=3, whole_size_threshold=3000):
|
75 |
-
# Returns the R_x resolution described in section 5 of the main paper.
|
76 |
-
|
77 |
-
# Parameters:
|
78 |
-
# img :input rgb image
|
79 |
-
# basesize : size the dilation kernel which is equal to receptive field of the network.
|
80 |
-
# confidence: value of x in R_x; allowed percentage of pixels that are not getting any contextual cue.
|
81 |
-
# scale_threshold: maximum allowed upscaling on the input image ; it has been set to 3.
|
82 |
-
# whole_size_threshold: maximum allowed resolution. (R_max from section 6 of the main paper)
|
83 |
-
|
84 |
-
# Returns:
|
85 |
-
# outputsize_scale*speed_scale :The computed R_x resolution
|
86 |
-
# patch_scale: K parameter from section 6 of the paper
|
87 |
-
|
88 |
-
# speed scale parameter is to process every image in a smaller size to accelerate the R_x resolution search
|
89 |
-
speed_scale = 32
|
90 |
-
image_dim = int(min(img.shape[0:2]))
|
91 |
-
|
92 |
-
gray = rgb2gray(img)
|
93 |
-
grad = np.abs(cv2.Sobel(gray, cv2.CV_64F, 0, 1, ksize=3)) + np.abs(cv2.Sobel(gray, cv2.CV_64F, 1, 0, ksize=3))
|
94 |
-
grad = cv2.resize(grad, (image_dim, image_dim), cv2.INTER_AREA)
|
95 |
-
|
96 |
-
# thresholding the gradient map to generate the edge-map as a proxy of the contextual cues
|
97 |
-
m = grad.min()
|
98 |
-
M = grad.max()
|
99 |
-
middle = m + (0.4 * (M - m))
|
100 |
-
grad[grad < middle] = 0
|
101 |
-
grad[grad >= middle] = 1
|
102 |
-
|
103 |
-
# dilation kernel with size of the receptive field
|
104 |
-
kernel = np.ones((int(basesize/speed_scale), int(basesize/speed_scale)), float)
|
105 |
-
# dilation kernel with size of the a quarter of receptive field used to compute k
|
106 |
-
# as described in section 6 of main paper
|
107 |
-
kernel2 = np.ones((int(basesize / (4*speed_scale)), int(basesize / (4*speed_scale))), float)
|
108 |
-
|
109 |
-
# Output resolution limit set by the whole_size_threshold and scale_threshold.
|
110 |
-
threshold = min(whole_size_threshold, scale_threshold * max(img.shape[:2]))
|
111 |
-
|
112 |
-
outputsize_scale = basesize / speed_scale
|
113 |
-
for p_size in range(int(basesize/speed_scale), int(threshold/speed_scale), int(basesize / (2*speed_scale))):
|
114 |
-
grad_resized = resizewithpool(grad, p_size)
|
115 |
-
grad_resized = cv2.resize(grad_resized, (p_size, p_size), cv2.INTER_NEAREST)
|
116 |
-
grad_resized[grad_resized >= 0.5] = 1
|
117 |
-
grad_resized[grad_resized < 0.5] = 0
|
118 |
-
|
119 |
-
dilated = cv2.dilate(grad_resized, kernel, iterations=1)
|
120 |
-
meanvalue = (1-dilated).mean()
|
121 |
-
if meanvalue > confidence:
|
122 |
-
break
|
123 |
-
else:
|
124 |
-
outputsize_scale = p_size
|
125 |
-
|
126 |
-
grad_region = cv2.dilate(grad_resized, kernel2, iterations=1)
|
127 |
-
patch_scale = grad_region.mean()
|
128 |
-
|
129 |
-
return int(outputsize_scale*speed_scale), patch_scale
|
130 |
-
|
131 |
-
# Generate a double-input depth estimation
|
132 |
-
def doubleestimate(img, size1, size2, pix2pixsize, model, net_type, pix2pixmodel):
|
133 |
-
# Generate the low resolution estimation
|
134 |
-
estimate1 = singleestimate(img, size1, model, net_type)
|
135 |
-
# Resize to the inference size of merge network.
|
136 |
-
estimate1 = cv2.resize(estimate1, (pix2pixsize, pix2pixsize), interpolation=cv2.INTER_CUBIC)
|
137 |
-
|
138 |
-
# Generate the high resolution estimation
|
139 |
-
estimate2 = singleestimate(img, size2, model, net_type)
|
140 |
-
# Resize to the inference size of merge network.
|
141 |
-
estimate2 = cv2.resize(estimate2, (pix2pixsize, pix2pixsize), interpolation=cv2.INTER_CUBIC)
|
142 |
-
|
143 |
-
# Inference on the merge model
|
144 |
-
pix2pixmodel.set_input(estimate1, estimate2)
|
145 |
-
pix2pixmodel.test()
|
146 |
-
visuals = pix2pixmodel.get_current_visuals()
|
147 |
-
prediction_mapped = visuals['fake_B']
|
148 |
-
prediction_mapped = (prediction_mapped+1)/2
|
149 |
-
prediction_mapped = (prediction_mapped - torch.min(prediction_mapped)) / (
|
150 |
-
torch.max(prediction_mapped) - torch.min(prediction_mapped))
|
151 |
-
prediction_mapped = prediction_mapped.squeeze().cpu().numpy()
|
152 |
-
|
153 |
-
return prediction_mapped
|
154 |
-
|
155 |
-
# Generate a single-input depth estimation
|
156 |
-
def singleestimate(img, msize, model, net_type):
|
157 |
-
# if net_type == 0:
|
158 |
-
return estimateleres(img, model, msize, msize)
|
159 |
-
# else:
|
160 |
-
# return estimatemidasBoost(img, model, msize, msize)
|
161 |
-
|
162 |
-
def applyGridpatch(blsize, stride, img, box):
|
163 |
-
# Extract a simple grid patch.
|
164 |
-
counter1 = 0
|
165 |
-
patch_bound_list = {}
|
166 |
-
for k in range(blsize, img.shape[1] - blsize, stride):
|
167 |
-
for j in range(blsize, img.shape[0] - blsize, stride):
|
168 |
-
patch_bound_list[str(counter1)] = {}
|
169 |
-
patchbounds = [j - blsize, k - blsize, j - blsize + 2 * blsize, k - blsize + 2 * blsize]
|
170 |
-
patch_bound = [box[0] + patchbounds[1], box[1] + patchbounds[0], patchbounds[3] - patchbounds[1],
|
171 |
-
patchbounds[2] - patchbounds[0]]
|
172 |
-
patch_bound_list[str(counter1)]['rect'] = patch_bound
|
173 |
-
patch_bound_list[str(counter1)]['size'] = patch_bound[2]
|
174 |
-
counter1 = counter1 + 1
|
175 |
-
return patch_bound_list
|
176 |
-
|
177 |
-
# Generating local patches to perform the local refinement described in section 6 of the main paper.
|
178 |
-
def generatepatchs(img, base_size):
|
179 |
-
|
180 |
-
# Compute the gradients as a proxy of the contextual cues.
|
181 |
-
img_gray = rgb2gray(img)
|
182 |
-
whole_grad = np.abs(cv2.Sobel(img_gray, cv2.CV_64F, 0, 1, ksize=3)) +\
|
183 |
-
np.abs(cv2.Sobel(img_gray, cv2.CV_64F, 1, 0, ksize=3))
|
184 |
-
|
185 |
-
threshold = whole_grad[whole_grad > 0].mean()
|
186 |
-
whole_grad[whole_grad < threshold] = 0
|
187 |
-
|
188 |
-
# We use the integral image to speed-up the evaluation of the amount of gradients for each patch.
|
189 |
-
gf = whole_grad.sum()/len(whole_grad.reshape(-1))
|
190 |
-
grad_integral_image = cv2.integral(whole_grad)
|
191 |
-
|
192 |
-
# Variables are selected such that the initial patch size would be the receptive field size
|
193 |
-
# and the stride is set to 1/3 of the receptive field size.
|
194 |
-
blsize = int(round(base_size/2))
|
195 |
-
stride = int(round(blsize*0.75))
|
196 |
-
|
197 |
-
# Get initial Grid
|
198 |
-
patch_bound_list = applyGridpatch(blsize, stride, img, [0, 0, 0, 0])
|
199 |
-
|
200 |
-
# Refine initial Grid of patches by discarding the flat (in terms of gradients of the rgb image) ones. Refine
|
201 |
-
# each patch size to ensure that there will be enough depth cues for the network to generate a consistent depth map.
|
202 |
-
print("Selecting patches ...")
|
203 |
-
patch_bound_list = adaptiveselection(grad_integral_image, patch_bound_list, gf)
|
204 |
-
|
205 |
-
# Sort the patch list to make sure the merging operation will be done with the correct order: starting from biggest
|
206 |
-
# patch
|
207 |
-
patchset = sorted(patch_bound_list.items(), key=lambda x: getitem(x[1], 'size'), reverse=True)
|
208 |
-
return patchset
|
209 |
-
|
210 |
-
def getGF_fromintegral(integralimage, rect):
|
211 |
-
# Computes the gradient density of a given patch from the gradient integral image.
|
212 |
-
x1 = rect[1]
|
213 |
-
x2 = rect[1]+rect[3]
|
214 |
-
y1 = rect[0]
|
215 |
-
y2 = rect[0]+rect[2]
|
216 |
-
value = integralimage[x2, y2]-integralimage[x1, y2]-integralimage[x2, y1]+integralimage[x1, y1]
|
217 |
-
return value
|
218 |
-
|
219 |
-
# Adaptively select patches
|
220 |
-
def adaptiveselection(integral_grad, patch_bound_list, gf):
|
221 |
-
patchlist = {}
|
222 |
-
count = 0
|
223 |
-
height, width = integral_grad.shape
|
224 |
-
|
225 |
-
search_step = int(32/factor)
|
226 |
-
|
227 |
-
# Go through all patches
|
228 |
-
for c in range(len(patch_bound_list)):
|
229 |
-
# Get patch
|
230 |
-
bbox = patch_bound_list[str(c)]['rect']
|
231 |
-
|
232 |
-
# Compute the amount of gradients present in the patch from the integral image.
|
233 |
-
cgf = getGF_fromintegral(integral_grad, bbox)/(bbox[2]*bbox[3])
|
234 |
-
|
235 |
-
# Check if patching is beneficial by comparing the gradient density of the patch to
|
236 |
-
# the gradient density of the whole image
|
237 |
-
if cgf >= gf:
|
238 |
-
bbox_test = bbox.copy()
|
239 |
-
patchlist[str(count)] = {}
|
240 |
-
|
241 |
-
# Enlarge each patch until the gradient density of the patch is equal
|
242 |
-
# to the whole image gradient density
|
243 |
-
while True:
|
244 |
-
|
245 |
-
bbox_test[0] = bbox_test[0] - int(search_step/2)
|
246 |
-
bbox_test[1] = bbox_test[1] - int(search_step/2)
|
247 |
-
|
248 |
-
bbox_test[2] = bbox_test[2] + search_step
|
249 |
-
bbox_test[3] = bbox_test[3] + search_step
|
250 |
-
|
251 |
-
# Check if we are still within the image
|
252 |
-
if bbox_test[0] < 0 or bbox_test[1] < 0 or bbox_test[1] + bbox_test[3] >= height \
|
253 |
-
or bbox_test[0] + bbox_test[2] >= width:
|
254 |
-
break
|
255 |
-
|
256 |
-
# Compare gradient density
|
257 |
-
cgf = getGF_fromintegral(integral_grad, bbox_test)/(bbox_test[2]*bbox_test[3])
|
258 |
-
if cgf < gf:
|
259 |
-
break
|
260 |
-
bbox = bbox_test.copy()
|
261 |
-
|
262 |
-
# Add patch to selected patches
|
263 |
-
patchlist[str(count)]['rect'] = bbox
|
264 |
-
patchlist[str(count)]['size'] = bbox[2]
|
265 |
-
count = count + 1
|
266 |
-
|
267 |
-
# Return selected patches
|
268 |
-
return patchlist
|
269 |
-
|
270 |
-
def impatch(image, rect):
|
271 |
-
# Extract the given patch pixels from a given image.
|
272 |
-
w1 = rect[0]
|
273 |
-
h1 = rect[1]
|
274 |
-
w2 = w1 + rect[2]
|
275 |
-
h2 = h1 + rect[3]
|
276 |
-
image_patch = image[h1:h2, w1:w2]
|
277 |
-
return image_patch
|
278 |
-
|
279 |
-
class ImageandPatchs:
|
280 |
-
def __init__(self, root_dir, name, patchsinfo, rgb_image, scale=1):
|
281 |
-
self.root_dir = root_dir
|
282 |
-
self.patchsinfo = patchsinfo
|
283 |
-
self.name = name
|
284 |
-
self.patchs = patchsinfo
|
285 |
-
self.scale = scale
|
286 |
-
|
287 |
-
self.rgb_image = cv2.resize(rgb_image, (round(rgb_image.shape[1]*scale), round(rgb_image.shape[0]*scale)),
|
288 |
-
interpolation=cv2.INTER_CUBIC)
|
289 |
-
|
290 |
-
self.do_have_estimate = False
|
291 |
-
self.estimation_updated_image = None
|
292 |
-
self.estimation_base_image = None
|
293 |
-
|
294 |
-
def __len__(self):
|
295 |
-
return len(self.patchs)
|
296 |
-
|
297 |
-
def set_base_estimate(self, est):
|
298 |
-
self.estimation_base_image = est
|
299 |
-
if self.estimation_updated_image is not None:
|
300 |
-
self.do_have_estimate = True
|
301 |
-
|
302 |
-
def set_updated_estimate(self, est):
|
303 |
-
self.estimation_updated_image = est
|
304 |
-
if self.estimation_base_image is not None:
|
305 |
-
self.do_have_estimate = True
|
306 |
-
|
307 |
-
def __getitem__(self, index):
|
308 |
-
patch_id = int(self.patchs[index][0])
|
309 |
-
rect = np.array(self.patchs[index][1]['rect'])
|
310 |
-
msize = self.patchs[index][1]['size']
|
311 |
-
|
312 |
-
## applying scale to rect:
|
313 |
-
rect = np.round(rect * self.scale)
|
314 |
-
rect = rect.astype('int')
|
315 |
-
msize = round(msize * self.scale)
|
316 |
-
|
317 |
-
patch_rgb = impatch(self.rgb_image, rect)
|
318 |
-
if self.do_have_estimate:
|
319 |
-
patch_whole_estimate_base = impatch(self.estimation_base_image, rect)
|
320 |
-
patch_whole_estimate_updated = impatch(self.estimation_updated_image, rect)
|
321 |
-
return {'patch_rgb': patch_rgb, 'patch_whole_estimate_base': patch_whole_estimate_base,
|
322 |
-
'patch_whole_estimate_updated': patch_whole_estimate_updated, 'rect': rect,
|
323 |
-
'size': msize, 'id': patch_id}
|
324 |
-
else:
|
325 |
-
return {'patch_rgb': patch_rgb, 'rect': rect, 'size': msize, 'id': patch_id}
|
326 |
-
|
327 |
-
def print_options(self, opt):
|
328 |
-
"""Print and save options
|
329 |
-
|
330 |
-
It will print both current options and default values(if different).
|
331 |
-
It will save options into a text file / [checkpoints_dir] / opt.txt
|
332 |
-
"""
|
333 |
-
message = ''
|
334 |
-
message += '----------------- Options ---------------\n'
|
335 |
-
for k, v in sorted(vars(opt).items()):
|
336 |
-
comment = ''
|
337 |
-
default = self.parser.get_default(k)
|
338 |
-
if v != default:
|
339 |
-
comment = '\t[default: %s]' % str(default)
|
340 |
-
message += '{:>25}: {:<30}{}\n'.format(str(k), str(v), comment)
|
341 |
-
message += '----------------- End -------------------'
|
342 |
-
print(message)
|
343 |
-
|
344 |
-
# save to the disk
|
345 |
-
"""
|
346 |
-
expr_dir = os.path.join(opt.checkpoints_dir, opt.name)
|
347 |
-
util.mkdirs(expr_dir)
|
348 |
-
file_name = os.path.join(expr_dir, '{}_opt.txt'.format(opt.phase))
|
349 |
-
with open(file_name, 'wt') as opt_file:
|
350 |
-
opt_file.write(message)
|
351 |
-
opt_file.write('\n')
|
352 |
-
"""
|
353 |
-
|
354 |
-
def parse(self):
|
355 |
-
"""Parse our options, create checkpoints directory suffix, and set up gpu device."""
|
356 |
-
opt = self.gather_options()
|
357 |
-
opt.isTrain = self.isTrain # train or test
|
358 |
-
|
359 |
-
# process opt.suffix
|
360 |
-
if opt.suffix:
|
361 |
-
suffix = ('_' + opt.suffix.format(**vars(opt))) if opt.suffix != '' else ''
|
362 |
-
opt.name = opt.name + suffix
|
363 |
-
|
364 |
-
#self.print_options(opt)
|
365 |
-
|
366 |
-
# set gpu ids
|
367 |
-
str_ids = opt.gpu_ids.split(',')
|
368 |
-
opt.gpu_ids = []
|
369 |
-
for str_id in str_ids:
|
370 |
-
id = int(str_id)
|
371 |
-
if id >= 0:
|
372 |
-
opt.gpu_ids.append(id)
|
373 |
-
#if len(opt.gpu_ids) > 0:
|
374 |
-
# torch.cuda.set_device(opt.gpu_ids[0])
|
375 |
-
|
376 |
-
self.opt = opt
|
377 |
-
return self.opt
|
378 |
-
|
379 |
-
|
380 |
-
def estimateboost(img, model, model_type, pix2pixmodel, max_res=512, depthmap_script_boost_rmax=None):
|
381 |
-
global whole_size_threshold
|
382 |
-
|
383 |
-
# get settings
|
384 |
-
if depthmap_script_boost_rmax:
|
385 |
-
whole_size_threshold = depthmap_script_boost_rmax
|
386 |
-
|
387 |
-
if model_type == 0: #leres
|
388 |
-
net_receptive_field_size = 448
|
389 |
-
patch_netsize = 2 * net_receptive_field_size
|
390 |
-
elif model_type == 1: #dpt_beit_large_512
|
391 |
-
net_receptive_field_size = 512
|
392 |
-
patch_netsize = 2 * net_receptive_field_size
|
393 |
-
else: #other midas
|
394 |
-
net_receptive_field_size = 384
|
395 |
-
patch_netsize = 2 * net_receptive_field_size
|
396 |
-
|
397 |
-
gc.collect()
|
398 |
-
torch_gc()
|
399 |
-
|
400 |
-
# Generate mask used to smoothly blend the local pathc estimations to the base estimate.
|
401 |
-
# It is arbitrarily large to avoid artifacts during rescaling for each crop.
|
402 |
-
mask_org = generatemask((3000, 3000))
|
403 |
-
mask = mask_org.copy()
|
404 |
-
|
405 |
-
# Value x of R_x defined in the section 5 of the main paper.
|
406 |
-
r_threshold_value = 0.2
|
407 |
-
#if R0:
|
408 |
-
# r_threshold_value = 0
|
409 |
-
|
410 |
-
input_resolution = img.shape
|
411 |
-
scale_threshold = 3 # Allows up-scaling with a scale up to 3
|
412 |
-
|
413 |
-
# Find the best input resolution R-x. The resolution search described in section 5-double estimation of the main paper and section B of the
|
414 |
-
# supplementary material.
|
415 |
-
whole_image_optimal_size, patch_scale = calculateprocessingres(img, net_receptive_field_size, r_threshold_value, scale_threshold, whole_size_threshold)
|
416 |
-
|
417 |
-
# print('wholeImage being processed in :', whole_image_optimal_size)
|
418 |
-
|
419 |
-
# Generate the base estimate using the double estimation.
|
420 |
-
whole_estimate = doubleestimate(img, net_receptive_field_size, whole_image_optimal_size, pix2pixsize, model, model_type, pix2pixmodel)
|
421 |
-
|
422 |
-
# Compute the multiplier described in section 6 of the main paper to make sure our initial patch can select
|
423 |
-
# small high-density regions of the image.
|
424 |
-
global factor
|
425 |
-
factor = max(min(1, 4 * patch_scale * whole_image_optimal_size / whole_size_threshold), 0.2)
|
426 |
-
# print('Adjust factor is:', 1/factor)
|
427 |
-
|
428 |
-
# Check if Local boosting is beneficial.
|
429 |
-
if max_res < whole_image_optimal_size:
|
430 |
-
# print("No Local boosting. Specified Max Res is smaller than R20, Returning doubleestimate result")
|
431 |
-
return cv2.resize(whole_estimate, (input_resolution[1], input_resolution[0]), interpolation=cv2.INTER_CUBIC)
|
432 |
-
|
433 |
-
# Compute the default target resolution.
|
434 |
-
if img.shape[0] > img.shape[1]:
|
435 |
-
a = 2 * whole_image_optimal_size
|
436 |
-
b = round(2 * whole_image_optimal_size * img.shape[1] / img.shape[0])
|
437 |
-
else:
|
438 |
-
a = round(2 * whole_image_optimal_size * img.shape[0] / img.shape[1])
|
439 |
-
b = 2 * whole_image_optimal_size
|
440 |
-
b = int(round(b / factor))
|
441 |
-
a = int(round(a / factor))
|
442 |
-
|
443 |
-
"""
|
444 |
-
# recompute a, b and saturate to max res.
|
445 |
-
if max(a,b) > max_res:
|
446 |
-
print('Default Res is higher than max-res: Reducing final resolution')
|
447 |
-
if img.shape[0] > img.shape[1]:
|
448 |
-
a = max_res
|
449 |
-
b = round(max_res * img.shape[1] / img.shape[0])
|
450 |
-
else:
|
451 |
-
a = round(max_res * img.shape[0] / img.shape[1])
|
452 |
-
b = max_res
|
453 |
-
b = int(b)
|
454 |
-
a = int(a)
|
455 |
-
"""
|
456 |
-
|
457 |
-
img = cv2.resize(img, (b, a), interpolation=cv2.INTER_CUBIC)
|
458 |
-
|
459 |
-
# Extract selected patches for local refinement
|
460 |
-
base_size = net_receptive_field_size * 2
|
461 |
-
patchset = generatepatchs(img, base_size)
|
462 |
-
|
463 |
-
# print('Target resolution: ', img.shape)
|
464 |
-
|
465 |
-
# Computing a scale in case user prompted to generate the results as the same resolution of the input.
|
466 |
-
# Notice that our method output resolution is independent of the input resolution and this parameter will only
|
467 |
-
# enable a scaling operation during the local patch merge implementation to generate results with the same resolution
|
468 |
-
# as the input.
|
469 |
-
"""
|
470 |
-
if output_resolution == 1:
|
471 |
-
mergein_scale = input_resolution[0] / img.shape[0]
|
472 |
-
print('Dynamicly change merged-in resolution; scale:', mergein_scale)
|
473 |
-
else:
|
474 |
-
mergein_scale = 1
|
475 |
-
"""
|
476 |
-
# always rescale to input res for now
|
477 |
-
mergein_scale = input_resolution[0] / img.shape[0]
|
478 |
-
|
479 |
-
imageandpatchs = ImageandPatchs('', '', patchset, img, mergein_scale)
|
480 |
-
whole_estimate_resized = cv2.resize(whole_estimate, (round(img.shape[1]*mergein_scale),
|
481 |
-
round(img.shape[0]*mergein_scale)), interpolation=cv2.INTER_CUBIC)
|
482 |
-
imageandpatchs.set_base_estimate(whole_estimate_resized.copy())
|
483 |
-
imageandpatchs.set_updated_estimate(whole_estimate_resized.copy())
|
484 |
-
|
485 |
-
print('Resulting depthmap resolution will be :', whole_estimate_resized.shape[:2])
|
486 |
-
print('Patches to process: '+str(len(imageandpatchs)))
|
487 |
-
|
488 |
-
# Enumerate through all patches, generate their estimations and refining the base estimate.
|
489 |
-
for patch_ind in range(len(imageandpatchs)):
|
490 |
-
|
491 |
-
# Get patch information
|
492 |
-
patch = imageandpatchs[patch_ind] # patch object
|
493 |
-
patch_rgb = patch['patch_rgb'] # rgb patch
|
494 |
-
patch_whole_estimate_base = patch['patch_whole_estimate_base'] # corresponding patch from base
|
495 |
-
rect = patch['rect'] # patch size and location
|
496 |
-
patch_id = patch['id'] # patch ID
|
497 |
-
org_size = patch_whole_estimate_base.shape # the original size from the unscaled input
|
498 |
-
print('\t Processing patch', patch_ind, '/', len(imageandpatchs)-1, '|', rect)
|
499 |
-
|
500 |
-
# We apply double estimation for patches. The high resolution value is fixed to twice the receptive
|
501 |
-
# field size of the network for patches to accelerate the process.
|
502 |
-
patch_estimation = doubleestimate(patch_rgb, net_receptive_field_size, patch_netsize, pix2pixsize, model, model_type, pix2pixmodel)
|
503 |
-
patch_estimation = cv2.resize(patch_estimation, (pix2pixsize, pix2pixsize), interpolation=cv2.INTER_CUBIC)
|
504 |
-
patch_whole_estimate_base = cv2.resize(patch_whole_estimate_base, (pix2pixsize, pix2pixsize), interpolation=cv2.INTER_CUBIC)
|
505 |
-
|
506 |
-
# Merging the patch estimation into the base estimate using our merge network:
|
507 |
-
# We feed the patch estimation and the same region from the updated base estimate to the merge network
|
508 |
-
# to generate the target estimate for the corresponding region.
|
509 |
-
pix2pixmodel.set_input(patch_whole_estimate_base, patch_estimation)
|
510 |
-
|
511 |
-
# Run merging network
|
512 |
-
pix2pixmodel.test()
|
513 |
-
visuals = pix2pixmodel.get_current_visuals()
|
514 |
-
|
515 |
-
prediction_mapped = visuals['fake_B']
|
516 |
-
prediction_mapped = (prediction_mapped+1)/2
|
517 |
-
prediction_mapped = prediction_mapped.squeeze().cpu().numpy()
|
518 |
-
|
519 |
-
mapped = prediction_mapped
|
520 |
-
|
521 |
-
# We use a simple linear polynomial to make sure the result of the merge network would match the values of
|
522 |
-
# base estimate
|
523 |
-
p_coef = np.polyfit(mapped.reshape(-1), patch_whole_estimate_base.reshape(-1), deg=1)
|
524 |
-
merged = np.polyval(p_coef, mapped.reshape(-1)).reshape(mapped.shape)
|
525 |
-
|
526 |
-
merged = cv2.resize(merged, (org_size[1],org_size[0]), interpolation=cv2.INTER_CUBIC)
|
527 |
-
|
528 |
-
# Get patch size and location
|
529 |
-
w1 = rect[0]
|
530 |
-
h1 = rect[1]
|
531 |
-
w2 = w1 + rect[2]
|
532 |
-
h2 = h1 + rect[3]
|
533 |
-
|
534 |
-
# To speed up the implementation, we only generate the Gaussian mask once with a sufficiently large size
|
535 |
-
# and resize it to our needed size while merging the patches.
|
536 |
-
if mask.shape != org_size:
|
537 |
-
mask = cv2.resize(mask_org, (org_size[1],org_size[0]), interpolation=cv2.INTER_LINEAR)
|
538 |
-
|
539 |
-
tobemergedto = imageandpatchs.estimation_updated_image
|
540 |
-
|
541 |
-
# Update the whole estimation:
|
542 |
-
# We use a simple Gaussian mask to blend the merged patch region with the base estimate to ensure seamless
|
543 |
-
# blending at the boundaries of the patch region.
|
544 |
-
tobemergedto[h1:h2, w1:w2] = np.multiply(tobemergedto[h1:h2, w1:w2], 1 - mask) + np.multiply(merged, mask)
|
545 |
-
imageandpatchs.set_updated_estimate(tobemergedto)
|
546 |
-
|
547 |
-
# output
|
548 |
-
return cv2.resize(imageandpatchs.estimation_updated_image, (input_resolution[1], input_resolution[0]), interpolation=cv2.INTER_CUBIC)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
controlnet_aux_local/leres/leres/multi_depth_model_woauxi.py
DELETED
@@ -1,35 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
import torch.nn as nn
|
3 |
-
|
4 |
-
from . import network_auxi as network
|
5 |
-
from .net_tools import get_func
|
6 |
-
|
7 |
-
|
8 |
-
class RelDepthModel(nn.Module):
|
9 |
-
def __init__(self, backbone='resnet50'):
|
10 |
-
super(RelDepthModel, self).__init__()
|
11 |
-
if backbone == 'resnet50':
|
12 |
-
encoder = 'resnet50_stride32'
|
13 |
-
elif backbone == 'resnext101':
|
14 |
-
encoder = 'resnext101_stride32x8d'
|
15 |
-
self.depth_model = DepthModel(encoder)
|
16 |
-
|
17 |
-
def inference(self, rgb):
|
18 |
-
with torch.no_grad():
|
19 |
-
input = rgb.to(self.depth_model.device)
|
20 |
-
depth = self.depth_model(input)
|
21 |
-
#pred_depth_out = depth - depth.min() + 0.01
|
22 |
-
return depth #pred_depth_out
|
23 |
-
|
24 |
-
|
25 |
-
class DepthModel(nn.Module):
|
26 |
-
def __init__(self, encoder):
|
27 |
-
super(DepthModel, self).__init__()
|
28 |
-
backbone = network.__name__.split('.')[-1] + '.' + encoder
|
29 |
-
self.encoder_modules = get_func(backbone)()
|
30 |
-
self.decoder_modules = network.Decoder()
|
31 |
-
|
32 |
-
def forward(self, x):
|
33 |
-
lateral_out = self.encoder_modules(x)
|
34 |
-
out_logit = self.decoder_modules(lateral_out)
|
35 |
-
return out_logit
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
controlnet_aux_local/leres/leres/net_tools.py
DELETED
@@ -1,54 +0,0 @@
|
|
1 |
-
import importlib
|
2 |
-
import torch
|
3 |
-
import os
|
4 |
-
from collections import OrderedDict
|
5 |
-
|
6 |
-
|
7 |
-
def get_func(func_name):
|
8 |
-
"""Helper to return a function object by name. func_name must identify a
|
9 |
-
function in this module or the path to a function relative to the base
|
10 |
-
'modeling' module.
|
11 |
-
"""
|
12 |
-
if func_name == '':
|
13 |
-
return None
|
14 |
-
try:
|
15 |
-
parts = func_name.split('.')
|
16 |
-
# Refers to a function in this module
|
17 |
-
if len(parts) == 1:
|
18 |
-
return globals()[parts[0]]
|
19 |
-
# Otherwise, assume we're referencing a module under modeling
|
20 |
-
module_name = 'controlnet_aux.leres.leres.' + '.'.join(parts[:-1])
|
21 |
-
module = importlib.import_module(module_name)
|
22 |
-
return getattr(module, parts[-1])
|
23 |
-
except Exception:
|
24 |
-
print('Failed to f1ind function: %s', func_name)
|
25 |
-
raise
|
26 |
-
|
27 |
-
def load_ckpt(args, depth_model, shift_model, focal_model):
|
28 |
-
"""
|
29 |
-
Load checkpoint.
|
30 |
-
"""
|
31 |
-
if os.path.isfile(args.load_ckpt):
|
32 |
-
print("loading checkpoint %s" % args.load_ckpt)
|
33 |
-
checkpoint = torch.load(args.load_ckpt)
|
34 |
-
if shift_model is not None:
|
35 |
-
shift_model.load_state_dict(strip_prefix_if_present(checkpoint['shift_model'], 'module.'),
|
36 |
-
strict=True)
|
37 |
-
if focal_model is not None:
|
38 |
-
focal_model.load_state_dict(strip_prefix_if_present(checkpoint['focal_model'], 'module.'),
|
39 |
-
strict=True)
|
40 |
-
depth_model.load_state_dict(strip_prefix_if_present(checkpoint['depth_model'], "module."),
|
41 |
-
strict=True)
|
42 |
-
del checkpoint
|
43 |
-
if torch.cuda.is_available():
|
44 |
-
torch.cuda.empty_cache()
|
45 |
-
|
46 |
-
|
47 |
-
def strip_prefix_if_present(state_dict, prefix):
|
48 |
-
keys = sorted(state_dict.keys())
|
49 |
-
if not all(key.startswith(prefix) for key in keys):
|
50 |
-
return state_dict
|
51 |
-
stripped_state_dict = OrderedDict()
|
52 |
-
for key, value in state_dict.items():
|
53 |
-
stripped_state_dict[key.replace(prefix, "")] = value
|
54 |
-
return stripped_state_dict
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
controlnet_aux_local/leres/leres/network_auxi.py
DELETED
@@ -1,417 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
import torch.nn as nn
|
3 |
-
import torch.nn.init as init
|
4 |
-
|
5 |
-
from . import Resnet, Resnext_torch
|
6 |
-
|
7 |
-
|
8 |
-
def resnet50_stride32():
|
9 |
-
return DepthNet(backbone='resnet', depth=50, upfactors=[2, 2, 2, 2])
|
10 |
-
|
11 |
-
def resnext101_stride32x8d():
|
12 |
-
return DepthNet(backbone='resnext101_32x8d', depth=101, upfactors=[2, 2, 2, 2])
|
13 |
-
|
14 |
-
|
15 |
-
class Decoder(nn.Module):
|
16 |
-
def __init__(self):
|
17 |
-
super(Decoder, self).__init__()
|
18 |
-
self.inchannels = [256, 512, 1024, 2048]
|
19 |
-
self.midchannels = [256, 256, 256, 512]
|
20 |
-
self.upfactors = [2,2,2,2]
|
21 |
-
self.outchannels = 1
|
22 |
-
|
23 |
-
self.conv = FTB(inchannels=self.inchannels[3], midchannels=self.midchannels[3])
|
24 |
-
self.conv1 = nn.Conv2d(in_channels=self.midchannels[3], out_channels=self.midchannels[2], kernel_size=3, padding=1, stride=1, bias=True)
|
25 |
-
self.upsample = nn.Upsample(scale_factor=self.upfactors[3], mode='bilinear', align_corners=True)
|
26 |
-
|
27 |
-
self.ffm2 = FFM(inchannels=self.inchannels[2], midchannels=self.midchannels[2], outchannels = self.midchannels[2], upfactor=self.upfactors[2])
|
28 |
-
self.ffm1 = FFM(inchannels=self.inchannels[1], midchannels=self.midchannels[1], outchannels = self.midchannels[1], upfactor=self.upfactors[1])
|
29 |
-
self.ffm0 = FFM(inchannels=self.inchannels[0], midchannels=self.midchannels[0], outchannels = self.midchannels[0], upfactor=self.upfactors[0])
|
30 |
-
|
31 |
-
self.outconv = AO(inchannels=self.midchannels[0], outchannels=self.outchannels, upfactor=2)
|
32 |
-
self._init_params()
|
33 |
-
|
34 |
-
def _init_params(self):
|
35 |
-
for m in self.modules():
|
36 |
-
if isinstance(m, nn.Conv2d):
|
37 |
-
init.normal_(m.weight, std=0.01)
|
38 |
-
if m.bias is not None:
|
39 |
-
init.constant_(m.bias, 0)
|
40 |
-
elif isinstance(m, nn.ConvTranspose2d):
|
41 |
-
init.normal_(m.weight, std=0.01)
|
42 |
-
if m.bias is not None:
|
43 |
-
init.constant_(m.bias, 0)
|
44 |
-
elif isinstance(m, nn.BatchNorm2d): #NN.BatchNorm2d
|
45 |
-
init.constant_(m.weight, 1)
|
46 |
-
init.constant_(m.bias, 0)
|
47 |
-
elif isinstance(m, nn.Linear):
|
48 |
-
init.normal_(m.weight, std=0.01)
|
49 |
-
if m.bias is not None:
|
50 |
-
init.constant_(m.bias, 0)
|
51 |
-
|
52 |
-
def forward(self, features):
|
53 |
-
x_32x = self.conv(features[3]) # 1/32
|
54 |
-
x_32 = self.conv1(x_32x)
|
55 |
-
x_16 = self.upsample(x_32) # 1/16
|
56 |
-
|
57 |
-
x_8 = self.ffm2(features[2], x_16) # 1/8
|
58 |
-
x_4 = self.ffm1(features[1], x_8) # 1/4
|
59 |
-
x_2 = self.ffm0(features[0], x_4) # 1/2
|
60 |
-
#-----------------------------------------
|
61 |
-
x = self.outconv(x_2) # original size
|
62 |
-
return x
|
63 |
-
|
64 |
-
class DepthNet(nn.Module):
|
65 |
-
__factory = {
|
66 |
-
18: Resnet.resnet18,
|
67 |
-
34: Resnet.resnet34,
|
68 |
-
50: Resnet.resnet50,
|
69 |
-
101: Resnet.resnet101,
|
70 |
-
152: Resnet.resnet152
|
71 |
-
}
|
72 |
-
def __init__(self,
|
73 |
-
backbone='resnet',
|
74 |
-
depth=50,
|
75 |
-
upfactors=[2, 2, 2, 2]):
|
76 |
-
super(DepthNet, self).__init__()
|
77 |
-
self.backbone = backbone
|
78 |
-
self.depth = depth
|
79 |
-
self.pretrained = False
|
80 |
-
self.inchannels = [256, 512, 1024, 2048]
|
81 |
-
self.midchannels = [256, 256, 256, 512]
|
82 |
-
self.upfactors = upfactors
|
83 |
-
self.outchannels = 1
|
84 |
-
|
85 |
-
# Build model
|
86 |
-
if self.backbone == 'resnet':
|
87 |
-
if self.depth not in DepthNet.__factory:
|
88 |
-
raise KeyError("Unsupported depth:", self.depth)
|
89 |
-
self.encoder = DepthNet.__factory[depth](pretrained=self.pretrained)
|
90 |
-
elif self.backbone == 'resnext101_32x8d':
|
91 |
-
self.encoder = Resnext_torch.resnext101_32x8d(pretrained=self.pretrained)
|
92 |
-
else:
|
93 |
-
self.encoder = Resnext_torch.resnext101(pretrained=self.pretrained)
|
94 |
-
|
95 |
-
def forward(self, x):
|
96 |
-
x = self.encoder(x) # 1/32, 1/16, 1/8, 1/4
|
97 |
-
return x
|
98 |
-
|
99 |
-
|
100 |
-
class FTB(nn.Module):
|
101 |
-
def __init__(self, inchannels, midchannels=512):
|
102 |
-
super(FTB, self).__init__()
|
103 |
-
self.in1 = inchannels
|
104 |
-
self.mid = midchannels
|
105 |
-
self.conv1 = nn.Conv2d(in_channels=self.in1, out_channels=self.mid, kernel_size=3, padding=1, stride=1,
|
106 |
-
bias=True)
|
107 |
-
# NN.BatchNorm2d
|
108 |
-
self.conv_branch = nn.Sequential(nn.ReLU(inplace=True), \
|
109 |
-
nn.Conv2d(in_channels=self.mid, out_channels=self.mid, kernel_size=3,
|
110 |
-
padding=1, stride=1, bias=True), \
|
111 |
-
nn.BatchNorm2d(num_features=self.mid), \
|
112 |
-
nn.ReLU(inplace=True), \
|
113 |
-
nn.Conv2d(in_channels=self.mid, out_channels=self.mid, kernel_size=3,
|
114 |
-
padding=1, stride=1, bias=True))
|
115 |
-
self.relu = nn.ReLU(inplace=True)
|
116 |
-
|
117 |
-
self.init_params()
|
118 |
-
|
119 |
-
def forward(self, x):
|
120 |
-
x = self.conv1(x)
|
121 |
-
x = x + self.conv_branch(x)
|
122 |
-
x = self.relu(x)
|
123 |
-
|
124 |
-
return x
|
125 |
-
|
126 |
-
def init_params(self):
|
127 |
-
for m in self.modules():
|
128 |
-
if isinstance(m, nn.Conv2d):
|
129 |
-
init.normal_(m.weight, std=0.01)
|
130 |
-
if m.bias is not None:
|
131 |
-
init.constant_(m.bias, 0)
|
132 |
-
elif isinstance(m, nn.ConvTranspose2d):
|
133 |
-
# init.kaiming_normal_(m.weight, mode='fan_out')
|
134 |
-
init.normal_(m.weight, std=0.01)
|
135 |
-
# init.xavier_normal_(m.weight)
|
136 |
-
if m.bias is not None:
|
137 |
-
init.constant_(m.bias, 0)
|
138 |
-
elif isinstance(m, nn.BatchNorm2d): # NN.BatchNorm2d
|
139 |
-
init.constant_(m.weight, 1)
|
140 |
-
init.constant_(m.bias, 0)
|
141 |
-
elif isinstance(m, nn.Linear):
|
142 |
-
init.normal_(m.weight, std=0.01)
|
143 |
-
if m.bias is not None:
|
144 |
-
init.constant_(m.bias, 0)
|
145 |
-
|
146 |
-
|
147 |
-
class ATA(nn.Module):
|
148 |
-
def __init__(self, inchannels, reduction=8):
|
149 |
-
super(ATA, self).__init__()
|
150 |
-
self.inchannels = inchannels
|
151 |
-
self.avg_pool = nn.AdaptiveAvgPool2d(1)
|
152 |
-
self.fc = nn.Sequential(nn.Linear(self.inchannels * 2, self.inchannels // reduction),
|
153 |
-
nn.ReLU(inplace=True),
|
154 |
-
nn.Linear(self.inchannels // reduction, self.inchannels),
|
155 |
-
nn.Sigmoid())
|
156 |
-
self.init_params()
|
157 |
-
|
158 |
-
def forward(self, low_x, high_x):
|
159 |
-
n, c, _, _ = low_x.size()
|
160 |
-
x = torch.cat([low_x, high_x], 1)
|
161 |
-
x = self.avg_pool(x)
|
162 |
-
x = x.view(n, -1)
|
163 |
-
x = self.fc(x).view(n, c, 1, 1)
|
164 |
-
x = low_x * x + high_x
|
165 |
-
|
166 |
-
return x
|
167 |
-
|
168 |
-
def init_params(self):
|
169 |
-
for m in self.modules():
|
170 |
-
if isinstance(m, nn.Conv2d):
|
171 |
-
# init.kaiming_normal_(m.weight, mode='fan_out')
|
172 |
-
# init.normal(m.weight, std=0.01)
|
173 |
-
init.xavier_normal_(m.weight)
|
174 |
-
if m.bias is not None:
|
175 |
-
init.constant_(m.bias, 0)
|
176 |
-
elif isinstance(m, nn.ConvTranspose2d):
|
177 |
-
# init.kaiming_normal_(m.weight, mode='fan_out')
|
178 |
-
# init.normal_(m.weight, std=0.01)
|
179 |
-
init.xavier_normal_(m.weight)
|
180 |
-
if m.bias is not None:
|
181 |
-
init.constant_(m.bias, 0)
|
182 |
-
elif isinstance(m, nn.BatchNorm2d): # NN.BatchNorm2d
|
183 |
-
init.constant_(m.weight, 1)
|
184 |
-
init.constant_(m.bias, 0)
|
185 |
-
elif isinstance(m, nn.Linear):
|
186 |
-
init.normal_(m.weight, std=0.01)
|
187 |
-
if m.bias is not None:
|
188 |
-
init.constant_(m.bias, 0)
|
189 |
-
|
190 |
-
|
191 |
-
class FFM(nn.Module):
|
192 |
-
def __init__(self, inchannels, midchannels, outchannels, upfactor=2):
|
193 |
-
super(FFM, self).__init__()
|
194 |
-
self.inchannels = inchannels
|
195 |
-
self.midchannels = midchannels
|
196 |
-
self.outchannels = outchannels
|
197 |
-
self.upfactor = upfactor
|
198 |
-
|
199 |
-
self.ftb1 = FTB(inchannels=self.inchannels, midchannels=self.midchannels)
|
200 |
-
# self.ata = ATA(inchannels = self.midchannels)
|
201 |
-
self.ftb2 = FTB(inchannels=self.midchannels, midchannels=self.outchannels)
|
202 |
-
|
203 |
-
self.upsample = nn.Upsample(scale_factor=self.upfactor, mode='bilinear', align_corners=True)
|
204 |
-
|
205 |
-
self.init_params()
|
206 |
-
|
207 |
-
def forward(self, low_x, high_x):
|
208 |
-
x = self.ftb1(low_x)
|
209 |
-
x = x + high_x
|
210 |
-
x = self.ftb2(x)
|
211 |
-
x = self.upsample(x)
|
212 |
-
|
213 |
-
return x
|
214 |
-
|
215 |
-
def init_params(self):
|
216 |
-
for m in self.modules():
|
217 |
-
if isinstance(m, nn.Conv2d):
|
218 |
-
# init.kaiming_normal_(m.weight, mode='fan_out')
|
219 |
-
init.normal_(m.weight, std=0.01)
|
220 |
-
# init.xavier_normal_(m.weight)
|
221 |
-
if m.bias is not None:
|
222 |
-
init.constant_(m.bias, 0)
|
223 |
-
elif isinstance(m, nn.ConvTranspose2d):
|
224 |
-
# init.kaiming_normal_(m.weight, mode='fan_out')
|
225 |
-
init.normal_(m.weight, std=0.01)
|
226 |
-
# init.xavier_normal_(m.weight)
|
227 |
-
if m.bias is not None:
|
228 |
-
init.constant_(m.bias, 0)
|
229 |
-
elif isinstance(m, nn.BatchNorm2d): # NN.Batchnorm2d
|
230 |
-
init.constant_(m.weight, 1)
|
231 |
-
init.constant_(m.bias, 0)
|
232 |
-
elif isinstance(m, nn.Linear):
|
233 |
-
init.normal_(m.weight, std=0.01)
|
234 |
-
if m.bias is not None:
|
235 |
-
init.constant_(m.bias, 0)
|
236 |
-
|
237 |
-
|
238 |
-
class AO(nn.Module):
|
239 |
-
# Adaptive output module
|
240 |
-
def __init__(self, inchannels, outchannels, upfactor=2):
|
241 |
-
super(AO, self).__init__()
|
242 |
-
self.inchannels = inchannels
|
243 |
-
self.outchannels = outchannels
|
244 |
-
self.upfactor = upfactor
|
245 |
-
|
246 |
-
self.adapt_conv = nn.Sequential(
|
247 |
-
nn.Conv2d(in_channels=self.inchannels, out_channels=self.inchannels // 2, kernel_size=3, padding=1,
|
248 |
-
stride=1, bias=True), \
|
249 |
-
nn.BatchNorm2d(num_features=self.inchannels // 2), \
|
250 |
-
nn.ReLU(inplace=True), \
|
251 |
-
nn.Conv2d(in_channels=self.inchannels // 2, out_channels=self.outchannels, kernel_size=3, padding=1,
|
252 |
-
stride=1, bias=True), \
|
253 |
-
nn.Upsample(scale_factor=self.upfactor, mode='bilinear', align_corners=True))
|
254 |
-
|
255 |
-
self.init_params()
|
256 |
-
|
257 |
-
def forward(self, x):
|
258 |
-
x = self.adapt_conv(x)
|
259 |
-
return x
|
260 |
-
|
261 |
-
def init_params(self):
|
262 |
-
for m in self.modules():
|
263 |
-
if isinstance(m, nn.Conv2d):
|
264 |
-
# init.kaiming_normal_(m.weight, mode='fan_out')
|
265 |
-
init.normal_(m.weight, std=0.01)
|
266 |
-
# init.xavier_normal_(m.weight)
|
267 |
-
if m.bias is not None:
|
268 |
-
init.constant_(m.bias, 0)
|
269 |
-
elif isinstance(m, nn.ConvTranspose2d):
|
270 |
-
# init.kaiming_normal_(m.weight, mode='fan_out')
|
271 |
-
init.normal_(m.weight, std=0.01)
|
272 |
-
# init.xavier_normal_(m.weight)
|
273 |
-
if m.bias is not None:
|
274 |
-
init.constant_(m.bias, 0)
|
275 |
-
elif isinstance(m, nn.BatchNorm2d): # NN.Batchnorm2d
|
276 |
-
init.constant_(m.weight, 1)
|
277 |
-
init.constant_(m.bias, 0)
|
278 |
-
elif isinstance(m, nn.Linear):
|
279 |
-
init.normal_(m.weight, std=0.01)
|
280 |
-
if m.bias is not None:
|
281 |
-
init.constant_(m.bias, 0)
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
# ==============================================================================================================
|
286 |
-
|
287 |
-
|
288 |
-
class ResidualConv(nn.Module):
|
289 |
-
def __init__(self, inchannels):
|
290 |
-
super(ResidualConv, self).__init__()
|
291 |
-
# NN.BatchNorm2d
|
292 |
-
self.conv = nn.Sequential(
|
293 |
-
# nn.BatchNorm2d(num_features=inchannels),
|
294 |
-
nn.ReLU(inplace=False),
|
295 |
-
# nn.Conv2d(in_channels=inchannels, out_channels=inchannels, kernel_size=3, padding=1, stride=1, groups=inchannels,bias=True),
|
296 |
-
# nn.Conv2d(in_channels=inchannels, out_channels=inchannels, kernel_size=1, padding=0, stride=1, groups=1,bias=True)
|
297 |
-
nn.Conv2d(in_channels=inchannels, out_channels=inchannels / 2, kernel_size=3, padding=1, stride=1,
|
298 |
-
bias=False),
|
299 |
-
nn.BatchNorm2d(num_features=inchannels / 2),
|
300 |
-
nn.ReLU(inplace=False),
|
301 |
-
nn.Conv2d(in_channels=inchannels / 2, out_channels=inchannels, kernel_size=3, padding=1, stride=1,
|
302 |
-
bias=False)
|
303 |
-
)
|
304 |
-
self.init_params()
|
305 |
-
|
306 |
-
def forward(self, x):
|
307 |
-
x = self.conv(x) + x
|
308 |
-
return x
|
309 |
-
|
310 |
-
def init_params(self):
|
311 |
-
for m in self.modules():
|
312 |
-
if isinstance(m, nn.Conv2d):
|
313 |
-
# init.kaiming_normal_(m.weight, mode='fan_out')
|
314 |
-
init.normal_(m.weight, std=0.01)
|
315 |
-
# init.xavier_normal_(m.weight)
|
316 |
-
if m.bias is not None:
|
317 |
-
init.constant_(m.bias, 0)
|
318 |
-
elif isinstance(m, nn.ConvTranspose2d):
|
319 |
-
# init.kaiming_normal_(m.weight, mode='fan_out')
|
320 |
-
init.normal_(m.weight, std=0.01)
|
321 |
-
# init.xavier_normal_(m.weight)
|
322 |
-
if m.bias is not None:
|
323 |
-
init.constant_(m.bias, 0)
|
324 |
-
elif isinstance(m, nn.BatchNorm2d): # NN.BatchNorm2d
|
325 |
-
init.constant_(m.weight, 1)
|
326 |
-
init.constant_(m.bias, 0)
|
327 |
-
elif isinstance(m, nn.Linear):
|
328 |
-
init.normal_(m.weight, std=0.01)
|
329 |
-
if m.bias is not None:
|
330 |
-
init.constant_(m.bias, 0)
|
331 |
-
|
332 |
-
|
333 |
-
class FeatureFusion(nn.Module):
|
334 |
-
def __init__(self, inchannels, outchannels):
|
335 |
-
super(FeatureFusion, self).__init__()
|
336 |
-
self.conv = ResidualConv(inchannels=inchannels)
|
337 |
-
# NN.BatchNorm2d
|
338 |
-
self.up = nn.Sequential(ResidualConv(inchannels=inchannels),
|
339 |
-
nn.ConvTranspose2d(in_channels=inchannels, out_channels=outchannels, kernel_size=3,
|
340 |
-
stride=2, padding=1, output_padding=1),
|
341 |
-
nn.BatchNorm2d(num_features=outchannels),
|
342 |
-
nn.ReLU(inplace=True))
|
343 |
-
|
344 |
-
def forward(self, lowfeat, highfeat):
|
345 |
-
return self.up(highfeat + self.conv(lowfeat))
|
346 |
-
|
347 |
-
def init_params(self):
|
348 |
-
for m in self.modules():
|
349 |
-
if isinstance(m, nn.Conv2d):
|
350 |
-
# init.kaiming_normal_(m.weight, mode='fan_out')
|
351 |
-
init.normal_(m.weight, std=0.01)
|
352 |
-
# init.xavier_normal_(m.weight)
|
353 |
-
if m.bias is not None:
|
354 |
-
init.constant_(m.bias, 0)
|
355 |
-
elif isinstance(m, nn.ConvTranspose2d):
|
356 |
-
# init.kaiming_normal_(m.weight, mode='fan_out')
|
357 |
-
init.normal_(m.weight, std=0.01)
|
358 |
-
# init.xavier_normal_(m.weight)
|
359 |
-
if m.bias is not None:
|
360 |
-
init.constant_(m.bias, 0)
|
361 |
-
elif isinstance(m, nn.BatchNorm2d): # NN.BatchNorm2d
|
362 |
-
init.constant_(m.weight, 1)
|
363 |
-
init.constant_(m.bias, 0)
|
364 |
-
elif isinstance(m, nn.Linear):
|
365 |
-
init.normal_(m.weight, std=0.01)
|
366 |
-
if m.bias is not None:
|
367 |
-
init.constant_(m.bias, 0)
|
368 |
-
|
369 |
-
|
370 |
-
class SenceUnderstand(nn.Module):
|
371 |
-
def __init__(self, channels):
|
372 |
-
super(SenceUnderstand, self).__init__()
|
373 |
-
self.channels = channels
|
374 |
-
self.conv1 = nn.Sequential(nn.Conv2d(in_channels=512, out_channels=512, kernel_size=3, padding=1),
|
375 |
-
nn.ReLU(inplace=True))
|
376 |
-
self.pool = nn.AdaptiveAvgPool2d(8)
|
377 |
-
self.fc = nn.Sequential(nn.Linear(512 * 8 * 8, self.channels),
|
378 |
-
nn.ReLU(inplace=True))
|
379 |
-
self.conv2 = nn.Sequential(
|
380 |
-
nn.Conv2d(in_channels=self.channels, out_channels=self.channels, kernel_size=1, padding=0),
|
381 |
-
nn.ReLU(inplace=True))
|
382 |
-
self.initial_params()
|
383 |
-
|
384 |
-
def forward(self, x):
|
385 |
-
n, c, h, w = x.size()
|
386 |
-
x = self.conv1(x)
|
387 |
-
x = self.pool(x)
|
388 |
-
x = x.view(n, -1)
|
389 |
-
x = self.fc(x)
|
390 |
-
x = x.view(n, self.channels, 1, 1)
|
391 |
-
x = self.conv2(x)
|
392 |
-
x = x.repeat(1, 1, h, w)
|
393 |
-
return x
|
394 |
-
|
395 |
-
def initial_params(self, dev=0.01):
|
396 |
-
for m in self.modules():
|
397 |
-
if isinstance(m, nn.Conv2d):
|
398 |
-
# print torch.sum(m.weight)
|
399 |
-
m.weight.data.normal_(0, dev)
|
400 |
-
if m.bias is not None:
|
401 |
-
m.bias.data.fill_(0)
|
402 |
-
elif isinstance(m, nn.ConvTranspose2d):
|
403 |
-
# print torch.sum(m.weight)
|
404 |
-
m.weight.data.normal_(0, dev)
|
405 |
-
if m.bias is not None:
|
406 |
-
m.bias.data.fill_(0)
|
407 |
-
elif isinstance(m, nn.Linear):
|
408 |
-
m.weight.data.normal_(0, dev)
|
409 |
-
|
410 |
-
|
411 |
-
if __name__ == '__main__':
|
412 |
-
net = DepthNet(depth=50, pretrained=True)
|
413 |
-
print(net)
|
414 |
-
inputs = torch.ones(4,3,128,128)
|
415 |
-
out = net(inputs)
|
416 |
-
print(out.size())
|
417 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
controlnet_aux_local/leres/pix2pix/__init__.py
DELETED
File without changes
|
controlnet_aux_local/leres/pix2pix/models/__init__.py
DELETED
@@ -1,67 +0,0 @@
|
|
1 |
-
"""This package contains modules related to objective functions, optimizations, and network architectures.
|
2 |
-
|
3 |
-
To add a custom model class called 'dummy', you need to add a file called 'dummy_model.py' and define a subclass DummyModel inherited from BaseModel.
|
4 |
-
You need to implement the following five functions:
|
5 |
-
-- <__init__>: initialize the class; first call BaseModel.__init__(self, opt).
|
6 |
-
-- <set_input>: unpack data from dataset and apply preprocessing.
|
7 |
-
-- <forward>: produce intermediate results.
|
8 |
-
-- <optimize_parameters>: calculate loss, gradients, and update network weights.
|
9 |
-
-- <modify_commandline_options>: (optionally) add model-specific options and set default options.
|
10 |
-
|
11 |
-
In the function <__init__>, you need to define four lists:
|
12 |
-
-- self.loss_names (str list): specify the training losses that you want to plot and save.
|
13 |
-
-- self.model_names (str list): define networks used in our training.
|
14 |
-
-- self.visual_names (str list): specify the images that you want to display and save.
|
15 |
-
-- self.optimizers (optimizer list): define and initialize optimizers. You can define one optimizer for each network. If two networks are updated at the same time, you can use itertools.chain to group them. See cycle_gan_model.py for an usage.
|
16 |
-
|
17 |
-
Now you can use the model class by specifying flag '--model dummy'.
|
18 |
-
See our template model class 'template_model.py' for more details.
|
19 |
-
"""
|
20 |
-
|
21 |
-
import importlib
|
22 |
-
from .base_model import BaseModel
|
23 |
-
|
24 |
-
|
25 |
-
def find_model_using_name(model_name):
|
26 |
-
"""Import the module "models/[model_name]_model.py".
|
27 |
-
|
28 |
-
In the file, the class called DatasetNameModel() will
|
29 |
-
be instantiated. It has to be a subclass of BaseModel,
|
30 |
-
and it is case-insensitive.
|
31 |
-
"""
|
32 |
-
model_filename = "controlnet_aux.leres.pix2pix.models." + model_name + "_model"
|
33 |
-
modellib = importlib.import_module(model_filename)
|
34 |
-
model = None
|
35 |
-
target_model_name = model_name.replace('_', '') + 'model'
|
36 |
-
for name, cls in modellib.__dict__.items():
|
37 |
-
if name.lower() == target_model_name.lower() \
|
38 |
-
and issubclass(cls, BaseModel):
|
39 |
-
model = cls
|
40 |
-
|
41 |
-
if model is None:
|
42 |
-
print("In %s.py, there should be a subclass of BaseModel with class name that matches %s in lowercase." % (model_filename, target_model_name))
|
43 |
-
exit(0)
|
44 |
-
|
45 |
-
return model
|
46 |
-
|
47 |
-
|
48 |
-
def get_option_setter(model_name):
|
49 |
-
"""Return the static method <modify_commandline_options> of the model class."""
|
50 |
-
model_class = find_model_using_name(model_name)
|
51 |
-
return model_class.modify_commandline_options
|
52 |
-
|
53 |
-
|
54 |
-
def create_model(opt):
|
55 |
-
"""Create a model given the option.
|
56 |
-
|
57 |
-
This function warps the class CustomDatasetDataLoader.
|
58 |
-
This is the main interface between this package and 'train.py'/'test.py'
|
59 |
-
|
60 |
-
Example:
|
61 |
-
>>> from models import create_model
|
62 |
-
>>> model = create_model(opt)
|
63 |
-
"""
|
64 |
-
model = find_model_using_name(opt.model)
|
65 |
-
instance = model(opt)
|
66 |
-
print("model [%s] was created" % type(instance).__name__)
|
67 |
-
return instance
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
controlnet_aux_local/leres/pix2pix/models/base_model.py
DELETED
@@ -1,244 +0,0 @@
|
|
1 |
-
import gc
|
2 |
-
import os
|
3 |
-
from abc import ABC, abstractmethod
|
4 |
-
from collections import OrderedDict
|
5 |
-
|
6 |
-
import torch
|
7 |
-
|
8 |
-
from ....util import torch_gc
|
9 |
-
from . import networks
|
10 |
-
|
11 |
-
|
12 |
-
class BaseModel(ABC):
|
13 |
-
"""This class is an abstract base class (ABC) for models.
|
14 |
-
To create a subclass, you need to implement the following five functions:
|
15 |
-
-- <__init__>: initialize the class; first call BaseModel.__init__(self, opt).
|
16 |
-
-- <set_input>: unpack data from dataset and apply preprocessing.
|
17 |
-
-- <forward>: produce intermediate results.
|
18 |
-
-- <optimize_parameters>: calculate losses, gradients, and update network weights.
|
19 |
-
-- <modify_commandline_options>: (optionally) add model-specific options and set default options.
|
20 |
-
"""
|
21 |
-
|
22 |
-
def __init__(self, opt):
|
23 |
-
"""Initialize the BaseModel class.
|
24 |
-
|
25 |
-
Parameters:
|
26 |
-
opt (Option class)-- stores all the experiment flags; needs to be a subclass of BaseOptions
|
27 |
-
|
28 |
-
When creating your custom class, you need to implement your own initialization.
|
29 |
-
In this function, you should first call <BaseModel.__init__(self, opt)>
|
30 |
-
Then, you need to define four lists:
|
31 |
-
-- self.loss_names (str list): specify the training losses that you want to plot and save.
|
32 |
-
-- self.model_names (str list): define networks used in our training.
|
33 |
-
-- self.visual_names (str list): specify the images that you want to display and save.
|
34 |
-
-- self.optimizers (optimizer list): define and initialize optimizers. You can define one optimizer for each network. If two networks are updated at the same time, you can use itertools.chain to group them. See cycle_gan_model.py for an example.
|
35 |
-
"""
|
36 |
-
self.opt = opt
|
37 |
-
self.gpu_ids = opt.gpu_ids
|
38 |
-
self.isTrain = opt.isTrain
|
39 |
-
self.device = torch.device('cuda:{}'.format(self.gpu_ids[0])) if self.gpu_ids else torch.device('cpu') # get device name: CPU or GPU
|
40 |
-
self.save_dir = os.path.join(opt.checkpoints_dir, opt.name) # save all the checkpoints to save_dir
|
41 |
-
if opt.preprocess != 'scale_width': # with [scale_width], input images might have different sizes, which hurts the performance of cudnn.benchmark.
|
42 |
-
torch.backends.cudnn.benchmark = True
|
43 |
-
self.loss_names = []
|
44 |
-
self.model_names = []
|
45 |
-
self.visual_names = []
|
46 |
-
self.optimizers = []
|
47 |
-
self.image_paths = []
|
48 |
-
self.metric = 0 # used for learning rate policy 'plateau'
|
49 |
-
|
50 |
-
@staticmethod
|
51 |
-
def modify_commandline_options(parser, is_train):
|
52 |
-
"""Add new model-specific options, and rewrite default values for existing options.
|
53 |
-
|
54 |
-
Parameters:
|
55 |
-
parser -- original option parser
|
56 |
-
is_train (bool) -- whether training phase or test phase. You can use this flag to add training-specific or test-specific options.
|
57 |
-
|
58 |
-
Returns:
|
59 |
-
the modified parser.
|
60 |
-
"""
|
61 |
-
return parser
|
62 |
-
|
63 |
-
@abstractmethod
|
64 |
-
def set_input(self, input):
|
65 |
-
"""Unpack input data from the dataloader and perform necessary pre-processing steps.
|
66 |
-
|
67 |
-
Parameters:
|
68 |
-
input (dict): includes the data itself and its metadata information.
|
69 |
-
"""
|
70 |
-
pass
|
71 |
-
|
72 |
-
@abstractmethod
|
73 |
-
def forward(self):
|
74 |
-
"""Run forward pass; called by both functions <optimize_parameters> and <test>."""
|
75 |
-
pass
|
76 |
-
|
77 |
-
@abstractmethod
|
78 |
-
def optimize_parameters(self):
|
79 |
-
"""Calculate losses, gradients, and update network weights; called in every training iteration"""
|
80 |
-
pass
|
81 |
-
|
82 |
-
def setup(self, opt):
|
83 |
-
"""Load and print networks; create schedulers
|
84 |
-
|
85 |
-
Parameters:
|
86 |
-
opt (Option class) -- stores all the experiment flags; needs to be a subclass of BaseOptions
|
87 |
-
"""
|
88 |
-
if self.isTrain:
|
89 |
-
self.schedulers = [networks.get_scheduler(optimizer, opt) for optimizer in self.optimizers]
|
90 |
-
if not self.isTrain or opt.continue_train:
|
91 |
-
load_suffix = 'iter_%d' % opt.load_iter if opt.load_iter > 0 else opt.epoch
|
92 |
-
self.load_networks(load_suffix)
|
93 |
-
self.print_networks(opt.verbose)
|
94 |
-
|
95 |
-
def eval(self):
|
96 |
-
"""Make models eval mode during test time"""
|
97 |
-
for name in self.model_names:
|
98 |
-
if isinstance(name, str):
|
99 |
-
net = getattr(self, 'net' + name)
|
100 |
-
net.eval()
|
101 |
-
|
102 |
-
def test(self):
|
103 |
-
"""Forward function used in test time.
|
104 |
-
|
105 |
-
This function wraps <forward> function in no_grad() so we don't save intermediate steps for backprop
|
106 |
-
It also calls <compute_visuals> to produce additional visualization results
|
107 |
-
"""
|
108 |
-
with torch.no_grad():
|
109 |
-
self.forward()
|
110 |
-
self.compute_visuals()
|
111 |
-
|
112 |
-
def compute_visuals(self):
|
113 |
-
"""Calculate additional output images for visdom and HTML visualization"""
|
114 |
-
pass
|
115 |
-
|
116 |
-
def get_image_paths(self):
|
117 |
-
""" Return image paths that are used to load current data"""
|
118 |
-
return self.image_paths
|
119 |
-
|
120 |
-
def update_learning_rate(self):
|
121 |
-
"""Update learning rates for all the networks; called at the end of every epoch"""
|
122 |
-
old_lr = self.optimizers[0].param_groups[0]['lr']
|
123 |
-
for scheduler in self.schedulers:
|
124 |
-
if self.opt.lr_policy == 'plateau':
|
125 |
-
scheduler.step(self.metric)
|
126 |
-
else:
|
127 |
-
scheduler.step()
|
128 |
-
|
129 |
-
lr = self.optimizers[0].param_groups[0]['lr']
|
130 |
-
print('learning rate %.7f -> %.7f' % (old_lr, lr))
|
131 |
-
|
132 |
-
def get_current_visuals(self):
|
133 |
-
"""Return visualization images. train.py will display these images with visdom, and save the images to a HTML"""
|
134 |
-
visual_ret = OrderedDict()
|
135 |
-
for name in self.visual_names:
|
136 |
-
if isinstance(name, str):
|
137 |
-
visual_ret[name] = getattr(self, name)
|
138 |
-
return visual_ret
|
139 |
-
|
140 |
-
def get_current_losses(self):
|
141 |
-
"""Return traning losses / errors. train.py will print out these errors on console, and save them to a file"""
|
142 |
-
errors_ret = OrderedDict()
|
143 |
-
for name in self.loss_names:
|
144 |
-
if isinstance(name, str):
|
145 |
-
errors_ret[name] = float(getattr(self, 'loss_' + name)) # float(...) works for both scalar tensor and float number
|
146 |
-
return errors_ret
|
147 |
-
|
148 |
-
def save_networks(self, epoch):
|
149 |
-
"""Save all the networks to the disk.
|
150 |
-
|
151 |
-
Parameters:
|
152 |
-
epoch (int) -- current epoch; used in the file name '%s_net_%s.pth' % (epoch, name)
|
153 |
-
"""
|
154 |
-
for name in self.model_names:
|
155 |
-
if isinstance(name, str):
|
156 |
-
save_filename = '%s_net_%s.pth' % (epoch, name)
|
157 |
-
save_path = os.path.join(self.save_dir, save_filename)
|
158 |
-
net = getattr(self, 'net' + name)
|
159 |
-
|
160 |
-
if len(self.gpu_ids) > 0 and torch.cuda.is_available():
|
161 |
-
torch.save(net.module.cpu().state_dict(), save_path)
|
162 |
-
net.cuda(self.gpu_ids[0])
|
163 |
-
else:
|
164 |
-
torch.save(net.cpu().state_dict(), save_path)
|
165 |
-
|
166 |
-
def unload_network(self, name):
|
167 |
-
"""Unload network and gc.
|
168 |
-
"""
|
169 |
-
if isinstance(name, str):
|
170 |
-
net = getattr(self, 'net' + name)
|
171 |
-
del net
|
172 |
-
gc.collect()
|
173 |
-
torch_gc()
|
174 |
-
return None
|
175 |
-
|
176 |
-
def __patch_instance_norm_state_dict(self, state_dict, module, keys, i=0):
|
177 |
-
"""Fix InstanceNorm checkpoints incompatibility (prior to 0.4)"""
|
178 |
-
key = keys[i]
|
179 |
-
if i + 1 == len(keys): # at the end, pointing to a parameter/buffer
|
180 |
-
if module.__class__.__name__.startswith('InstanceNorm') and \
|
181 |
-
(key == 'running_mean' or key == 'running_var'):
|
182 |
-
if getattr(module, key) is None:
|
183 |
-
state_dict.pop('.'.join(keys))
|
184 |
-
if module.__class__.__name__.startswith('InstanceNorm') and \
|
185 |
-
(key == 'num_batches_tracked'):
|
186 |
-
state_dict.pop('.'.join(keys))
|
187 |
-
else:
|
188 |
-
self.__patch_instance_norm_state_dict(state_dict, getattr(module, key), keys, i + 1)
|
189 |
-
|
190 |
-
def load_networks(self, epoch):
|
191 |
-
"""Load all the networks from the disk.
|
192 |
-
|
193 |
-
Parameters:
|
194 |
-
epoch (int) -- current epoch; used in the file name '%s_net_%s.pth' % (epoch, name)
|
195 |
-
"""
|
196 |
-
for name in self.model_names:
|
197 |
-
if isinstance(name, str):
|
198 |
-
load_filename = '%s_net_%s.pth' % (epoch, name)
|
199 |
-
load_path = os.path.join(self.save_dir, load_filename)
|
200 |
-
net = getattr(self, 'net' + name)
|
201 |
-
if isinstance(net, torch.nn.DataParallel):
|
202 |
-
net = net.module
|
203 |
-
# print('Loading depth boost model from %s' % load_path)
|
204 |
-
# if you are using PyTorch newer than 0.4 (e.g., built from
|
205 |
-
# GitHub source), you can remove str() on self.device
|
206 |
-
state_dict = torch.load(load_path, map_location=str(self.device))
|
207 |
-
if hasattr(state_dict, '_metadata'):
|
208 |
-
del state_dict._metadata
|
209 |
-
|
210 |
-
# patch InstanceNorm checkpoints prior to 0.4
|
211 |
-
for key in list(state_dict.keys()): # need to copy keys here because we mutate in loop
|
212 |
-
self.__patch_instance_norm_state_dict(state_dict, net, key.split('.'))
|
213 |
-
net.load_state_dict(state_dict)
|
214 |
-
|
215 |
-
def print_networks(self, verbose):
|
216 |
-
"""Print the total number of parameters in the network and (if verbose) network architecture
|
217 |
-
|
218 |
-
Parameters:
|
219 |
-
verbose (bool) -- if verbose: print the network architecture
|
220 |
-
"""
|
221 |
-
print('---------- Networks initialized -------------')
|
222 |
-
for name in self.model_names:
|
223 |
-
if isinstance(name, str):
|
224 |
-
net = getattr(self, 'net' + name)
|
225 |
-
num_params = 0
|
226 |
-
for param in net.parameters():
|
227 |
-
num_params += param.numel()
|
228 |
-
if verbose:
|
229 |
-
print(net)
|
230 |
-
print('[Network %s] Total number of parameters : %.3f M' % (name, num_params / 1e6))
|
231 |
-
print('-----------------------------------------------')
|
232 |
-
|
233 |
-
def set_requires_grad(self, nets, requires_grad=False):
|
234 |
-
"""Set requies_grad=Fasle for all the networks to avoid unnecessary computations
|
235 |
-
Parameters:
|
236 |
-
nets (network list) -- a list of networks
|
237 |
-
requires_grad (bool) -- whether the networks require gradients or not
|
238 |
-
"""
|
239 |
-
if not isinstance(nets, list):
|
240 |
-
nets = [nets]
|
241 |
-
for net in nets:
|
242 |
-
if net is not None:
|
243 |
-
for param in net.parameters():
|
244 |
-
param.requires_grad = requires_grad
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
controlnet_aux_local/leres/pix2pix/models/base_model_hg.py
DELETED
@@ -1,58 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
import torch
|
3 |
-
|
4 |
-
class BaseModelHG():
|
5 |
-
def name(self):
|
6 |
-
return 'BaseModel'
|
7 |
-
|
8 |
-
def initialize(self, opt):
|
9 |
-
self.opt = opt
|
10 |
-
self.gpu_ids = opt.gpu_ids
|
11 |
-
self.isTrain = opt.isTrain
|
12 |
-
self.Tensor = torch.cuda.FloatTensor if self.gpu_ids else torch.Tensor
|
13 |
-
self.save_dir = os.path.join(opt.checkpoints_dir, opt.name)
|
14 |
-
|
15 |
-
def set_input(self, input):
|
16 |
-
self.input = input
|
17 |
-
|
18 |
-
def forward(self):
|
19 |
-
pass
|
20 |
-
|
21 |
-
# used in test time, no backprop
|
22 |
-
def test(self):
|
23 |
-
pass
|
24 |
-
|
25 |
-
def get_image_paths(self):
|
26 |
-
pass
|
27 |
-
|
28 |
-
def optimize_parameters(self):
|
29 |
-
pass
|
30 |
-
|
31 |
-
def get_current_visuals(self):
|
32 |
-
return self.input
|
33 |
-
|
34 |
-
def get_current_errors(self):
|
35 |
-
return {}
|
36 |
-
|
37 |
-
def save(self, label):
|
38 |
-
pass
|
39 |
-
|
40 |
-
# helper saving function that can be used by subclasses
|
41 |
-
def save_network(self, network, network_label, epoch_label, gpu_ids):
|
42 |
-
save_filename = '_%s_net_%s.pth' % (epoch_label, network_label)
|
43 |
-
save_path = os.path.join(self.save_dir, save_filename)
|
44 |
-
torch.save(network.cpu().state_dict(), save_path)
|
45 |
-
if len(gpu_ids) and torch.cuda.is_available():
|
46 |
-
network.cuda(device_id=gpu_ids[0])
|
47 |
-
|
48 |
-
# helper loading function that can be used by subclasses
|
49 |
-
def load_network(self, network, network_label, epoch_label):
|
50 |
-
save_filename = '%s_net_%s.pth' % (epoch_label, network_label)
|
51 |
-
save_path = os.path.join(self.save_dir, save_filename)
|
52 |
-
print(save_path)
|
53 |
-
model = torch.load(save_path)
|
54 |
-
return model
|
55 |
-
# network.load_state_dict(torch.load(save_path))
|
56 |
-
|
57 |
-
def update_learning_rate():
|
58 |
-
pass
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
controlnet_aux_local/leres/pix2pix/models/networks.py
DELETED
@@ -1,623 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
import torch.nn as nn
|
3 |
-
from torch.nn import init
|
4 |
-
import functools
|
5 |
-
from torch.optim import lr_scheduler
|
6 |
-
|
7 |
-
|
8 |
-
###############################################################################
|
9 |
-
# Helper Functions
|
10 |
-
###############################################################################
|
11 |
-
|
12 |
-
|
13 |
-
class Identity(nn.Module):
|
14 |
-
def forward(self, x):
|
15 |
-
return x
|
16 |
-
|
17 |
-
|
18 |
-
def get_norm_layer(norm_type='instance'):
|
19 |
-
"""Return a normalization layer
|
20 |
-
|
21 |
-
Parameters:
|
22 |
-
norm_type (str) -- the name of the normalization layer: batch | instance | none
|
23 |
-
|
24 |
-
For BatchNorm, we use learnable affine parameters and track running statistics (mean/stddev).
|
25 |
-
For InstanceNorm, we do not use learnable affine parameters. We do not track running statistics.
|
26 |
-
"""
|
27 |
-
if norm_type == 'batch':
|
28 |
-
norm_layer = functools.partial(nn.BatchNorm2d, affine=True, track_running_stats=True)
|
29 |
-
elif norm_type == 'instance':
|
30 |
-
norm_layer = functools.partial(nn.InstanceNorm2d, affine=False, track_running_stats=False)
|
31 |
-
elif norm_type == 'none':
|
32 |
-
def norm_layer(x): return Identity()
|
33 |
-
else:
|
34 |
-
raise NotImplementedError('normalization layer [%s] is not found' % norm_type)
|
35 |
-
return norm_layer
|
36 |
-
|
37 |
-
|
38 |
-
def get_scheduler(optimizer, opt):
|
39 |
-
"""Return a learning rate scheduler
|
40 |
-
|
41 |
-
Parameters:
|
42 |
-
optimizer -- the optimizer of the network
|
43 |
-
opt (option class) -- stores all the experiment flags; needs to be a subclass of BaseOptions.
|
44 |
-
opt.lr_policy is the name of learning rate policy: linear | step | plateau | cosine
|
45 |
-
|
46 |
-
For 'linear', we keep the same learning rate for the first <opt.n_epochs> epochs
|
47 |
-
and linearly decay the rate to zero over the next <opt.n_epochs_decay> epochs.
|
48 |
-
For other schedulers (step, plateau, and cosine), we use the default PyTorch schedulers.
|
49 |
-
See https://pytorch.org/docs/stable/optim.html for more details.
|
50 |
-
"""
|
51 |
-
if opt.lr_policy == 'linear':
|
52 |
-
def lambda_rule(epoch):
|
53 |
-
lr_l = 1.0 - max(0, epoch + opt.epoch_count - opt.n_epochs) / float(opt.n_epochs_decay + 1)
|
54 |
-
return lr_l
|
55 |
-
scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda_rule)
|
56 |
-
elif opt.lr_policy == 'step':
|
57 |
-
scheduler = lr_scheduler.StepLR(optimizer, step_size=opt.lr_decay_iters, gamma=0.1)
|
58 |
-
elif opt.lr_policy == 'plateau':
|
59 |
-
scheduler = lr_scheduler.ReduceLROnPlateau(optimizer, mode='min', factor=0.2, threshold=0.01, patience=5)
|
60 |
-
elif opt.lr_policy == 'cosine':
|
61 |
-
scheduler = lr_scheduler.CosineAnnealingLR(optimizer, T_max=opt.n_epochs, eta_min=0)
|
62 |
-
else:
|
63 |
-
return NotImplementedError('learning rate policy [%s] is not implemented', opt.lr_policy)
|
64 |
-
return scheduler
|
65 |
-
|
66 |
-
|
67 |
-
def init_weights(net, init_type='normal', init_gain=0.02):
|
68 |
-
"""Initialize network weights.
|
69 |
-
|
70 |
-
Parameters:
|
71 |
-
net (network) -- network to be initialized
|
72 |
-
init_type (str) -- the name of an initialization method: normal | xavier | kaiming | orthogonal
|
73 |
-
init_gain (float) -- scaling factor for normal, xavier and orthogonal.
|
74 |
-
|
75 |
-
We use 'normal' in the original pix2pix and CycleGAN paper. But xavier and kaiming might
|
76 |
-
work better for some applications. Feel free to try yourself.
|
77 |
-
"""
|
78 |
-
def init_func(m): # define the initialization function
|
79 |
-
classname = m.__class__.__name__
|
80 |
-
if hasattr(m, 'weight') and (classname.find('Conv') != -1 or classname.find('Linear') != -1):
|
81 |
-
if init_type == 'normal':
|
82 |
-
init.normal_(m.weight.data, 0.0, init_gain)
|
83 |
-
elif init_type == 'xavier':
|
84 |
-
init.xavier_normal_(m.weight.data, gain=init_gain)
|
85 |
-
elif init_type == 'kaiming':
|
86 |
-
init.kaiming_normal_(m.weight.data, a=0, mode='fan_in')
|
87 |
-
elif init_type == 'orthogonal':
|
88 |
-
init.orthogonal_(m.weight.data, gain=init_gain)
|
89 |
-
else:
|
90 |
-
raise NotImplementedError('initialization method [%s] is not implemented' % init_type)
|
91 |
-
if hasattr(m, 'bias') and m.bias is not None:
|
92 |
-
init.constant_(m.bias.data, 0.0)
|
93 |
-
elif classname.find('BatchNorm2d') != -1: # BatchNorm Layer's weight is not a matrix; only normal distribution applies.
|
94 |
-
init.normal_(m.weight.data, 1.0, init_gain)
|
95 |
-
init.constant_(m.bias.data, 0.0)
|
96 |
-
|
97 |
-
# print('initialize network with %s' % init_type)
|
98 |
-
net.apply(init_func) # apply the initialization function <init_func>
|
99 |
-
|
100 |
-
|
101 |
-
def init_net(net, init_type='normal', init_gain=0.02, gpu_ids=[]):
|
102 |
-
"""Initialize a network: 1. register CPU/GPU device (with multi-GPU support); 2. initialize the network weights
|
103 |
-
Parameters:
|
104 |
-
net (network) -- the network to be initialized
|
105 |
-
init_type (str) -- the name of an initialization method: normal | xavier | kaiming | orthogonal
|
106 |
-
gain (float) -- scaling factor for normal, xavier and orthogonal.
|
107 |
-
gpu_ids (int list) -- which GPUs the network runs on: e.g., 0,1,2
|
108 |
-
|
109 |
-
Return an initialized network.
|
110 |
-
"""
|
111 |
-
if len(gpu_ids) > 0:
|
112 |
-
assert(torch.cuda.is_available())
|
113 |
-
net.to(gpu_ids[0])
|
114 |
-
net = torch.nn.DataParallel(net, gpu_ids) # multi-GPUs
|
115 |
-
init_weights(net, init_type, init_gain=init_gain)
|
116 |
-
return net
|
117 |
-
|
118 |
-
|
119 |
-
def define_G(input_nc, output_nc, ngf, netG, norm='batch', use_dropout=False, init_type='normal', init_gain=0.02, gpu_ids=[]):
|
120 |
-
"""Create a generator
|
121 |
-
|
122 |
-
Parameters:
|
123 |
-
input_nc (int) -- the number of channels in input images
|
124 |
-
output_nc (int) -- the number of channels in output images
|
125 |
-
ngf (int) -- the number of filters in the last conv layer
|
126 |
-
netG (str) -- the architecture's name: resnet_9blocks | resnet_6blocks | unet_256 | unet_128
|
127 |
-
norm (str) -- the name of normalization layers used in the network: batch | instance | none
|
128 |
-
use_dropout (bool) -- if use dropout layers.
|
129 |
-
init_type (str) -- the name of our initialization method.
|
130 |
-
init_gain (float) -- scaling factor for normal, xavier and orthogonal.
|
131 |
-
gpu_ids (int list) -- which GPUs the network runs on: e.g., 0,1,2
|
132 |
-
|
133 |
-
Returns a generator
|
134 |
-
|
135 |
-
Our current implementation provides two types of generators:
|
136 |
-
U-Net: [unet_128] (for 128x128 input images) and [unet_256] (for 256x256 input images)
|
137 |
-
The original U-Net paper: https://arxiv.org/abs/1505.04597
|
138 |
-
|
139 |
-
Resnet-based generator: [resnet_6blocks] (with 6 Resnet blocks) and [resnet_9blocks] (with 9 Resnet blocks)
|
140 |
-
Resnet-based generator consists of several Resnet blocks between a few downsampling/upsampling operations.
|
141 |
-
We adapt Torch code from Justin Johnson's neural style transfer project (https://github.com/jcjohnson/fast-neural-style).
|
142 |
-
|
143 |
-
|
144 |
-
The generator has been initialized by <init_net>. It uses RELU for non-linearity.
|
145 |
-
"""
|
146 |
-
net = None
|
147 |
-
norm_layer = get_norm_layer(norm_type=norm)
|
148 |
-
|
149 |
-
if netG == 'resnet_9blocks':
|
150 |
-
net = ResnetGenerator(input_nc, output_nc, ngf, norm_layer=norm_layer, use_dropout=use_dropout, n_blocks=9)
|
151 |
-
elif netG == 'resnet_6blocks':
|
152 |
-
net = ResnetGenerator(input_nc, output_nc, ngf, norm_layer=norm_layer, use_dropout=use_dropout, n_blocks=6)
|
153 |
-
elif netG == 'resnet_12blocks':
|
154 |
-
net = ResnetGenerator(input_nc, output_nc, ngf, norm_layer=norm_layer, use_dropout=use_dropout, n_blocks=12)
|
155 |
-
elif netG == 'unet_128':
|
156 |
-
net = UnetGenerator(input_nc, output_nc, 7, ngf, norm_layer=norm_layer, use_dropout=use_dropout)
|
157 |
-
elif netG == 'unet_256':
|
158 |
-
net = UnetGenerator(input_nc, output_nc, 8, ngf, norm_layer=norm_layer, use_dropout=use_dropout)
|
159 |
-
elif netG == 'unet_672':
|
160 |
-
net = UnetGenerator(input_nc, output_nc, 5, ngf, norm_layer=norm_layer, use_dropout=use_dropout)
|
161 |
-
elif netG == 'unet_960':
|
162 |
-
net = UnetGenerator(input_nc, output_nc, 6, ngf, norm_layer=norm_layer, use_dropout=use_dropout)
|
163 |
-
elif netG == 'unet_1024':
|
164 |
-
net = UnetGenerator(input_nc, output_nc, 10, ngf, norm_layer=norm_layer, use_dropout=use_dropout)
|
165 |
-
else:
|
166 |
-
raise NotImplementedError('Generator model name [%s] is not recognized' % netG)
|
167 |
-
return init_net(net, init_type, init_gain, gpu_ids)
|
168 |
-
|
169 |
-
|
170 |
-
def define_D(input_nc, ndf, netD, n_layers_D=3, norm='batch', init_type='normal', init_gain=0.02, gpu_ids=[]):
|
171 |
-
"""Create a discriminator
|
172 |
-
|
173 |
-
Parameters:
|
174 |
-
input_nc (int) -- the number of channels in input images
|
175 |
-
ndf (int) -- the number of filters in the first conv layer
|
176 |
-
netD (str) -- the architecture's name: basic | n_layers | pixel
|
177 |
-
n_layers_D (int) -- the number of conv layers in the discriminator; effective when netD=='n_layers'
|
178 |
-
norm (str) -- the type of normalization layers used in the network.
|
179 |
-
init_type (str) -- the name of the initialization method.
|
180 |
-
init_gain (float) -- scaling factor for normal, xavier and orthogonal.
|
181 |
-
gpu_ids (int list) -- which GPUs the network runs on: e.g., 0,1,2
|
182 |
-
|
183 |
-
Returns a discriminator
|
184 |
-
|
185 |
-
Our current implementation provides three types of discriminators:
|
186 |
-
[basic]: 'PatchGAN' classifier described in the original pix2pix paper.
|
187 |
-
It can classify whether 70×70 overlapping patches are real or fake.
|
188 |
-
Such a patch-level discriminator architecture has fewer parameters
|
189 |
-
than a full-image discriminator and can work on arbitrarily-sized images
|
190 |
-
in a fully convolutional fashion.
|
191 |
-
|
192 |
-
[n_layers]: With this mode, you can specify the number of conv layers in the discriminator
|
193 |
-
with the parameter <n_layers_D> (default=3 as used in [basic] (PatchGAN).)
|
194 |
-
|
195 |
-
[pixel]: 1x1 PixelGAN discriminator can classify whether a pixel is real or not.
|
196 |
-
It encourages greater color diversity but has no effect on spatial statistics.
|
197 |
-
|
198 |
-
The discriminator has been initialized by <init_net>. It uses Leakly RELU for non-linearity.
|
199 |
-
"""
|
200 |
-
net = None
|
201 |
-
norm_layer = get_norm_layer(norm_type=norm)
|
202 |
-
|
203 |
-
if netD == 'basic': # default PatchGAN classifier
|
204 |
-
net = NLayerDiscriminator(input_nc, ndf, n_layers=3, norm_layer=norm_layer)
|
205 |
-
elif netD == 'n_layers': # more options
|
206 |
-
net = NLayerDiscriminator(input_nc, ndf, n_layers_D, norm_layer=norm_layer)
|
207 |
-
elif netD == 'pixel': # classify if each pixel is real or fake
|
208 |
-
net = PixelDiscriminator(input_nc, ndf, norm_layer=norm_layer)
|
209 |
-
else:
|
210 |
-
raise NotImplementedError('Discriminator model name [%s] is not recognized' % netD)
|
211 |
-
return init_net(net, init_type, init_gain, gpu_ids)
|
212 |
-
|
213 |
-
|
214 |
-
##############################################################################
|
215 |
-
# Classes
|
216 |
-
##############################################################################
|
217 |
-
class GANLoss(nn.Module):
|
218 |
-
"""Define different GAN objectives.
|
219 |
-
|
220 |
-
The GANLoss class abstracts away the need to create the target label tensor
|
221 |
-
that has the same size as the input.
|
222 |
-
"""
|
223 |
-
|
224 |
-
def __init__(self, gan_mode, target_real_label=1.0, target_fake_label=0.0):
|
225 |
-
""" Initialize the GANLoss class.
|
226 |
-
|
227 |
-
Parameters:
|
228 |
-
gan_mode (str) - - the type of GAN objective. It currently supports vanilla, lsgan, and wgangp.
|
229 |
-
target_real_label (bool) - - label for a real image
|
230 |
-
target_fake_label (bool) - - label of a fake image
|
231 |
-
|
232 |
-
Note: Do not use sigmoid as the last layer of Discriminator.
|
233 |
-
LSGAN needs no sigmoid. vanilla GANs will handle it with BCEWithLogitsLoss.
|
234 |
-
"""
|
235 |
-
super(GANLoss, self).__init__()
|
236 |
-
self.register_buffer('real_label', torch.tensor(target_real_label))
|
237 |
-
self.register_buffer('fake_label', torch.tensor(target_fake_label))
|
238 |
-
self.gan_mode = gan_mode
|
239 |
-
if gan_mode == 'lsgan':
|
240 |
-
self.loss = nn.MSELoss()
|
241 |
-
elif gan_mode == 'vanilla':
|
242 |
-
self.loss = nn.BCEWithLogitsLoss()
|
243 |
-
elif gan_mode in ['wgangp']:
|
244 |
-
self.loss = None
|
245 |
-
else:
|
246 |
-
raise NotImplementedError('gan mode %s not implemented' % gan_mode)
|
247 |
-
|
248 |
-
def get_target_tensor(self, prediction, target_is_real):
|
249 |
-
"""Create label tensors with the same size as the input.
|
250 |
-
|
251 |
-
Parameters:
|
252 |
-
prediction (tensor) - - tpyically the prediction from a discriminator
|
253 |
-
target_is_real (bool) - - if the ground truth label is for real images or fake images
|
254 |
-
|
255 |
-
Returns:
|
256 |
-
A label tensor filled with ground truth label, and with the size of the input
|
257 |
-
"""
|
258 |
-
|
259 |
-
if target_is_real:
|
260 |
-
target_tensor = self.real_label
|
261 |
-
else:
|
262 |
-
target_tensor = self.fake_label
|
263 |
-
return target_tensor.expand_as(prediction)
|
264 |
-
|
265 |
-
def __call__(self, prediction, target_is_real):
|
266 |
-
"""Calculate loss given Discriminator's output and grount truth labels.
|
267 |
-
|
268 |
-
Parameters:
|
269 |
-
prediction (tensor) - - tpyically the prediction output from a discriminator
|
270 |
-
target_is_real (bool) - - if the ground truth label is for real images or fake images
|
271 |
-
|
272 |
-
Returns:
|
273 |
-
the calculated loss.
|
274 |
-
"""
|
275 |
-
if self.gan_mode in ['lsgan', 'vanilla']:
|
276 |
-
target_tensor = self.get_target_tensor(prediction, target_is_real)
|
277 |
-
loss = self.loss(prediction, target_tensor)
|
278 |
-
elif self.gan_mode == 'wgangp':
|
279 |
-
if target_is_real:
|
280 |
-
loss = -prediction.mean()
|
281 |
-
else:
|
282 |
-
loss = prediction.mean()
|
283 |
-
return loss
|
284 |
-
|
285 |
-
|
286 |
-
def cal_gradient_penalty(netD, real_data, fake_data, device, type='mixed', constant=1.0, lambda_gp=10.0):
|
287 |
-
"""Calculate the gradient penalty loss, used in WGAN-GP paper https://arxiv.org/abs/1704.00028
|
288 |
-
|
289 |
-
Arguments:
|
290 |
-
netD (network) -- discriminator network
|
291 |
-
real_data (tensor array) -- real images
|
292 |
-
fake_data (tensor array) -- generated images from the generator
|
293 |
-
device (str) -- GPU / CPU: from torch.device('cuda:{}'.format(self.gpu_ids[0])) if self.gpu_ids else torch.device('cpu')
|
294 |
-
type (str) -- if we mix real and fake data or not [real | fake | mixed].
|
295 |
-
constant (float) -- the constant used in formula ( ||gradient||_2 - constant)^2
|
296 |
-
lambda_gp (float) -- weight for this loss
|
297 |
-
|
298 |
-
Returns the gradient penalty loss
|
299 |
-
"""
|
300 |
-
if lambda_gp > 0.0:
|
301 |
-
if type == 'real': # either use real images, fake images, or a linear interpolation of two.
|
302 |
-
interpolatesv = real_data
|
303 |
-
elif type == 'fake':
|
304 |
-
interpolatesv = fake_data
|
305 |
-
elif type == 'mixed':
|
306 |
-
alpha = torch.rand(real_data.shape[0], 1, device=device)
|
307 |
-
alpha = alpha.expand(real_data.shape[0], real_data.nelement() // real_data.shape[0]).contiguous().view(*real_data.shape)
|
308 |
-
interpolatesv = alpha * real_data + ((1 - alpha) * fake_data)
|
309 |
-
else:
|
310 |
-
raise NotImplementedError('{} not implemented'.format(type))
|
311 |
-
interpolatesv.requires_grad_(True)
|
312 |
-
disc_interpolates = netD(interpolatesv)
|
313 |
-
gradients = torch.autograd.grad(outputs=disc_interpolates, inputs=interpolatesv,
|
314 |
-
grad_outputs=torch.ones(disc_interpolates.size()).to(device),
|
315 |
-
create_graph=True, retain_graph=True, only_inputs=True)
|
316 |
-
gradients = gradients[0].view(real_data.size(0), -1) # flat the data
|
317 |
-
gradient_penalty = (((gradients + 1e-16).norm(2, dim=1) - constant) ** 2).mean() * lambda_gp # added eps
|
318 |
-
return gradient_penalty, gradients
|
319 |
-
else:
|
320 |
-
return 0.0, None
|
321 |
-
|
322 |
-
|
323 |
-
class ResnetGenerator(nn.Module):
|
324 |
-
"""Resnet-based generator that consists of Resnet blocks between a few downsampling/upsampling operations.
|
325 |
-
|
326 |
-
We adapt Torch code and idea from Justin Johnson's neural style transfer project(https://github.com/jcjohnson/fast-neural-style)
|
327 |
-
"""
|
328 |
-
|
329 |
-
def __init__(self, input_nc, output_nc, ngf=64, norm_layer=nn.BatchNorm2d, use_dropout=False, n_blocks=6, padding_type='reflect'):
|
330 |
-
"""Construct a Resnet-based generator
|
331 |
-
|
332 |
-
Parameters:
|
333 |
-
input_nc (int) -- the number of channels in input images
|
334 |
-
output_nc (int) -- the number of channels in output images
|
335 |
-
ngf (int) -- the number of filters in the last conv layer
|
336 |
-
norm_layer -- normalization layer
|
337 |
-
use_dropout (bool) -- if use dropout layers
|
338 |
-
n_blocks (int) -- the number of ResNet blocks
|
339 |
-
padding_type (str) -- the name of padding layer in conv layers: reflect | replicate | zero
|
340 |
-
"""
|
341 |
-
assert(n_blocks >= 0)
|
342 |
-
super(ResnetGenerator, self).__init__()
|
343 |
-
if type(norm_layer) == functools.partial:
|
344 |
-
use_bias = norm_layer.func == nn.InstanceNorm2d
|
345 |
-
else:
|
346 |
-
use_bias = norm_layer == nn.InstanceNorm2d
|
347 |
-
|
348 |
-
model = [nn.ReflectionPad2d(3),
|
349 |
-
nn.Conv2d(input_nc, ngf, kernel_size=7, padding=0, bias=use_bias),
|
350 |
-
norm_layer(ngf),
|
351 |
-
nn.ReLU(True)]
|
352 |
-
|
353 |
-
n_downsampling = 2
|
354 |
-
for i in range(n_downsampling): # add downsampling layers
|
355 |
-
mult = 2 ** i
|
356 |
-
model += [nn.Conv2d(ngf * mult, ngf * mult * 2, kernel_size=3, stride=2, padding=1, bias=use_bias),
|
357 |
-
norm_layer(ngf * mult * 2),
|
358 |
-
nn.ReLU(True)]
|
359 |
-
|
360 |
-
mult = 2 ** n_downsampling
|
361 |
-
for i in range(n_blocks): # add ResNet blocks
|
362 |
-
|
363 |
-
model += [ResnetBlock(ngf * mult, padding_type=padding_type, norm_layer=norm_layer, use_dropout=use_dropout, use_bias=use_bias)]
|
364 |
-
|
365 |
-
for i in range(n_downsampling): # add upsampling layers
|
366 |
-
mult = 2 ** (n_downsampling - i)
|
367 |
-
model += [nn.ConvTranspose2d(ngf * mult, int(ngf * mult / 2),
|
368 |
-
kernel_size=3, stride=2,
|
369 |
-
padding=1, output_padding=1,
|
370 |
-
bias=use_bias),
|
371 |
-
norm_layer(int(ngf * mult / 2)),
|
372 |
-
nn.ReLU(True)]
|
373 |
-
model += [nn.ReflectionPad2d(3)]
|
374 |
-
model += [nn.Conv2d(ngf, output_nc, kernel_size=7, padding=0)]
|
375 |
-
model += [nn.Tanh()]
|
376 |
-
|
377 |
-
self.model = nn.Sequential(*model)
|
378 |
-
|
379 |
-
def forward(self, input):
|
380 |
-
"""Standard forward"""
|
381 |
-
return self.model(input)
|
382 |
-
|
383 |
-
|
384 |
-
class ResnetBlock(nn.Module):
|
385 |
-
"""Define a Resnet block"""
|
386 |
-
|
387 |
-
def __init__(self, dim, padding_type, norm_layer, use_dropout, use_bias):
|
388 |
-
"""Initialize the Resnet block
|
389 |
-
|
390 |
-
A resnet block is a conv block with skip connections
|
391 |
-
We construct a conv block with build_conv_block function,
|
392 |
-
and implement skip connections in <forward> function.
|
393 |
-
Original Resnet paper: https://arxiv.org/pdf/1512.03385.pdf
|
394 |
-
"""
|
395 |
-
super(ResnetBlock, self).__init__()
|
396 |
-
self.conv_block = self.build_conv_block(dim, padding_type, norm_layer, use_dropout, use_bias)
|
397 |
-
|
398 |
-
def build_conv_block(self, dim, padding_type, norm_layer, use_dropout, use_bias):
|
399 |
-
"""Construct a convolutional block.
|
400 |
-
|
401 |
-
Parameters:
|
402 |
-
dim (int) -- the number of channels in the conv layer.
|
403 |
-
padding_type (str) -- the name of padding layer: reflect | replicate | zero
|
404 |
-
norm_layer -- normalization layer
|
405 |
-
use_dropout (bool) -- if use dropout layers.
|
406 |
-
use_bias (bool) -- if the conv layer uses bias or not
|
407 |
-
|
408 |
-
Returns a conv block (with a conv layer, a normalization layer, and a non-linearity layer (ReLU))
|
409 |
-
"""
|
410 |
-
conv_block = []
|
411 |
-
p = 0
|
412 |
-
if padding_type == 'reflect':
|
413 |
-
conv_block += [nn.ReflectionPad2d(1)]
|
414 |
-
elif padding_type == 'replicate':
|
415 |
-
conv_block += [nn.ReplicationPad2d(1)]
|
416 |
-
elif padding_type == 'zero':
|
417 |
-
p = 1
|
418 |
-
else:
|
419 |
-
raise NotImplementedError('padding [%s] is not implemented' % padding_type)
|
420 |
-
|
421 |
-
conv_block += [nn.Conv2d(dim, dim, kernel_size=3, padding=p, bias=use_bias), norm_layer(dim), nn.ReLU(True)]
|
422 |
-
if use_dropout:
|
423 |
-
conv_block += [nn.Dropout(0.5)]
|
424 |
-
|
425 |
-
p = 0
|
426 |
-
if padding_type == 'reflect':
|
427 |
-
conv_block += [nn.ReflectionPad2d(1)]
|
428 |
-
elif padding_type == 'replicate':
|
429 |
-
conv_block += [nn.ReplicationPad2d(1)]
|
430 |
-
elif padding_type == 'zero':
|
431 |
-
p = 1
|
432 |
-
else:
|
433 |
-
raise NotImplementedError('padding [%s] is not implemented' % padding_type)
|
434 |
-
conv_block += [nn.Conv2d(dim, dim, kernel_size=3, padding=p, bias=use_bias), norm_layer(dim)]
|
435 |
-
|
436 |
-
return nn.Sequential(*conv_block)
|
437 |
-
|
438 |
-
def forward(self, x):
|
439 |
-
"""Forward function (with skip connections)"""
|
440 |
-
out = x + self.conv_block(x) # add skip connections
|
441 |
-
return out
|
442 |
-
|
443 |
-
|
444 |
-
class UnetGenerator(nn.Module):
|
445 |
-
"""Create a Unet-based generator"""
|
446 |
-
|
447 |
-
def __init__(self, input_nc, output_nc, num_downs, ngf=64, norm_layer=nn.BatchNorm2d, use_dropout=False):
|
448 |
-
"""Construct a Unet generator
|
449 |
-
Parameters:
|
450 |
-
input_nc (int) -- the number of channels in input images
|
451 |
-
output_nc (int) -- the number of channels in output images
|
452 |
-
num_downs (int) -- the number of downsamplings in UNet. For example, # if |num_downs| == 7,
|
453 |
-
image of size 128x128 will become of size 1x1 # at the bottleneck
|
454 |
-
ngf (int) -- the number of filters in the last conv layer
|
455 |
-
norm_layer -- normalization layer
|
456 |
-
|
457 |
-
We construct the U-Net from the innermost layer to the outermost layer.
|
458 |
-
It is a recursive process.
|
459 |
-
"""
|
460 |
-
super(UnetGenerator, self).__init__()
|
461 |
-
# construct unet structure
|
462 |
-
unet_block = UnetSkipConnectionBlock(ngf * 8, ngf * 8, input_nc=None, submodule=None, norm_layer=norm_layer, innermost=True) # add the innermost layer
|
463 |
-
for i in range(num_downs - 5): # add intermediate layers with ngf * 8 filters
|
464 |
-
unet_block = UnetSkipConnectionBlock(ngf * 8, ngf * 8, input_nc=None, submodule=unet_block, norm_layer=norm_layer, use_dropout=use_dropout)
|
465 |
-
# gradually reduce the number of filters from ngf * 8 to ngf
|
466 |
-
unet_block = UnetSkipConnectionBlock(ngf * 4, ngf * 8, input_nc=None, submodule=unet_block, norm_layer=norm_layer)
|
467 |
-
unet_block = UnetSkipConnectionBlock(ngf * 2, ngf * 4, input_nc=None, submodule=unet_block, norm_layer=norm_layer)
|
468 |
-
unet_block = UnetSkipConnectionBlock(ngf, ngf * 2, input_nc=None, submodule=unet_block, norm_layer=norm_layer)
|
469 |
-
self.model = UnetSkipConnectionBlock(output_nc, ngf, input_nc=input_nc, submodule=unet_block, outermost=True, norm_layer=norm_layer) # add the outermost layer
|
470 |
-
|
471 |
-
def forward(self, input):
|
472 |
-
"""Standard forward"""
|
473 |
-
return self.model(input)
|
474 |
-
|
475 |
-
|
476 |
-
class UnetSkipConnectionBlock(nn.Module):
|
477 |
-
"""Defines the Unet submodule with skip connection.
|
478 |
-
X -------------------identity----------------------
|
479 |
-
|-- downsampling -- |submodule| -- upsampling --|
|
480 |
-
"""
|
481 |
-
|
482 |
-
def __init__(self, outer_nc, inner_nc, input_nc=None,
|
483 |
-
submodule=None, outermost=False, innermost=False, norm_layer=nn.BatchNorm2d, use_dropout=False):
|
484 |
-
"""Construct a Unet submodule with skip connections.
|
485 |
-
|
486 |
-
Parameters:
|
487 |
-
outer_nc (int) -- the number of filters in the outer conv layer
|
488 |
-
inner_nc (int) -- the number of filters in the inner conv layer
|
489 |
-
input_nc (int) -- the number of channels in input images/features
|
490 |
-
submodule (UnetSkipConnectionBlock) -- previously defined submodules
|
491 |
-
outermost (bool) -- if this module is the outermost module
|
492 |
-
innermost (bool) -- if this module is the innermost module
|
493 |
-
norm_layer -- normalization layer
|
494 |
-
use_dropout (bool) -- if use dropout layers.
|
495 |
-
"""
|
496 |
-
super(UnetSkipConnectionBlock, self).__init__()
|
497 |
-
self.outermost = outermost
|
498 |
-
if type(norm_layer) == functools.partial:
|
499 |
-
use_bias = norm_layer.func == nn.InstanceNorm2d
|
500 |
-
else:
|
501 |
-
use_bias = norm_layer == nn.InstanceNorm2d
|
502 |
-
if input_nc is None:
|
503 |
-
input_nc = outer_nc
|
504 |
-
downconv = nn.Conv2d(input_nc, inner_nc, kernel_size=4,
|
505 |
-
stride=2, padding=1, bias=use_bias)
|
506 |
-
downrelu = nn.LeakyReLU(0.2, True)
|
507 |
-
downnorm = norm_layer(inner_nc)
|
508 |
-
uprelu = nn.ReLU(True)
|
509 |
-
upnorm = norm_layer(outer_nc)
|
510 |
-
|
511 |
-
if outermost:
|
512 |
-
upconv = nn.ConvTranspose2d(inner_nc * 2, outer_nc,
|
513 |
-
kernel_size=4, stride=2,
|
514 |
-
padding=1)
|
515 |
-
down = [downconv]
|
516 |
-
up = [uprelu, upconv, nn.Tanh()]
|
517 |
-
model = down + [submodule] + up
|
518 |
-
elif innermost:
|
519 |
-
upconv = nn.ConvTranspose2d(inner_nc, outer_nc,
|
520 |
-
kernel_size=4, stride=2,
|
521 |
-
padding=1, bias=use_bias)
|
522 |
-
down = [downrelu, downconv]
|
523 |
-
up = [uprelu, upconv, upnorm]
|
524 |
-
model = down + up
|
525 |
-
else:
|
526 |
-
upconv = nn.ConvTranspose2d(inner_nc * 2, outer_nc,
|
527 |
-
kernel_size=4, stride=2,
|
528 |
-
padding=1, bias=use_bias)
|
529 |
-
down = [downrelu, downconv, downnorm]
|
530 |
-
up = [uprelu, upconv, upnorm]
|
531 |
-
|
532 |
-
if use_dropout:
|
533 |
-
model = down + [submodule] + up + [nn.Dropout(0.5)]
|
534 |
-
else:
|
535 |
-
model = down + [submodule] + up
|
536 |
-
|
537 |
-
self.model = nn.Sequential(*model)
|
538 |
-
|
539 |
-
def forward(self, x):
|
540 |
-
if self.outermost:
|
541 |
-
return self.model(x)
|
542 |
-
else: # add skip connections
|
543 |
-
return torch.cat([x, self.model(x)], 1)
|
544 |
-
|
545 |
-
|
546 |
-
class NLayerDiscriminator(nn.Module):
|
547 |
-
"""Defines a PatchGAN discriminator"""
|
548 |
-
|
549 |
-
def __init__(self, input_nc, ndf=64, n_layers=3, norm_layer=nn.BatchNorm2d):
|
550 |
-
"""Construct a PatchGAN discriminator
|
551 |
-
|
552 |
-
Parameters:
|
553 |
-
input_nc (int) -- the number of channels in input images
|
554 |
-
ndf (int) -- the number of filters in the last conv layer
|
555 |
-
n_layers (int) -- the number of conv layers in the discriminator
|
556 |
-
norm_layer -- normalization layer
|
557 |
-
"""
|
558 |
-
super(NLayerDiscriminator, self).__init__()
|
559 |
-
if type(norm_layer) == functools.partial: # no need to use bias as BatchNorm2d has affine parameters
|
560 |
-
use_bias = norm_layer.func == nn.InstanceNorm2d
|
561 |
-
else:
|
562 |
-
use_bias = norm_layer == nn.InstanceNorm2d
|
563 |
-
|
564 |
-
kw = 4
|
565 |
-
padw = 1
|
566 |
-
sequence = [nn.Conv2d(input_nc, ndf, kernel_size=kw, stride=2, padding=padw), nn.LeakyReLU(0.2, True)]
|
567 |
-
nf_mult = 1
|
568 |
-
nf_mult_prev = 1
|
569 |
-
for n in range(1, n_layers): # gradually increase the number of filters
|
570 |
-
nf_mult_prev = nf_mult
|
571 |
-
nf_mult = min(2 ** n, 8)
|
572 |
-
sequence += [
|
573 |
-
nn.Conv2d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=2, padding=padw, bias=use_bias),
|
574 |
-
norm_layer(ndf * nf_mult),
|
575 |
-
nn.LeakyReLU(0.2, True)
|
576 |
-
]
|
577 |
-
|
578 |
-
nf_mult_prev = nf_mult
|
579 |
-
nf_mult = min(2 ** n_layers, 8)
|
580 |
-
sequence += [
|
581 |
-
nn.Conv2d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=1, padding=padw, bias=use_bias),
|
582 |
-
norm_layer(ndf * nf_mult),
|
583 |
-
nn.LeakyReLU(0.2, True)
|
584 |
-
]
|
585 |
-
|
586 |
-
sequence += [nn.Conv2d(ndf * nf_mult, 1, kernel_size=kw, stride=1, padding=padw)] # output 1 channel prediction map
|
587 |
-
self.model = nn.Sequential(*sequence)
|
588 |
-
|
589 |
-
def forward(self, input):
|
590 |
-
"""Standard forward."""
|
591 |
-
return self.model(input)
|
592 |
-
|
593 |
-
|
594 |
-
class PixelDiscriminator(nn.Module):
|
595 |
-
"""Defines a 1x1 PatchGAN discriminator (pixelGAN)"""
|
596 |
-
|
597 |
-
def __init__(self, input_nc, ndf=64, norm_layer=nn.BatchNorm2d):
|
598 |
-
"""Construct a 1x1 PatchGAN discriminator
|
599 |
-
|
600 |
-
Parameters:
|
601 |
-
input_nc (int) -- the number of channels in input images
|
602 |
-
ndf (int) -- the number of filters in the last conv layer
|
603 |
-
norm_layer -- normalization layer
|
604 |
-
"""
|
605 |
-
super(PixelDiscriminator, self).__init__()
|
606 |
-
if type(norm_layer) == functools.partial: # no need to use bias as BatchNorm2d has affine parameters
|
607 |
-
use_bias = norm_layer.func == nn.InstanceNorm2d
|
608 |
-
else:
|
609 |
-
use_bias = norm_layer == nn.InstanceNorm2d
|
610 |
-
|
611 |
-
self.net = [
|
612 |
-
nn.Conv2d(input_nc, ndf, kernel_size=1, stride=1, padding=0),
|
613 |
-
nn.LeakyReLU(0.2, True),
|
614 |
-
nn.Conv2d(ndf, ndf * 2, kernel_size=1, stride=1, padding=0, bias=use_bias),
|
615 |
-
norm_layer(ndf * 2),
|
616 |
-
nn.LeakyReLU(0.2, True),
|
617 |
-
nn.Conv2d(ndf * 2, 1, kernel_size=1, stride=1, padding=0, bias=use_bias)]
|
618 |
-
|
619 |
-
self.net = nn.Sequential(*self.net)
|
620 |
-
|
621 |
-
def forward(self, input):
|
622 |
-
"""Standard forward."""
|
623 |
-
return self.net(input)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
controlnet_aux_local/leres/pix2pix/models/pix2pix4depth_model.py
DELETED
@@ -1,155 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
from .base_model import BaseModel
|
3 |
-
from . import networks
|
4 |
-
|
5 |
-
|
6 |
-
class Pix2Pix4DepthModel(BaseModel):
|
7 |
-
""" This class implements the pix2pix model, for learning a mapping from input images to output images given paired data.
|
8 |
-
|
9 |
-
The model training requires '--dataset_mode aligned' dataset.
|
10 |
-
By default, it uses a '--netG unet256' U-Net generator,
|
11 |
-
a '--netD basic' discriminator (PatchGAN),
|
12 |
-
and a '--gan_mode' vanilla GAN loss (the cross-entropy objective used in the orignal GAN paper).
|
13 |
-
|
14 |
-
pix2pix paper: https://arxiv.org/pdf/1611.07004.pdf
|
15 |
-
"""
|
16 |
-
@staticmethod
|
17 |
-
def modify_commandline_options(parser, is_train=True):
|
18 |
-
"""Add new dataset-specific options, and rewrite default values for existing options.
|
19 |
-
|
20 |
-
Parameters:
|
21 |
-
parser -- original option parser
|
22 |
-
is_train (bool) -- whether training phase or test phase. You can use this flag to add training-specific or test-specific options.
|
23 |
-
|
24 |
-
Returns:
|
25 |
-
the modified parser.
|
26 |
-
|
27 |
-
For pix2pix, we do not use image buffer
|
28 |
-
The training objective is: GAN Loss + lambda_L1 * ||G(A)-B||_1
|
29 |
-
By default, we use vanilla GAN loss, UNet with batchnorm, and aligned datasets.
|
30 |
-
"""
|
31 |
-
# changing the default values to match the pix2pix paper (https://phillipi.github.io/pix2pix/)
|
32 |
-
parser.set_defaults(input_nc=2,output_nc=1,norm='none', netG='unet_1024', dataset_mode='depthmerge')
|
33 |
-
if is_train:
|
34 |
-
parser.set_defaults(pool_size=0, gan_mode='vanilla',)
|
35 |
-
parser.add_argument('--lambda_L1', type=float, default=1000, help='weight for L1 loss')
|
36 |
-
return parser
|
37 |
-
|
38 |
-
def __init__(self, opt):
|
39 |
-
"""Initialize the pix2pix class.
|
40 |
-
|
41 |
-
Parameters:
|
42 |
-
opt (Option class)-- stores all the experiment flags; needs to be a subclass of BaseOptions
|
43 |
-
"""
|
44 |
-
BaseModel.__init__(self, opt)
|
45 |
-
# specify the training losses you want to print out. The training/test scripts will call <BaseModel.get_current_losses>
|
46 |
-
|
47 |
-
self.loss_names = ['G_GAN', 'G_L1', 'D_real', 'D_fake']
|
48 |
-
# self.loss_names = ['G_L1']
|
49 |
-
|
50 |
-
# specify the images you want to save/display. The training/test scripts will call <BaseModel.get_current_visuals>
|
51 |
-
if self.isTrain:
|
52 |
-
self.visual_names = ['outer','inner', 'fake_B', 'real_B']
|
53 |
-
else:
|
54 |
-
self.visual_names = ['fake_B']
|
55 |
-
|
56 |
-
# specify the models you want to save to the disk. The training/test scripts will call <BaseModel.save_networks> and <BaseModel.load_networks>
|
57 |
-
if self.isTrain:
|
58 |
-
self.model_names = ['G','D']
|
59 |
-
else: # during test time, only load G
|
60 |
-
self.model_names = ['G']
|
61 |
-
|
62 |
-
# define networks (both generator and discriminator)
|
63 |
-
self.netG = networks.define_G(opt.input_nc, opt.output_nc, 64, 'unet_1024', 'none',
|
64 |
-
False, 'normal', 0.02, self.gpu_ids)
|
65 |
-
|
66 |
-
if self.isTrain: # define a discriminator; conditional GANs need to take both input and output images; Therefore, #channels for D is input_nc + output_nc
|
67 |
-
self.netD = networks.define_D(opt.input_nc + opt.output_nc, opt.ndf, opt.netD,
|
68 |
-
opt.n_layers_D, opt.norm, opt.init_type, opt.init_gain, self.gpu_ids)
|
69 |
-
|
70 |
-
if self.isTrain:
|
71 |
-
# define loss functions
|
72 |
-
self.criterionGAN = networks.GANLoss(opt.gan_mode).to(self.device)
|
73 |
-
self.criterionL1 = torch.nn.L1Loss()
|
74 |
-
# initialize optimizers; schedulers will be automatically created by function <BaseModel.setup>.
|
75 |
-
self.optimizer_G = torch.optim.Adam(self.netG.parameters(), lr=1e-4, betas=(opt.beta1, 0.999))
|
76 |
-
self.optimizer_D = torch.optim.Adam(self.netD.parameters(), lr=2e-06, betas=(opt.beta1, 0.999))
|
77 |
-
self.optimizers.append(self.optimizer_G)
|
78 |
-
self.optimizers.append(self.optimizer_D)
|
79 |
-
|
80 |
-
def set_input_train(self, input):
|
81 |
-
self.outer = input['data_outer'].to(self.device)
|
82 |
-
self.outer = torch.nn.functional.interpolate(self.outer,(1024,1024),mode='bilinear',align_corners=False)
|
83 |
-
|
84 |
-
self.inner = input['data_inner'].to(self.device)
|
85 |
-
self.inner = torch.nn.functional.interpolate(self.inner,(1024,1024),mode='bilinear',align_corners=False)
|
86 |
-
|
87 |
-
self.image_paths = input['image_path']
|
88 |
-
|
89 |
-
if self.isTrain:
|
90 |
-
self.gtfake = input['data_gtfake'].to(self.device)
|
91 |
-
self.gtfake = torch.nn.functional.interpolate(self.gtfake, (1024, 1024), mode='bilinear', align_corners=False)
|
92 |
-
self.real_B = self.gtfake
|
93 |
-
|
94 |
-
self.real_A = torch.cat((self.outer, self.inner), 1)
|
95 |
-
|
96 |
-
def set_input(self, outer, inner):
|
97 |
-
inner = torch.from_numpy(inner).unsqueeze(0).unsqueeze(0)
|
98 |
-
outer = torch.from_numpy(outer).unsqueeze(0).unsqueeze(0)
|
99 |
-
|
100 |
-
inner = (inner - torch.min(inner))/(torch.max(inner)-torch.min(inner))
|
101 |
-
outer = (outer - torch.min(outer))/(torch.max(outer)-torch.min(outer))
|
102 |
-
|
103 |
-
inner = self.normalize(inner)
|
104 |
-
outer = self.normalize(outer)
|
105 |
-
|
106 |
-
self.real_A = torch.cat((outer, inner), 1).to(self.device)
|
107 |
-
|
108 |
-
|
109 |
-
def normalize(self, input):
|
110 |
-
input = input * 2
|
111 |
-
input = input - 1
|
112 |
-
return input
|
113 |
-
|
114 |
-
def forward(self):
|
115 |
-
"""Run forward pass; called by both functions <optimize_parameters> and <test>."""
|
116 |
-
self.fake_B = self.netG(self.real_A) # G(A)
|
117 |
-
|
118 |
-
def backward_D(self):
|
119 |
-
"""Calculate GAN loss for the discriminator"""
|
120 |
-
# Fake; stop backprop to the generator by detaching fake_B
|
121 |
-
fake_AB = torch.cat((self.real_A, self.fake_B), 1) # we use conditional GANs; we need to feed both input and output to the discriminator
|
122 |
-
pred_fake = self.netD(fake_AB.detach())
|
123 |
-
self.loss_D_fake = self.criterionGAN(pred_fake, False)
|
124 |
-
# Real
|
125 |
-
real_AB = torch.cat((self.real_A, self.real_B), 1)
|
126 |
-
pred_real = self.netD(real_AB)
|
127 |
-
self.loss_D_real = self.criterionGAN(pred_real, True)
|
128 |
-
# combine loss and calculate gradients
|
129 |
-
self.loss_D = (self.loss_D_fake + self.loss_D_real) * 0.5
|
130 |
-
self.loss_D.backward()
|
131 |
-
|
132 |
-
def backward_G(self):
|
133 |
-
"""Calculate GAN and L1 loss for the generator"""
|
134 |
-
# First, G(A) should fake the discriminator
|
135 |
-
fake_AB = torch.cat((self.real_A, self.fake_B), 1)
|
136 |
-
pred_fake = self.netD(fake_AB)
|
137 |
-
self.loss_G_GAN = self.criterionGAN(pred_fake, True)
|
138 |
-
# Second, G(A) = B
|
139 |
-
self.loss_G_L1 = self.criterionL1(self.fake_B, self.real_B) * self.opt.lambda_L1
|
140 |
-
# combine loss and calculate gradients
|
141 |
-
self.loss_G = self.loss_G_L1 + self.loss_G_GAN
|
142 |
-
self.loss_G.backward()
|
143 |
-
|
144 |
-
def optimize_parameters(self):
|
145 |
-
self.forward() # compute fake images: G(A)
|
146 |
-
# update D
|
147 |
-
self.set_requires_grad(self.netD, True) # enable backprop for D
|
148 |
-
self.optimizer_D.zero_grad() # set D's gradients to zero
|
149 |
-
self.backward_D() # calculate gradients for D
|
150 |
-
self.optimizer_D.step() # update D's weights
|
151 |
-
# update G
|
152 |
-
self.set_requires_grad(self.netD, False) # D requires no gradients when optimizing G
|
153 |
-
self.optimizer_G.zero_grad() # set G's gradients to zero
|
154 |
-
self.backward_G() # calculate graidents for G
|
155 |
-
self.optimizer_G.step() # udpate G's weights
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
controlnet_aux_local/leres/pix2pix/options/__init__.py
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
"""This package options includes option modules: training options, test options, and basic options (used in both training and test)."""
|
|
|
|
controlnet_aux_local/leres/pix2pix/options/base_options.py
DELETED
@@ -1,156 +0,0 @@
|
|
1 |
-
import argparse
|
2 |
-
import os
|
3 |
-
from ...pix2pix.util import util
|
4 |
-
# import torch
|
5 |
-
from ...pix2pix import models
|
6 |
-
# import pix2pix.data
|
7 |
-
import numpy as np
|
8 |
-
|
9 |
-
class BaseOptions():
|
10 |
-
"""This class defines options used during both training and test time.
|
11 |
-
|
12 |
-
It also implements several helper functions such as parsing, printing, and saving the options.
|
13 |
-
It also gathers additional options defined in <modify_commandline_options> functions in both dataset class and model class.
|
14 |
-
"""
|
15 |
-
|
16 |
-
def __init__(self):
|
17 |
-
"""Reset the class; indicates the class hasn't been initailized"""
|
18 |
-
self.initialized = False
|
19 |
-
|
20 |
-
def initialize(self, parser):
|
21 |
-
"""Define the common options that are used in both training and test."""
|
22 |
-
# basic parameters
|
23 |
-
parser.add_argument('--dataroot', help='path to images (should have subfolders trainA, trainB, valA, valB, etc)')
|
24 |
-
parser.add_argument('--name', type=str, default='void', help='mahdi_unet_new, scaled_unet')
|
25 |
-
parser.add_argument('--gpu_ids', type=str, default='0', help='gpu ids: e.g. 0 0,1,2, 0,2. use -1 for CPU')
|
26 |
-
parser.add_argument('--checkpoints_dir', type=str, default='./pix2pix/checkpoints', help='models are saved here')
|
27 |
-
# model parameters
|
28 |
-
parser.add_argument('--model', type=str, default='cycle_gan', help='chooses which model to use. [cycle_gan | pix2pix | test | colorization]')
|
29 |
-
parser.add_argument('--input_nc', type=int, default=2, help='# of input image channels: 3 for RGB and 1 for grayscale')
|
30 |
-
parser.add_argument('--output_nc', type=int, default=1, help='# of output image channels: 3 for RGB and 1 for grayscale')
|
31 |
-
parser.add_argument('--ngf', type=int, default=64, help='# of gen filters in the last conv layer')
|
32 |
-
parser.add_argument('--ndf', type=int, default=64, help='# of discrim filters in the first conv layer')
|
33 |
-
parser.add_argument('--netD', type=str, default='basic', help='specify discriminator architecture [basic | n_layers | pixel]. The basic model is a 70x70 PatchGAN. n_layers allows you to specify the layers in the discriminator')
|
34 |
-
parser.add_argument('--netG', type=str, default='resnet_9blocks', help='specify generator architecture [resnet_9blocks | resnet_6blocks | unet_256 | unet_128]')
|
35 |
-
parser.add_argument('--n_layers_D', type=int, default=3, help='only used if netD==n_layers')
|
36 |
-
parser.add_argument('--norm', type=str, default='instance', help='instance normalization or batch normalization [instance | batch | none]')
|
37 |
-
parser.add_argument('--init_type', type=str, default='normal', help='network initialization [normal | xavier | kaiming | orthogonal]')
|
38 |
-
parser.add_argument('--init_gain', type=float, default=0.02, help='scaling factor for normal, xavier and orthogonal.')
|
39 |
-
parser.add_argument('--no_dropout', action='store_true', help='no dropout for the generator')
|
40 |
-
# dataset parameters
|
41 |
-
parser.add_argument('--dataset_mode', type=str, default='unaligned', help='chooses how datasets are loaded. [unaligned | aligned | single | colorization]')
|
42 |
-
parser.add_argument('--direction', type=str, default='AtoB', help='AtoB or BtoA')
|
43 |
-
parser.add_argument('--serial_batches', action='store_true', help='if true, takes images in order to make batches, otherwise takes them randomly')
|
44 |
-
parser.add_argument('--num_threads', default=4, type=int, help='# threads for loading data')
|
45 |
-
parser.add_argument('--batch_size', type=int, default=1, help='input batch size')
|
46 |
-
parser.add_argument('--load_size', type=int, default=672, help='scale images to this size')
|
47 |
-
parser.add_argument('--crop_size', type=int, default=672, help='then crop to this size')
|
48 |
-
parser.add_argument('--max_dataset_size', type=int, default=10000, help='Maximum number of samples allowed per dataset. If the dataset directory contains more than max_dataset_size, only a subset is loaded.')
|
49 |
-
parser.add_argument('--preprocess', type=str, default='resize_and_crop', help='scaling and cropping of images at load time [resize_and_crop | crop | scale_width | scale_width_and_crop | none]')
|
50 |
-
parser.add_argument('--no_flip', action='store_true', help='if specified, do not flip the images for data augmentation')
|
51 |
-
parser.add_argument('--display_winsize', type=int, default=256, help='display window size for both visdom and HTML')
|
52 |
-
# additional parameters
|
53 |
-
parser.add_argument('--epoch', type=str, default='latest', help='which epoch to load? set to latest to use latest cached model')
|
54 |
-
parser.add_argument('--load_iter', type=int, default='0', help='which iteration to load? if load_iter > 0, the code will load models by iter_[load_iter]; otherwise, the code will load models by [epoch]')
|
55 |
-
parser.add_argument('--verbose', action='store_true', help='if specified, print more debugging information')
|
56 |
-
parser.add_argument('--suffix', default='', type=str, help='customized suffix: opt.name = opt.name + suffix: e.g., {model}_{netG}_size{load_size}')
|
57 |
-
|
58 |
-
parser.add_argument('--data_dir', type=str, required=False,
|
59 |
-
help='input files directory images can be .png .jpg .tiff')
|
60 |
-
parser.add_argument('--output_dir', type=str, required=False,
|
61 |
-
help='result dir. result depth will be png. vides are JMPG as avi')
|
62 |
-
parser.add_argument('--savecrops', type=int, required=False)
|
63 |
-
parser.add_argument('--savewholeest', type=int, required=False)
|
64 |
-
parser.add_argument('--output_resolution', type=int, required=False,
|
65 |
-
help='0 for no restriction 1 for resize to input size')
|
66 |
-
parser.add_argument('--net_receptive_field_size', type=int, required=False)
|
67 |
-
parser.add_argument('--pix2pixsize', type=int, required=False)
|
68 |
-
parser.add_argument('--generatevideo', type=int, required=False)
|
69 |
-
parser.add_argument('--depthNet', type=int, required=False, help='0: midas 1:strurturedRL')
|
70 |
-
parser.add_argument('--R0', action='store_true')
|
71 |
-
parser.add_argument('--R20', action='store_true')
|
72 |
-
parser.add_argument('--Final', action='store_true')
|
73 |
-
parser.add_argument('--colorize_results', action='store_true')
|
74 |
-
parser.add_argument('--max_res', type=float, default=np.inf)
|
75 |
-
|
76 |
-
self.initialized = True
|
77 |
-
return parser
|
78 |
-
|
79 |
-
def gather_options(self):
|
80 |
-
"""Initialize our parser with basic options(only once).
|
81 |
-
Add additional model-specific and dataset-specific options.
|
82 |
-
These options are defined in the <modify_commandline_options> function
|
83 |
-
in model and dataset classes.
|
84 |
-
"""
|
85 |
-
if not self.initialized: # check if it has been initialized
|
86 |
-
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
|
87 |
-
parser = self.initialize(parser)
|
88 |
-
|
89 |
-
# get the basic options
|
90 |
-
opt, _ = parser.parse_known_args()
|
91 |
-
|
92 |
-
# modify model-related parser options
|
93 |
-
model_name = opt.model
|
94 |
-
model_option_setter = models.get_option_setter(model_name)
|
95 |
-
parser = model_option_setter(parser, self.isTrain)
|
96 |
-
opt, _ = parser.parse_known_args() # parse again with new defaults
|
97 |
-
|
98 |
-
# modify dataset-related parser options
|
99 |
-
# dataset_name = opt.dataset_mode
|
100 |
-
# dataset_option_setter = pix2pix.data.get_option_setter(dataset_name)
|
101 |
-
# parser = dataset_option_setter(parser, self.isTrain)
|
102 |
-
|
103 |
-
# save and return the parser
|
104 |
-
self.parser = parser
|
105 |
-
#return parser.parse_args() #EVIL
|
106 |
-
return opt
|
107 |
-
|
108 |
-
def print_options(self, opt):
|
109 |
-
"""Print and save options
|
110 |
-
|
111 |
-
It will print both current options and default values(if different).
|
112 |
-
It will save options into a text file / [checkpoints_dir] / opt.txt
|
113 |
-
"""
|
114 |
-
message = ''
|
115 |
-
message += '----------------- Options ---------------\n'
|
116 |
-
for k, v in sorted(vars(opt).items()):
|
117 |
-
comment = ''
|
118 |
-
default = self.parser.get_default(k)
|
119 |
-
if v != default:
|
120 |
-
comment = '\t[default: %s]' % str(default)
|
121 |
-
message += '{:>25}: {:<30}{}\n'.format(str(k), str(v), comment)
|
122 |
-
message += '----------------- End -------------------'
|
123 |
-
print(message)
|
124 |
-
|
125 |
-
# save to the disk
|
126 |
-
expr_dir = os.path.join(opt.checkpoints_dir, opt.name)
|
127 |
-
util.mkdirs(expr_dir)
|
128 |
-
file_name = os.path.join(expr_dir, '{}_opt.txt'.format(opt.phase))
|
129 |
-
with open(file_name, 'wt') as opt_file:
|
130 |
-
opt_file.write(message)
|
131 |
-
opt_file.write('\n')
|
132 |
-
|
133 |
-
def parse(self):
|
134 |
-
"""Parse our options, create checkpoints directory suffix, and set up gpu device."""
|
135 |
-
opt = self.gather_options()
|
136 |
-
opt.isTrain = self.isTrain # train or test
|
137 |
-
|
138 |
-
# process opt.suffix
|
139 |
-
if opt.suffix:
|
140 |
-
suffix = ('_' + opt.suffix.format(**vars(opt))) if opt.suffix != '' else ''
|
141 |
-
opt.name = opt.name + suffix
|
142 |
-
|
143 |
-
#self.print_options(opt)
|
144 |
-
|
145 |
-
# set gpu ids
|
146 |
-
str_ids = opt.gpu_ids.split(',')
|
147 |
-
opt.gpu_ids = []
|
148 |
-
for str_id in str_ids:
|
149 |
-
id = int(str_id)
|
150 |
-
if id >= 0:
|
151 |
-
opt.gpu_ids.append(id)
|
152 |
-
#if len(opt.gpu_ids) > 0:
|
153 |
-
# torch.cuda.set_device(opt.gpu_ids[0])
|
154 |
-
|
155 |
-
self.opt = opt
|
156 |
-
return self.opt
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
controlnet_aux_local/leres/pix2pix/options/test_options.py
DELETED
@@ -1,22 +0,0 @@
|
|
1 |
-
from .base_options import BaseOptions
|
2 |
-
|
3 |
-
|
4 |
-
class TestOptions(BaseOptions):
|
5 |
-
"""This class includes test options.
|
6 |
-
|
7 |
-
It also includes shared options defined in BaseOptions.
|
8 |
-
"""
|
9 |
-
|
10 |
-
def initialize(self, parser):
|
11 |
-
parser = BaseOptions.initialize(self, parser) # define shared options
|
12 |
-
parser.add_argument('--aspect_ratio', type=float, default=1.0, help='aspect ratio of result images')
|
13 |
-
parser.add_argument('--phase', type=str, default='test', help='train, val, test, etc')
|
14 |
-
# Dropout and Batchnorm has different behavioir during training and test.
|
15 |
-
parser.add_argument('--eval', action='store_true', help='use eval mode during test time.')
|
16 |
-
parser.add_argument('--num_test', type=int, default=50, help='how many test images to run')
|
17 |
-
# rewrite devalue values
|
18 |
-
parser.set_defaults(model='pix2pix4depth')
|
19 |
-
# To avoid cropping, the load_size should be the same as crop_size
|
20 |
-
parser.set_defaults(load_size=parser.get_default('crop_size'))
|
21 |
-
self.isTrain = False
|
22 |
-
return parser
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
controlnet_aux_local/leres/pix2pix/util/__init__.py
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
"""This package includes a miscellaneous collection of useful helper functions."""
|
|
|
|
controlnet_aux_local/leres/pix2pix/util/util.py
DELETED
@@ -1,105 +0,0 @@
|
|
1 |
-
"""This module contains simple helper functions """
|
2 |
-
from __future__ import print_function
|
3 |
-
import torch
|
4 |
-
import numpy as np
|
5 |
-
from PIL import Image
|
6 |
-
import os
|
7 |
-
|
8 |
-
|
9 |
-
def tensor2im(input_image, imtype=np.uint16):
|
10 |
-
""""Converts a Tensor array into a numpy image array.
|
11 |
-
|
12 |
-
Parameters:
|
13 |
-
input_image (tensor) -- the input image tensor array
|
14 |
-
imtype (type) -- the desired type of the converted numpy array
|
15 |
-
"""
|
16 |
-
if not isinstance(input_image, np.ndarray):
|
17 |
-
if isinstance(input_image, torch.Tensor): # get the data from a variable
|
18 |
-
image_tensor = input_image.data
|
19 |
-
else:
|
20 |
-
return input_image
|
21 |
-
image_numpy = torch.squeeze(image_tensor).cpu().numpy() # convert it into a numpy array
|
22 |
-
image_numpy = (image_numpy + 1) / 2.0 * (2**16-1) #
|
23 |
-
else: # if it is a numpy array, do nothing
|
24 |
-
image_numpy = input_image
|
25 |
-
return image_numpy.astype(imtype)
|
26 |
-
|
27 |
-
|
28 |
-
def diagnose_network(net, name='network'):
|
29 |
-
"""Calculate and print the mean of average absolute(gradients)
|
30 |
-
|
31 |
-
Parameters:
|
32 |
-
net (torch network) -- Torch network
|
33 |
-
name (str) -- the name of the network
|
34 |
-
"""
|
35 |
-
mean = 0.0
|
36 |
-
count = 0
|
37 |
-
for param in net.parameters():
|
38 |
-
if param.grad is not None:
|
39 |
-
mean += torch.mean(torch.abs(param.grad.data))
|
40 |
-
count += 1
|
41 |
-
if count > 0:
|
42 |
-
mean = mean / count
|
43 |
-
print(name)
|
44 |
-
print(mean)
|
45 |
-
|
46 |
-
|
47 |
-
def save_image(image_numpy, image_path, aspect_ratio=1.0):
|
48 |
-
"""Save a numpy image to the disk
|
49 |
-
|
50 |
-
Parameters:
|
51 |
-
image_numpy (numpy array) -- input numpy array
|
52 |
-
image_path (str) -- the path of the image
|
53 |
-
"""
|
54 |
-
image_pil = Image.fromarray(image_numpy)
|
55 |
-
|
56 |
-
image_pil = image_pil.convert('I;16')
|
57 |
-
|
58 |
-
# image_pil = Image.fromarray(image_numpy)
|
59 |
-
# h, w, _ = image_numpy.shape
|
60 |
-
#
|
61 |
-
# if aspect_ratio > 1.0:
|
62 |
-
# image_pil = image_pil.resize((h, int(w * aspect_ratio)), Image.BICUBIC)
|
63 |
-
# if aspect_ratio < 1.0:
|
64 |
-
# image_pil = image_pil.resize((int(h / aspect_ratio), w), Image.BICUBIC)
|
65 |
-
|
66 |
-
image_pil.save(image_path)
|
67 |
-
|
68 |
-
|
69 |
-
def print_numpy(x, val=True, shp=False):
|
70 |
-
"""Print the mean, min, max, median, std, and size of a numpy array
|
71 |
-
|
72 |
-
Parameters:
|
73 |
-
val (bool) -- if print the values of the numpy array
|
74 |
-
shp (bool) -- if print the shape of the numpy array
|
75 |
-
"""
|
76 |
-
x = x.astype(np.float64)
|
77 |
-
if shp:
|
78 |
-
print('shape,', x.shape)
|
79 |
-
if val:
|
80 |
-
x = x.flatten()
|
81 |
-
print('mean = %3.3f, min = %3.3f, max = %3.3f, median = %3.3f, std=%3.3f' % (
|
82 |
-
np.mean(x), np.min(x), np.max(x), np.median(x), np.std(x)))
|
83 |
-
|
84 |
-
|
85 |
-
def mkdirs(paths):
|
86 |
-
"""create empty directories if they don't exist
|
87 |
-
|
88 |
-
Parameters:
|
89 |
-
paths (str list) -- a list of directory paths
|
90 |
-
"""
|
91 |
-
if isinstance(paths, list) and not isinstance(paths, str):
|
92 |
-
for path in paths:
|
93 |
-
mkdir(path)
|
94 |
-
else:
|
95 |
-
mkdir(paths)
|
96 |
-
|
97 |
-
|
98 |
-
def mkdir(path):
|
99 |
-
"""create a single empty directory if it didn't exist
|
100 |
-
|
101 |
-
Parameters:
|
102 |
-
path (str) -- a single directory path
|
103 |
-
"""
|
104 |
-
if not os.path.exists(path):
|
105 |
-
os.makedirs(path)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
controlnet_aux_local/lineart/__init__.py
DELETED
@@ -1,167 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
import warnings
|
3 |
-
|
4 |
-
import cv2
|
5 |
-
import numpy as np
|
6 |
-
import torch
|
7 |
-
import torch.nn as nn
|
8 |
-
from einops import rearrange
|
9 |
-
from huggingface_hub import hf_hub_download
|
10 |
-
from PIL import Image
|
11 |
-
|
12 |
-
from ..util import HWC3, resize_image
|
13 |
-
|
14 |
-
norm_layer = nn.InstanceNorm2d
|
15 |
-
|
16 |
-
|
17 |
-
class ResidualBlock(nn.Module):
|
18 |
-
def __init__(self, in_features):
|
19 |
-
super(ResidualBlock, self).__init__()
|
20 |
-
|
21 |
-
conv_block = [ nn.ReflectionPad2d(1),
|
22 |
-
nn.Conv2d(in_features, in_features, 3),
|
23 |
-
norm_layer(in_features),
|
24 |
-
nn.ReLU(inplace=True),
|
25 |
-
nn.ReflectionPad2d(1),
|
26 |
-
nn.Conv2d(in_features, in_features, 3),
|
27 |
-
norm_layer(in_features)
|
28 |
-
]
|
29 |
-
|
30 |
-
self.conv_block = nn.Sequential(*conv_block)
|
31 |
-
|
32 |
-
def forward(self, x):
|
33 |
-
return x + self.conv_block(x)
|
34 |
-
|
35 |
-
|
36 |
-
class Generator(nn.Module):
|
37 |
-
def __init__(self, input_nc, output_nc, n_residual_blocks=9, sigmoid=True):
|
38 |
-
super(Generator, self).__init__()
|
39 |
-
|
40 |
-
# Initial convolution block
|
41 |
-
model0 = [ nn.ReflectionPad2d(3),
|
42 |
-
nn.Conv2d(input_nc, 64, 7),
|
43 |
-
norm_layer(64),
|
44 |
-
nn.ReLU(inplace=True) ]
|
45 |
-
self.model0 = nn.Sequential(*model0)
|
46 |
-
|
47 |
-
# Downsampling
|
48 |
-
model1 = []
|
49 |
-
in_features = 64
|
50 |
-
out_features = in_features*2
|
51 |
-
for _ in range(2):
|
52 |
-
model1 += [ nn.Conv2d(in_features, out_features, 3, stride=2, padding=1),
|
53 |
-
norm_layer(out_features),
|
54 |
-
nn.ReLU(inplace=True) ]
|
55 |
-
in_features = out_features
|
56 |
-
out_features = in_features*2
|
57 |
-
self.model1 = nn.Sequential(*model1)
|
58 |
-
|
59 |
-
model2 = []
|
60 |
-
# Residual blocks
|
61 |
-
for _ in range(n_residual_blocks):
|
62 |
-
model2 += [ResidualBlock(in_features)]
|
63 |
-
self.model2 = nn.Sequential(*model2)
|
64 |
-
|
65 |
-
# Upsampling
|
66 |
-
model3 = []
|
67 |
-
out_features = in_features//2
|
68 |
-
for _ in range(2):
|
69 |
-
model3 += [ nn.ConvTranspose2d(in_features, out_features, 3, stride=2, padding=1, output_padding=1),
|
70 |
-
norm_layer(out_features),
|
71 |
-
nn.ReLU(inplace=True) ]
|
72 |
-
in_features = out_features
|
73 |
-
out_features = in_features//2
|
74 |
-
self.model3 = nn.Sequential(*model3)
|
75 |
-
|
76 |
-
# Output layer
|
77 |
-
model4 = [ nn.ReflectionPad2d(3),
|
78 |
-
nn.Conv2d(64, output_nc, 7)]
|
79 |
-
if sigmoid:
|
80 |
-
model4 += [nn.Sigmoid()]
|
81 |
-
|
82 |
-
self.model4 = nn.Sequential(*model4)
|
83 |
-
|
84 |
-
def forward(self, x, cond=None):
|
85 |
-
out = self.model0(x)
|
86 |
-
out = self.model1(out)
|
87 |
-
out = self.model2(out)
|
88 |
-
out = self.model3(out)
|
89 |
-
out = self.model4(out)
|
90 |
-
|
91 |
-
return out
|
92 |
-
|
93 |
-
|
94 |
-
class LineartDetector:
|
95 |
-
def __init__(self, model, coarse_model):
|
96 |
-
self.model = model
|
97 |
-
self.model_coarse = coarse_model
|
98 |
-
|
99 |
-
@classmethod
|
100 |
-
def from_pretrained(cls, pretrained_model_or_path, filename=None, coarse_filename=None, cache_dir=None, local_files_only=False):
|
101 |
-
filename = filename or "sk_model.pth"
|
102 |
-
coarse_filename = coarse_filename or "sk_model2.pth"
|
103 |
-
|
104 |
-
if os.path.isdir(pretrained_model_or_path):
|
105 |
-
model_path = os.path.join(pretrained_model_or_path, filename)
|
106 |
-
coarse_model_path = os.path.join(pretrained_model_or_path, coarse_filename)
|
107 |
-
else:
|
108 |
-
model_path = hf_hub_download(pretrained_model_or_path, filename, cache_dir=cache_dir, local_files_only=local_files_only)
|
109 |
-
coarse_model_path = hf_hub_download(pretrained_model_or_path, coarse_filename, cache_dir=cache_dir, local_files_only=local_files_only)
|
110 |
-
|
111 |
-
model = Generator(3, 1, 3)
|
112 |
-
model.load_state_dict(torch.load(model_path, map_location=torch.device('cpu')))
|
113 |
-
model.eval()
|
114 |
-
|
115 |
-
coarse_model = Generator(3, 1, 3)
|
116 |
-
coarse_model.load_state_dict(torch.load(coarse_model_path, map_location=torch.device('cpu')))
|
117 |
-
coarse_model.eval()
|
118 |
-
|
119 |
-
return cls(model, coarse_model)
|
120 |
-
|
121 |
-
def to(self, device):
|
122 |
-
self.model.to(device)
|
123 |
-
self.model_coarse.to(device)
|
124 |
-
return self
|
125 |
-
|
126 |
-
def __call__(self, input_image, coarse=False, detect_resolution=512, image_resolution=512, output_type="pil", **kwargs):
|
127 |
-
if "return_pil" in kwargs:
|
128 |
-
warnings.warn("return_pil is deprecated. Use output_type instead.", DeprecationWarning)
|
129 |
-
output_type = "pil" if kwargs["return_pil"] else "np"
|
130 |
-
if type(output_type) is bool:
|
131 |
-
warnings.warn("Passing `True` or `False` to `output_type` is deprecated and will raise an error in future versions")
|
132 |
-
if output_type:
|
133 |
-
output_type = "pil"
|
134 |
-
|
135 |
-
device = next(iter(self.model.parameters())).device
|
136 |
-
if not isinstance(input_image, np.ndarray):
|
137 |
-
input_image = np.array(input_image, dtype=np.uint8)
|
138 |
-
|
139 |
-
input_image = HWC3(input_image)
|
140 |
-
input_image = resize_image(input_image, detect_resolution)
|
141 |
-
|
142 |
-
model = self.model_coarse if coarse else self.model
|
143 |
-
assert input_image.ndim == 3
|
144 |
-
image = input_image
|
145 |
-
with torch.no_grad():
|
146 |
-
image = torch.from_numpy(image).float().to(device)
|
147 |
-
image = image / 255.0
|
148 |
-
image = rearrange(image, 'h w c -> 1 c h w')
|
149 |
-
line = model(image)[0][0]
|
150 |
-
|
151 |
-
line = line.cpu().numpy()
|
152 |
-
line = (line * 255.0).clip(0, 255).astype(np.uint8)
|
153 |
-
|
154 |
-
detected_map = line
|
155 |
-
|
156 |
-
detected_map = HWC3(detected_map)
|
157 |
-
|
158 |
-
img = resize_image(input_image, image_resolution)
|
159 |
-
H, W, C = img.shape
|
160 |
-
|
161 |
-
detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_LINEAR)
|
162 |
-
detected_map = 255 - detected_map
|
163 |
-
|
164 |
-
if output_type == "pil":
|
165 |
-
detected_map = Image.fromarray(detected_map)
|
166 |
-
|
167 |
-
return detected_map
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
controlnet_aux_local/lineart_anime/__init__.py
DELETED
@@ -1,189 +0,0 @@
|
|
1 |
-
import functools
|
2 |
-
import os
|
3 |
-
import warnings
|
4 |
-
|
5 |
-
import cv2
|
6 |
-
import numpy as np
|
7 |
-
import torch
|
8 |
-
import torch.nn as nn
|
9 |
-
from einops import rearrange
|
10 |
-
from huggingface_hub import hf_hub_download
|
11 |
-
from PIL import Image
|
12 |
-
|
13 |
-
from ..util import HWC3, resize_image
|
14 |
-
|
15 |
-
|
16 |
-
class UnetGenerator(nn.Module):
|
17 |
-
"""Create a Unet-based generator"""
|
18 |
-
|
19 |
-
def __init__(self, input_nc, output_nc, num_downs, ngf=64, norm_layer=nn.BatchNorm2d, use_dropout=False):
|
20 |
-
"""Construct a Unet generator
|
21 |
-
Parameters:
|
22 |
-
input_nc (int) -- the number of channels in input images
|
23 |
-
output_nc (int) -- the number of channels in output images
|
24 |
-
num_downs (int) -- the number of downsamplings in UNet. For example, # if |num_downs| == 7,
|
25 |
-
image of size 128x128 will become of size 1x1 # at the bottleneck
|
26 |
-
ngf (int) -- the number of filters in the last conv layer
|
27 |
-
norm_layer -- normalization layer
|
28 |
-
We construct the U-Net from the innermost layer to the outermost layer.
|
29 |
-
It is a recursive process.
|
30 |
-
"""
|
31 |
-
super(UnetGenerator, self).__init__()
|
32 |
-
# construct unet structure
|
33 |
-
unet_block = UnetSkipConnectionBlock(ngf * 8, ngf * 8, input_nc=None, submodule=None, norm_layer=norm_layer, innermost=True) # add the innermost layer
|
34 |
-
for _ in range(num_downs - 5): # add intermediate layers with ngf * 8 filters
|
35 |
-
unet_block = UnetSkipConnectionBlock(ngf * 8, ngf * 8, input_nc=None, submodule=unet_block, norm_layer=norm_layer, use_dropout=use_dropout)
|
36 |
-
# gradually reduce the number of filters from ngf * 8 to ngf
|
37 |
-
unet_block = UnetSkipConnectionBlock(ngf * 4, ngf * 8, input_nc=None, submodule=unet_block, norm_layer=norm_layer)
|
38 |
-
unet_block = UnetSkipConnectionBlock(ngf * 2, ngf * 4, input_nc=None, submodule=unet_block, norm_layer=norm_layer)
|
39 |
-
unet_block = UnetSkipConnectionBlock(ngf, ngf * 2, input_nc=None, submodule=unet_block, norm_layer=norm_layer)
|
40 |
-
self.model = UnetSkipConnectionBlock(output_nc, ngf, input_nc=input_nc, submodule=unet_block, outermost=True, norm_layer=norm_layer) # add the outermost layer
|
41 |
-
|
42 |
-
def forward(self, input):
|
43 |
-
"""Standard forward"""
|
44 |
-
return self.model(input)
|
45 |
-
|
46 |
-
|
47 |
-
class UnetSkipConnectionBlock(nn.Module):
|
48 |
-
"""Defines the Unet submodule with skip connection.
|
49 |
-
X -------------------identity----------------------
|
50 |
-
|-- downsampling -- |submodule| -- upsampling --|
|
51 |
-
"""
|
52 |
-
|
53 |
-
def __init__(self, outer_nc, inner_nc, input_nc=None,
|
54 |
-
submodule=None, outermost=False, innermost=False, norm_layer=nn.BatchNorm2d, use_dropout=False):
|
55 |
-
"""Construct a Unet submodule with skip connections.
|
56 |
-
Parameters:
|
57 |
-
outer_nc (int) -- the number of filters in the outer conv layer
|
58 |
-
inner_nc (int) -- the number of filters in the inner conv layer
|
59 |
-
input_nc (int) -- the number of channels in input images/features
|
60 |
-
submodule (UnetSkipConnectionBlock) -- previously defined submodules
|
61 |
-
outermost (bool) -- if this module is the outermost module
|
62 |
-
innermost (bool) -- if this module is the innermost module
|
63 |
-
norm_layer -- normalization layer
|
64 |
-
use_dropout (bool) -- if use dropout layers.
|
65 |
-
"""
|
66 |
-
super(UnetSkipConnectionBlock, self).__init__()
|
67 |
-
self.outermost = outermost
|
68 |
-
if type(norm_layer) == functools.partial:
|
69 |
-
use_bias = norm_layer.func == nn.InstanceNorm2d
|
70 |
-
else:
|
71 |
-
use_bias = norm_layer == nn.InstanceNorm2d
|
72 |
-
if input_nc is None:
|
73 |
-
input_nc = outer_nc
|
74 |
-
downconv = nn.Conv2d(input_nc, inner_nc, kernel_size=4,
|
75 |
-
stride=2, padding=1, bias=use_bias)
|
76 |
-
downrelu = nn.LeakyReLU(0.2, True)
|
77 |
-
downnorm = norm_layer(inner_nc)
|
78 |
-
uprelu = nn.ReLU(True)
|
79 |
-
upnorm = norm_layer(outer_nc)
|
80 |
-
|
81 |
-
if outermost:
|
82 |
-
upconv = nn.ConvTranspose2d(inner_nc * 2, outer_nc,
|
83 |
-
kernel_size=4, stride=2,
|
84 |
-
padding=1)
|
85 |
-
down = [downconv]
|
86 |
-
up = [uprelu, upconv, nn.Tanh()]
|
87 |
-
model = down + [submodule] + up
|
88 |
-
elif innermost:
|
89 |
-
upconv = nn.ConvTranspose2d(inner_nc, outer_nc,
|
90 |
-
kernel_size=4, stride=2,
|
91 |
-
padding=1, bias=use_bias)
|
92 |
-
down = [downrelu, downconv]
|
93 |
-
up = [uprelu, upconv, upnorm]
|
94 |
-
model = down + up
|
95 |
-
else:
|
96 |
-
upconv = nn.ConvTranspose2d(inner_nc * 2, outer_nc,
|
97 |
-
kernel_size=4, stride=2,
|
98 |
-
padding=1, bias=use_bias)
|
99 |
-
down = [downrelu, downconv, downnorm]
|
100 |
-
up = [uprelu, upconv, upnorm]
|
101 |
-
|
102 |
-
if use_dropout:
|
103 |
-
model = down + [submodule] + up + [nn.Dropout(0.5)]
|
104 |
-
else:
|
105 |
-
model = down + [submodule] + up
|
106 |
-
|
107 |
-
self.model = nn.Sequential(*model)
|
108 |
-
|
109 |
-
def forward(self, x):
|
110 |
-
if self.outermost:
|
111 |
-
return self.model(x)
|
112 |
-
else: # add skip connections
|
113 |
-
return torch.cat([x, self.model(x)], 1)
|
114 |
-
|
115 |
-
|
116 |
-
class LineartAnimeDetector:
|
117 |
-
def __init__(self, model):
|
118 |
-
self.model = model
|
119 |
-
|
120 |
-
@classmethod
|
121 |
-
def from_pretrained(cls, pretrained_model_or_path, filename=None, cache_dir=None, local_files_only=False):
|
122 |
-
filename = filename or "netG.pth"
|
123 |
-
|
124 |
-
if os.path.isdir(pretrained_model_or_path):
|
125 |
-
model_path = os.path.join(pretrained_model_or_path, filename)
|
126 |
-
else:
|
127 |
-
model_path = hf_hub_download(pretrained_model_or_path, filename, cache_dir=cache_dir, local_files_only=local_files_only)
|
128 |
-
|
129 |
-
norm_layer = functools.partial(nn.InstanceNorm2d, affine=False, track_running_stats=False)
|
130 |
-
net = UnetGenerator(3, 1, 8, 64, norm_layer=norm_layer, use_dropout=False)
|
131 |
-
ckpt = torch.load(model_path)
|
132 |
-
for key in list(ckpt.keys()):
|
133 |
-
if 'module.' in key:
|
134 |
-
ckpt[key.replace('module.', '')] = ckpt[key]
|
135 |
-
del ckpt[key]
|
136 |
-
net.load_state_dict(ckpt)
|
137 |
-
net.eval()
|
138 |
-
|
139 |
-
return cls(net)
|
140 |
-
|
141 |
-
def to(self, device):
|
142 |
-
self.model.to(device)
|
143 |
-
return self
|
144 |
-
|
145 |
-
def __call__(self, input_image, detect_resolution=512, image_resolution=512, output_type="pil", **kwargs):
|
146 |
-
if "return_pil" in kwargs:
|
147 |
-
warnings.warn("return_pil is deprecated. Use output_type instead.", DeprecationWarning)
|
148 |
-
output_type = "pil" if kwargs["return_pil"] else "np"
|
149 |
-
if type(output_type) is bool:
|
150 |
-
warnings.warn("Passing `True` or `False` to `output_type` is deprecated and will raise an error in future versions")
|
151 |
-
if output_type:
|
152 |
-
output_type = "pil"
|
153 |
-
|
154 |
-
device = next(iter(self.model.parameters())).device
|
155 |
-
if not isinstance(input_image, np.ndarray):
|
156 |
-
input_image = np.array(input_image, dtype=np.uint8)
|
157 |
-
|
158 |
-
input_image = HWC3(input_image)
|
159 |
-
input_image = resize_image(input_image, detect_resolution)
|
160 |
-
|
161 |
-
H, W, C = input_image.shape
|
162 |
-
Hn = 256 * int(np.ceil(float(H) / 256.0))
|
163 |
-
Wn = 256 * int(np.ceil(float(W) / 256.0))
|
164 |
-
img = cv2.resize(input_image, (Wn, Hn), interpolation=cv2.INTER_CUBIC)
|
165 |
-
with torch.no_grad():
|
166 |
-
image_feed = torch.from_numpy(img).float().to(device)
|
167 |
-
image_feed = image_feed / 127.5 - 1.0
|
168 |
-
image_feed = rearrange(image_feed, 'h w c -> 1 c h w')
|
169 |
-
|
170 |
-
line = self.model(image_feed)[0, 0] * 127.5 + 127.5
|
171 |
-
line = line.cpu().numpy()
|
172 |
-
|
173 |
-
line = cv2.resize(line, (W, H), interpolation=cv2.INTER_CUBIC)
|
174 |
-
line = line.clip(0, 255).astype(np.uint8)
|
175 |
-
|
176 |
-
detected_map = line
|
177 |
-
|
178 |
-
detected_map = HWC3(detected_map)
|
179 |
-
|
180 |
-
img = resize_image(input_image, image_resolution)
|
181 |
-
H, W, C = img.shape
|
182 |
-
|
183 |
-
detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_LINEAR)
|
184 |
-
detected_map = 255 - detected_map
|
185 |
-
|
186 |
-
if output_type == "pil":
|
187 |
-
detected_map = Image.fromarray(detected_map)
|
188 |
-
|
189 |
-
return detected_map
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
controlnet_aux_local/mediapipe_face/__init__.py
DELETED
@@ -1,53 +0,0 @@
|
|
1 |
-
import warnings
|
2 |
-
from typing import Union
|
3 |
-
|
4 |
-
import cv2
|
5 |
-
import numpy as np
|
6 |
-
from PIL import Image
|
7 |
-
|
8 |
-
from ..util import HWC3, resize_image
|
9 |
-
from .mediapipe_face_common import generate_annotation
|
10 |
-
|
11 |
-
|
12 |
-
class MediapipeFaceDetector:
|
13 |
-
def __call__(self,
|
14 |
-
input_image: Union[np.ndarray, Image.Image] = None,
|
15 |
-
max_faces: int = 1,
|
16 |
-
min_confidence: float = 0.5,
|
17 |
-
output_type: str = "pil",
|
18 |
-
detect_resolution: int = 512,
|
19 |
-
image_resolution: int = 512,
|
20 |
-
**kwargs):
|
21 |
-
|
22 |
-
if "image" in kwargs:
|
23 |
-
warnings.warn("image is deprecated, please use `input_image=...` instead.", DeprecationWarning)
|
24 |
-
input_image = kwargs.pop("image")
|
25 |
-
if input_image is None:
|
26 |
-
raise ValueError("input_image must be defined.")
|
27 |
-
|
28 |
-
if "return_pil" in kwargs:
|
29 |
-
warnings.warn("return_pil is deprecated. Use output_type instead.", DeprecationWarning)
|
30 |
-
output_type = "pil" if kwargs["return_pil"] else "np"
|
31 |
-
if type(output_type) is bool:
|
32 |
-
warnings.warn("Passing `True` or `False` to `output_type` is deprecated and will raise an error in future versions")
|
33 |
-
if output_type:
|
34 |
-
output_type = "pil"
|
35 |
-
|
36 |
-
if not isinstance(input_image, np.ndarray):
|
37 |
-
input_image = np.array(input_image, dtype=np.uint8)
|
38 |
-
|
39 |
-
input_image = HWC3(input_image)
|
40 |
-
input_image = resize_image(input_image, detect_resolution)
|
41 |
-
|
42 |
-
detected_map = generate_annotation(input_image, max_faces, min_confidence)
|
43 |
-
detected_map = HWC3(detected_map)
|
44 |
-
|
45 |
-
img = resize_image(input_image, image_resolution)
|
46 |
-
H, W, C = img.shape
|
47 |
-
|
48 |
-
detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_LINEAR)
|
49 |
-
|
50 |
-
if output_type == "pil":
|
51 |
-
detected_map = Image.fromarray(detected_map)
|
52 |
-
|
53 |
-
return detected_map
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
controlnet_aux_local/mediapipe_face/mediapipe_face_common.py
DELETED
@@ -1,164 +0,0 @@
|
|
1 |
-
from typing import Mapping
|
2 |
-
import warnings
|
3 |
-
|
4 |
-
try:
|
5 |
-
import mediapipe as mp
|
6 |
-
except ImportError:
|
7 |
-
warnings.warn(
|
8 |
-
"The module 'mediapipe' is not installed. The package will have limited functionality. Please install it using the command: pip install 'mediapipe'"
|
9 |
-
)
|
10 |
-
|
11 |
-
mp = None
|
12 |
-
|
13 |
-
import numpy
|
14 |
-
|
15 |
-
if mp:
|
16 |
-
mp_drawing = mp.solutions.drawing_utils
|
17 |
-
mp_drawing_styles = mp.solutions.drawing_styles
|
18 |
-
mp_face_detection = mp.solutions.face_detection # Only for counting faces.
|
19 |
-
mp_face_mesh = mp.solutions.face_mesh
|
20 |
-
mp_face_connections = mp.solutions.face_mesh_connections.FACEMESH_TESSELATION
|
21 |
-
mp_hand_connections = mp.solutions.hands_connections.HAND_CONNECTIONS
|
22 |
-
mp_body_connections = mp.solutions.pose_connections.POSE_CONNECTIONS
|
23 |
-
|
24 |
-
DrawingSpec = mp.solutions.drawing_styles.DrawingSpec
|
25 |
-
PoseLandmark = mp.solutions.drawing_styles.PoseLandmark
|
26 |
-
|
27 |
-
min_face_size_pixels: int = 64
|
28 |
-
f_thick = 2
|
29 |
-
f_rad = 1
|
30 |
-
right_iris_draw = DrawingSpec(color=(10, 200, 250), thickness=f_thick, circle_radius=f_rad)
|
31 |
-
right_eye_draw = DrawingSpec(color=(10, 200, 180), thickness=f_thick, circle_radius=f_rad)
|
32 |
-
right_eyebrow_draw = DrawingSpec(color=(10, 220, 180), thickness=f_thick, circle_radius=f_rad)
|
33 |
-
left_iris_draw = DrawingSpec(color=(250, 200, 10), thickness=f_thick, circle_radius=f_rad)
|
34 |
-
left_eye_draw = DrawingSpec(color=(180, 200, 10), thickness=f_thick, circle_radius=f_rad)
|
35 |
-
left_eyebrow_draw = DrawingSpec(color=(180, 220, 10), thickness=f_thick, circle_radius=f_rad)
|
36 |
-
mouth_draw = DrawingSpec(color=(10, 180, 10), thickness=f_thick, circle_radius=f_rad)
|
37 |
-
head_draw = DrawingSpec(color=(10, 200, 10), thickness=f_thick, circle_radius=f_rad)
|
38 |
-
|
39 |
-
# mp_face_mesh.FACEMESH_CONTOURS has all the items we care about.
|
40 |
-
face_connection_spec = {}
|
41 |
-
for edge in mp_face_mesh.FACEMESH_FACE_OVAL:
|
42 |
-
face_connection_spec[edge] = head_draw
|
43 |
-
for edge in mp_face_mesh.FACEMESH_LEFT_EYE:
|
44 |
-
face_connection_spec[edge] = left_eye_draw
|
45 |
-
for edge in mp_face_mesh.FACEMESH_LEFT_EYEBROW:
|
46 |
-
face_connection_spec[edge] = left_eyebrow_draw
|
47 |
-
# for edge in mp_face_mesh.FACEMESH_LEFT_IRIS:
|
48 |
-
# face_connection_spec[edge] = left_iris_draw
|
49 |
-
for edge in mp_face_mesh.FACEMESH_RIGHT_EYE:
|
50 |
-
face_connection_spec[edge] = right_eye_draw
|
51 |
-
for edge in mp_face_mesh.FACEMESH_RIGHT_EYEBROW:
|
52 |
-
face_connection_spec[edge] = right_eyebrow_draw
|
53 |
-
# for edge in mp_face_mesh.FACEMESH_RIGHT_IRIS:
|
54 |
-
# face_connection_spec[edge] = right_iris_draw
|
55 |
-
for edge in mp_face_mesh.FACEMESH_LIPS:
|
56 |
-
face_connection_spec[edge] = mouth_draw
|
57 |
-
iris_landmark_spec = {468: right_iris_draw, 473: left_iris_draw}
|
58 |
-
|
59 |
-
|
60 |
-
def draw_pupils(image, landmark_list, drawing_spec, halfwidth: int = 2):
|
61 |
-
"""We have a custom function to draw the pupils because the mp.draw_landmarks method requires a parameter for all
|
62 |
-
landmarks. Until our PR is merged into mediapipe, we need this separate method."""
|
63 |
-
if len(image.shape) != 3:
|
64 |
-
raise ValueError("Input image must be H,W,C.")
|
65 |
-
image_rows, image_cols, image_channels = image.shape
|
66 |
-
if image_channels != 3: # BGR channels
|
67 |
-
raise ValueError('Input image must contain three channel bgr data.')
|
68 |
-
for idx, landmark in enumerate(landmark_list.landmark):
|
69 |
-
if (
|
70 |
-
(landmark.HasField('visibility') and landmark.visibility < 0.9) or
|
71 |
-
(landmark.HasField('presence') and landmark.presence < 0.5)
|
72 |
-
):
|
73 |
-
continue
|
74 |
-
if landmark.x >= 1.0 or landmark.x < 0 or landmark.y >= 1.0 or landmark.y < 0:
|
75 |
-
continue
|
76 |
-
image_x = int(image_cols*landmark.x)
|
77 |
-
image_y = int(image_rows*landmark.y)
|
78 |
-
draw_color = None
|
79 |
-
if isinstance(drawing_spec, Mapping):
|
80 |
-
if drawing_spec.get(idx) is None:
|
81 |
-
continue
|
82 |
-
else:
|
83 |
-
draw_color = drawing_spec[idx].color
|
84 |
-
elif isinstance(drawing_spec, DrawingSpec):
|
85 |
-
draw_color = drawing_spec.color
|
86 |
-
image[image_y-halfwidth:image_y+halfwidth, image_x-halfwidth:image_x+halfwidth, :] = draw_color
|
87 |
-
|
88 |
-
|
89 |
-
def reverse_channels(image):
|
90 |
-
"""Given a numpy array in RGB form, convert to BGR. Will also convert from BGR to RGB."""
|
91 |
-
# im[:,:,::-1] is a neat hack to convert BGR to RGB by reversing the indexing order.
|
92 |
-
# im[:,:,::[2,1,0]] would also work but makes a copy of the data.
|
93 |
-
return image[:, :, ::-1]
|
94 |
-
|
95 |
-
|
96 |
-
def generate_annotation(
|
97 |
-
img_rgb,
|
98 |
-
max_faces: int,
|
99 |
-
min_confidence: float
|
100 |
-
):
|
101 |
-
"""
|
102 |
-
Find up to 'max_faces' inside the provided input image.
|
103 |
-
If min_face_size_pixels is provided and nonzero it will be used to filter faces that occupy less than this many
|
104 |
-
pixels in the image.
|
105 |
-
"""
|
106 |
-
with mp_face_mesh.FaceMesh(
|
107 |
-
static_image_mode=True,
|
108 |
-
max_num_faces=max_faces,
|
109 |
-
refine_landmarks=True,
|
110 |
-
min_detection_confidence=min_confidence,
|
111 |
-
) as facemesh:
|
112 |
-
img_height, img_width, img_channels = img_rgb.shape
|
113 |
-
assert(img_channels == 3)
|
114 |
-
|
115 |
-
results = facemesh.process(img_rgb).multi_face_landmarks
|
116 |
-
|
117 |
-
if results is None:
|
118 |
-
print("No faces detected in controlnet image for Mediapipe face annotator.")
|
119 |
-
return numpy.zeros_like(img_rgb)
|
120 |
-
|
121 |
-
# Filter faces that are too small
|
122 |
-
filtered_landmarks = []
|
123 |
-
for lm in results:
|
124 |
-
landmarks = lm.landmark
|
125 |
-
face_rect = [
|
126 |
-
landmarks[0].x,
|
127 |
-
landmarks[0].y,
|
128 |
-
landmarks[0].x,
|
129 |
-
landmarks[0].y,
|
130 |
-
] # Left, up, right, down.
|
131 |
-
for i in range(len(landmarks)):
|
132 |
-
face_rect[0] = min(face_rect[0], landmarks[i].x)
|
133 |
-
face_rect[1] = min(face_rect[1], landmarks[i].y)
|
134 |
-
face_rect[2] = max(face_rect[2], landmarks[i].x)
|
135 |
-
face_rect[3] = max(face_rect[3], landmarks[i].y)
|
136 |
-
if min_face_size_pixels > 0:
|
137 |
-
face_width = abs(face_rect[2] - face_rect[0])
|
138 |
-
face_height = abs(face_rect[3] - face_rect[1])
|
139 |
-
face_width_pixels = face_width * img_width
|
140 |
-
face_height_pixels = face_height * img_height
|
141 |
-
face_size = min(face_width_pixels, face_height_pixels)
|
142 |
-
if face_size >= min_face_size_pixels:
|
143 |
-
filtered_landmarks.append(lm)
|
144 |
-
else:
|
145 |
-
filtered_landmarks.append(lm)
|
146 |
-
|
147 |
-
# Annotations are drawn in BGR for some reason, but we don't need to flip a zero-filled image at the start.
|
148 |
-
empty = numpy.zeros_like(img_rgb)
|
149 |
-
|
150 |
-
# Draw detected faces:
|
151 |
-
for face_landmarks in filtered_landmarks:
|
152 |
-
mp_drawing.draw_landmarks(
|
153 |
-
empty,
|
154 |
-
face_landmarks,
|
155 |
-
connections=face_connection_spec.keys(),
|
156 |
-
landmark_drawing_spec=None,
|
157 |
-
connection_drawing_spec=face_connection_spec
|
158 |
-
)
|
159 |
-
draw_pupils(empty, face_landmarks, iris_landmark_spec, 2)
|
160 |
-
|
161 |
-
# Flip BGR back to RGB.
|
162 |
-
empty = reverse_channels(empty).copy()
|
163 |
-
|
164 |
-
return empty
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
controlnet_aux_local/midas/__init__.py
DELETED
@@ -1,95 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
|
3 |
-
import cv2
|
4 |
-
import numpy as np
|
5 |
-
import torch
|
6 |
-
from einops import rearrange
|
7 |
-
from huggingface_hub import hf_hub_download
|
8 |
-
from PIL import Image
|
9 |
-
|
10 |
-
from ..util import HWC3, resize_image
|
11 |
-
from .api import MiDaSInference
|
12 |
-
|
13 |
-
|
14 |
-
class MidasDetector:
|
15 |
-
def __init__(self, model):
|
16 |
-
self.model = model
|
17 |
-
|
18 |
-
@classmethod
|
19 |
-
def from_pretrained(cls, pretrained_model_or_path, model_type="dpt_hybrid", filename=None, cache_dir=None, local_files_only=False):
|
20 |
-
if pretrained_model_or_path == "lllyasviel/ControlNet":
|
21 |
-
filename = filename or "annotator/ckpts/dpt_hybrid-midas-501f0c75.pt"
|
22 |
-
else:
|
23 |
-
filename = filename or "dpt_hybrid-midas-501f0c75.pt"
|
24 |
-
|
25 |
-
if os.path.isdir(pretrained_model_or_path):
|
26 |
-
model_path = os.path.join(pretrained_model_or_path, filename)
|
27 |
-
else:
|
28 |
-
model_path = hf_hub_download(pretrained_model_or_path, filename, cache_dir=cache_dir, local_files_only=local_files_only)
|
29 |
-
|
30 |
-
model = MiDaSInference(model_type=model_type, model_path=model_path)
|
31 |
-
|
32 |
-
return cls(model)
|
33 |
-
|
34 |
-
|
35 |
-
def to(self, device):
|
36 |
-
self.model.to(device)
|
37 |
-
return self
|
38 |
-
|
39 |
-
def __call__(self, input_image, a=np.pi * 2.0, bg_th=0.1, depth_and_normal=False, detect_resolution=512, image_resolution=512, output_type=None):
|
40 |
-
device = next(iter(self.model.parameters())).device
|
41 |
-
if not isinstance(input_image, np.ndarray):
|
42 |
-
input_image = np.array(input_image, dtype=np.uint8)
|
43 |
-
output_type = output_type or "pil"
|
44 |
-
else:
|
45 |
-
output_type = output_type or "np"
|
46 |
-
|
47 |
-
input_image = HWC3(input_image)
|
48 |
-
input_image = resize_image(input_image, detect_resolution)
|
49 |
-
|
50 |
-
assert input_image.ndim == 3
|
51 |
-
image_depth = input_image
|
52 |
-
with torch.no_grad():
|
53 |
-
image_depth = torch.from_numpy(image_depth).float()
|
54 |
-
image_depth = image_depth.to(device)
|
55 |
-
image_depth = image_depth / 127.5 - 1.0
|
56 |
-
image_depth = rearrange(image_depth, 'h w c -> 1 c h w')
|
57 |
-
depth = self.model(image_depth)[0]
|
58 |
-
|
59 |
-
depth_pt = depth.clone()
|
60 |
-
depth_pt -= torch.min(depth_pt)
|
61 |
-
depth_pt /= torch.max(depth_pt)
|
62 |
-
depth_pt = depth_pt.cpu().numpy()
|
63 |
-
depth_image = (depth_pt * 255.0).clip(0, 255).astype(np.uint8)
|
64 |
-
|
65 |
-
if depth_and_normal:
|
66 |
-
depth_np = depth.cpu().numpy()
|
67 |
-
x = cv2.Sobel(depth_np, cv2.CV_32F, 1, 0, ksize=3)
|
68 |
-
y = cv2.Sobel(depth_np, cv2.CV_32F, 0, 1, ksize=3)
|
69 |
-
z = np.ones_like(x) * a
|
70 |
-
x[depth_pt < bg_th] = 0
|
71 |
-
y[depth_pt < bg_th] = 0
|
72 |
-
normal = np.stack([x, y, z], axis=2)
|
73 |
-
normal /= np.sum(normal ** 2.0, axis=2, keepdims=True) ** 0.5
|
74 |
-
normal_image = (normal * 127.5 + 127.5).clip(0, 255).astype(np.uint8)[:, :, ::-1]
|
75 |
-
|
76 |
-
depth_image = HWC3(depth_image)
|
77 |
-
if depth_and_normal:
|
78 |
-
normal_image = HWC3(normal_image)
|
79 |
-
|
80 |
-
img = resize_image(input_image, image_resolution)
|
81 |
-
H, W, C = img.shape
|
82 |
-
|
83 |
-
depth_image = cv2.resize(depth_image, (W, H), interpolation=cv2.INTER_LINEAR)
|
84 |
-
if depth_and_normal:
|
85 |
-
normal_image = cv2.resize(normal_image, (W, H), interpolation=cv2.INTER_LINEAR)
|
86 |
-
|
87 |
-
if output_type == "pil":
|
88 |
-
depth_image = Image.fromarray(depth_image)
|
89 |
-
if depth_and_normal:
|
90 |
-
normal_image = Image.fromarray(normal_image)
|
91 |
-
|
92 |
-
if depth_and_normal:
|
93 |
-
return depth_image, normal_image
|
94 |
-
else:
|
95 |
-
return depth_image
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
controlnet_aux_local/midas/api.py
DELETED
@@ -1,169 +0,0 @@
|
|
1 |
-
# based on https://github.com/isl-org/MiDaS
|
2 |
-
|
3 |
-
import cv2
|
4 |
-
import os
|
5 |
-
import torch
|
6 |
-
import torch.nn as nn
|
7 |
-
from torchvision.transforms import Compose
|
8 |
-
|
9 |
-
from .midas.dpt_depth import DPTDepthModel
|
10 |
-
from .midas.midas_net import MidasNet
|
11 |
-
from .midas.midas_net_custom import MidasNet_small
|
12 |
-
from .midas.transforms import Resize, NormalizeImage, PrepareForNet
|
13 |
-
from ..util import annotator_ckpts_path
|
14 |
-
|
15 |
-
|
16 |
-
ISL_PATHS = {
|
17 |
-
"dpt_large": os.path.join(annotator_ckpts_path, "dpt_large-midas-2f21e586.pt"),
|
18 |
-
"dpt_hybrid": os.path.join(annotator_ckpts_path, "dpt_hybrid-midas-501f0c75.pt"),
|
19 |
-
"midas_v21": "",
|
20 |
-
"midas_v21_small": "",
|
21 |
-
}
|
22 |
-
|
23 |
-
remote_model_path = "https://huggingface.co/lllyasviel/ControlNet/resolve/main/annotator/ckpts/dpt_hybrid-midas-501f0c75.pt"
|
24 |
-
|
25 |
-
|
26 |
-
def disabled_train(self, mode=True):
|
27 |
-
"""Overwrite model.train with this function to make sure train/eval mode
|
28 |
-
does not change anymore."""
|
29 |
-
return self
|
30 |
-
|
31 |
-
|
32 |
-
def load_midas_transform(model_type):
|
33 |
-
# https://github.com/isl-org/MiDaS/blob/master/run.py
|
34 |
-
# load transform only
|
35 |
-
if model_type == "dpt_large": # DPT-Large
|
36 |
-
net_w, net_h = 384, 384
|
37 |
-
resize_mode = "minimal"
|
38 |
-
normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
|
39 |
-
|
40 |
-
elif model_type == "dpt_hybrid": # DPT-Hybrid
|
41 |
-
net_w, net_h = 384, 384
|
42 |
-
resize_mode = "minimal"
|
43 |
-
normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
|
44 |
-
|
45 |
-
elif model_type == "midas_v21":
|
46 |
-
net_w, net_h = 384, 384
|
47 |
-
resize_mode = "upper_bound"
|
48 |
-
normalization = NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
49 |
-
|
50 |
-
elif model_type == "midas_v21_small":
|
51 |
-
net_w, net_h = 256, 256
|
52 |
-
resize_mode = "upper_bound"
|
53 |
-
normalization = NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
54 |
-
|
55 |
-
else:
|
56 |
-
assert False, f"model_type '{model_type}' not implemented, use: --model_type large"
|
57 |
-
|
58 |
-
transform = Compose(
|
59 |
-
[
|
60 |
-
Resize(
|
61 |
-
net_w,
|
62 |
-
net_h,
|
63 |
-
resize_target=None,
|
64 |
-
keep_aspect_ratio=True,
|
65 |
-
ensure_multiple_of=32,
|
66 |
-
resize_method=resize_mode,
|
67 |
-
image_interpolation_method=cv2.INTER_CUBIC,
|
68 |
-
),
|
69 |
-
normalization,
|
70 |
-
PrepareForNet(),
|
71 |
-
]
|
72 |
-
)
|
73 |
-
|
74 |
-
return transform
|
75 |
-
|
76 |
-
|
77 |
-
def load_model(model_type, model_path=None):
|
78 |
-
# https://github.com/isl-org/MiDaS/blob/master/run.py
|
79 |
-
# load network
|
80 |
-
model_path = model_path or ISL_PATHS[model_type]
|
81 |
-
if model_type == "dpt_large": # DPT-Large
|
82 |
-
model = DPTDepthModel(
|
83 |
-
path=model_path,
|
84 |
-
backbone="vitl16_384",
|
85 |
-
non_negative=True,
|
86 |
-
)
|
87 |
-
net_w, net_h = 384, 384
|
88 |
-
resize_mode = "minimal"
|
89 |
-
normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
|
90 |
-
|
91 |
-
elif model_type == "dpt_hybrid": # DPT-Hybrid
|
92 |
-
if not os.path.exists(model_path):
|
93 |
-
from basicsr.utils.download_util import load_file_from_url
|
94 |
-
load_file_from_url(remote_model_path, model_dir=annotator_ckpts_path)
|
95 |
-
|
96 |
-
model = DPTDepthModel(
|
97 |
-
path=model_path,
|
98 |
-
backbone="vitb_rn50_384",
|
99 |
-
non_negative=True,
|
100 |
-
)
|
101 |
-
net_w, net_h = 384, 384
|
102 |
-
resize_mode = "minimal"
|
103 |
-
normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
|
104 |
-
|
105 |
-
elif model_type == "midas_v21":
|
106 |
-
model = MidasNet(model_path, non_negative=True)
|
107 |
-
net_w, net_h = 384, 384
|
108 |
-
resize_mode = "upper_bound"
|
109 |
-
normalization = NormalizeImage(
|
110 |
-
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
|
111 |
-
)
|
112 |
-
|
113 |
-
elif model_type == "midas_v21_small":
|
114 |
-
model = MidasNet_small(model_path, features=64, backbone="efficientnet_lite3", exportable=True,
|
115 |
-
non_negative=True, blocks={'expand': True})
|
116 |
-
net_w, net_h = 256, 256
|
117 |
-
resize_mode = "upper_bound"
|
118 |
-
normalization = NormalizeImage(
|
119 |
-
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
|
120 |
-
)
|
121 |
-
|
122 |
-
else:
|
123 |
-
print(f"model_type '{model_type}' not implemented, use: --model_type large")
|
124 |
-
assert False
|
125 |
-
|
126 |
-
transform = Compose(
|
127 |
-
[
|
128 |
-
Resize(
|
129 |
-
net_w,
|
130 |
-
net_h,
|
131 |
-
resize_target=None,
|
132 |
-
keep_aspect_ratio=True,
|
133 |
-
ensure_multiple_of=32,
|
134 |
-
resize_method=resize_mode,
|
135 |
-
image_interpolation_method=cv2.INTER_CUBIC,
|
136 |
-
),
|
137 |
-
normalization,
|
138 |
-
PrepareForNet(),
|
139 |
-
]
|
140 |
-
)
|
141 |
-
|
142 |
-
return model.eval(), transform
|
143 |
-
|
144 |
-
|
145 |
-
class MiDaSInference(nn.Module):
|
146 |
-
MODEL_TYPES_TORCH_HUB = [
|
147 |
-
"DPT_Large",
|
148 |
-
"DPT_Hybrid",
|
149 |
-
"MiDaS_small"
|
150 |
-
]
|
151 |
-
MODEL_TYPES_ISL = [
|
152 |
-
"dpt_large",
|
153 |
-
"dpt_hybrid",
|
154 |
-
"midas_v21",
|
155 |
-
"midas_v21_small",
|
156 |
-
]
|
157 |
-
|
158 |
-
def __init__(self, model_type, model_path):
|
159 |
-
super().__init__()
|
160 |
-
assert (model_type in self.MODEL_TYPES_ISL)
|
161 |
-
model, _ = load_model(model_type, model_path)
|
162 |
-
self.model = model
|
163 |
-
self.model.train = disabled_train
|
164 |
-
|
165 |
-
def forward(self, x):
|
166 |
-
with torch.no_grad():
|
167 |
-
prediction = self.model(x)
|
168 |
-
return prediction
|
169 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
controlnet_aux_local/midas/midas/__init__.py
DELETED
File without changes
|
controlnet_aux_local/midas/midas/base_model.py
DELETED
@@ -1,16 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
|
3 |
-
|
4 |
-
class BaseModel(torch.nn.Module):
|
5 |
-
def load(self, path):
|
6 |
-
"""Load model from file.
|
7 |
-
|
8 |
-
Args:
|
9 |
-
path (str): file path
|
10 |
-
"""
|
11 |
-
parameters = torch.load(path, map_location=torch.device('cpu'))
|
12 |
-
|
13 |
-
if "optimizer" in parameters:
|
14 |
-
parameters = parameters["model"]
|
15 |
-
|
16 |
-
self.load_state_dict(parameters)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
controlnet_aux_local/midas/midas/blocks.py
DELETED
@@ -1,342 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
import torch.nn as nn
|
3 |
-
|
4 |
-
from .vit import (
|
5 |
-
_make_pretrained_vitb_rn50_384,
|
6 |
-
_make_pretrained_vitl16_384,
|
7 |
-
_make_pretrained_vitb16_384,
|
8 |
-
forward_vit,
|
9 |
-
)
|
10 |
-
|
11 |
-
def _make_encoder(backbone, features, use_pretrained, groups=1, expand=False, exportable=True, hooks=None, use_vit_only=False, use_readout="ignore",):
|
12 |
-
if backbone == "vitl16_384":
|
13 |
-
pretrained = _make_pretrained_vitl16_384(
|
14 |
-
use_pretrained, hooks=hooks, use_readout=use_readout
|
15 |
-
)
|
16 |
-
scratch = _make_scratch(
|
17 |
-
[256, 512, 1024, 1024], features, groups=groups, expand=expand
|
18 |
-
) # ViT-L/16 - 85.0% Top1 (backbone)
|
19 |
-
elif backbone == "vitb_rn50_384":
|
20 |
-
pretrained = _make_pretrained_vitb_rn50_384(
|
21 |
-
use_pretrained,
|
22 |
-
hooks=hooks,
|
23 |
-
use_vit_only=use_vit_only,
|
24 |
-
use_readout=use_readout,
|
25 |
-
)
|
26 |
-
scratch = _make_scratch(
|
27 |
-
[256, 512, 768, 768], features, groups=groups, expand=expand
|
28 |
-
) # ViT-H/16 - 85.0% Top1 (backbone)
|
29 |
-
elif backbone == "vitb16_384":
|
30 |
-
pretrained = _make_pretrained_vitb16_384(
|
31 |
-
use_pretrained, hooks=hooks, use_readout=use_readout
|
32 |
-
)
|
33 |
-
scratch = _make_scratch(
|
34 |
-
[96, 192, 384, 768], features, groups=groups, expand=expand
|
35 |
-
) # ViT-B/16 - 84.6% Top1 (backbone)
|
36 |
-
elif backbone == "resnext101_wsl":
|
37 |
-
pretrained = _make_pretrained_resnext101_wsl(use_pretrained)
|
38 |
-
scratch = _make_scratch([256, 512, 1024, 2048], features, groups=groups, expand=expand) # efficientnet_lite3
|
39 |
-
elif backbone == "efficientnet_lite3":
|
40 |
-
pretrained = _make_pretrained_efficientnet_lite3(use_pretrained, exportable=exportable)
|
41 |
-
scratch = _make_scratch([32, 48, 136, 384], features, groups=groups, expand=expand) # efficientnet_lite3
|
42 |
-
else:
|
43 |
-
print(f"Backbone '{backbone}' not implemented")
|
44 |
-
assert False
|
45 |
-
|
46 |
-
return pretrained, scratch
|
47 |
-
|
48 |
-
|
49 |
-
def _make_scratch(in_shape, out_shape, groups=1, expand=False):
|
50 |
-
scratch = nn.Module()
|
51 |
-
|
52 |
-
out_shape1 = out_shape
|
53 |
-
out_shape2 = out_shape
|
54 |
-
out_shape3 = out_shape
|
55 |
-
out_shape4 = out_shape
|
56 |
-
if expand==True:
|
57 |
-
out_shape1 = out_shape
|
58 |
-
out_shape2 = out_shape*2
|
59 |
-
out_shape3 = out_shape*4
|
60 |
-
out_shape4 = out_shape*8
|
61 |
-
|
62 |
-
scratch.layer1_rn = nn.Conv2d(
|
63 |
-
in_shape[0], out_shape1, kernel_size=3, stride=1, padding=1, bias=False, groups=groups
|
64 |
-
)
|
65 |
-
scratch.layer2_rn = nn.Conv2d(
|
66 |
-
in_shape[1], out_shape2, kernel_size=3, stride=1, padding=1, bias=False, groups=groups
|
67 |
-
)
|
68 |
-
scratch.layer3_rn = nn.Conv2d(
|
69 |
-
in_shape[2], out_shape3, kernel_size=3, stride=1, padding=1, bias=False, groups=groups
|
70 |
-
)
|
71 |
-
scratch.layer4_rn = nn.Conv2d(
|
72 |
-
in_shape[3], out_shape4, kernel_size=3, stride=1, padding=1, bias=False, groups=groups
|
73 |
-
)
|
74 |
-
|
75 |
-
return scratch
|
76 |
-
|
77 |
-
|
78 |
-
def _make_pretrained_efficientnet_lite3(use_pretrained, exportable=False):
|
79 |
-
efficientnet = torch.hub.load(
|
80 |
-
"rwightman/gen-efficientnet-pytorch",
|
81 |
-
"tf_efficientnet_lite3",
|
82 |
-
pretrained=use_pretrained,
|
83 |
-
exportable=exportable
|
84 |
-
)
|
85 |
-
return _make_efficientnet_backbone(efficientnet)
|
86 |
-
|
87 |
-
|
88 |
-
def _make_efficientnet_backbone(effnet):
|
89 |
-
pretrained = nn.Module()
|
90 |
-
|
91 |
-
pretrained.layer1 = nn.Sequential(
|
92 |
-
effnet.conv_stem, effnet.bn1, effnet.act1, *effnet.blocks[0:2]
|
93 |
-
)
|
94 |
-
pretrained.layer2 = nn.Sequential(*effnet.blocks[2:3])
|
95 |
-
pretrained.layer3 = nn.Sequential(*effnet.blocks[3:5])
|
96 |
-
pretrained.layer4 = nn.Sequential(*effnet.blocks[5:9])
|
97 |
-
|
98 |
-
return pretrained
|
99 |
-
|
100 |
-
|
101 |
-
def _make_resnet_backbone(resnet):
|
102 |
-
pretrained = nn.Module()
|
103 |
-
pretrained.layer1 = nn.Sequential(
|
104 |
-
resnet.conv1, resnet.bn1, resnet.relu, resnet.maxpool, resnet.layer1
|
105 |
-
)
|
106 |
-
|
107 |
-
pretrained.layer2 = resnet.layer2
|
108 |
-
pretrained.layer3 = resnet.layer3
|
109 |
-
pretrained.layer4 = resnet.layer4
|
110 |
-
|
111 |
-
return pretrained
|
112 |
-
|
113 |
-
|
114 |
-
def _make_pretrained_resnext101_wsl(use_pretrained):
|
115 |
-
resnet = torch.hub.load("facebookresearch/WSL-Images", "resnext101_32x8d_wsl")
|
116 |
-
return _make_resnet_backbone(resnet)
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
class Interpolate(nn.Module):
|
121 |
-
"""Interpolation module.
|
122 |
-
"""
|
123 |
-
|
124 |
-
def __init__(self, scale_factor, mode, align_corners=False):
|
125 |
-
"""Init.
|
126 |
-
|
127 |
-
Args:
|
128 |
-
scale_factor (float): scaling
|
129 |
-
mode (str): interpolation mode
|
130 |
-
"""
|
131 |
-
super(Interpolate, self).__init__()
|
132 |
-
|
133 |
-
self.interp = nn.functional.interpolate
|
134 |
-
self.scale_factor = scale_factor
|
135 |
-
self.mode = mode
|
136 |
-
self.align_corners = align_corners
|
137 |
-
|
138 |
-
def forward(self, x):
|
139 |
-
"""Forward pass.
|
140 |
-
|
141 |
-
Args:
|
142 |
-
x (tensor): input
|
143 |
-
|
144 |
-
Returns:
|
145 |
-
tensor: interpolated data
|
146 |
-
"""
|
147 |
-
|
148 |
-
x = self.interp(
|
149 |
-
x, scale_factor=self.scale_factor, mode=self.mode, align_corners=self.align_corners
|
150 |
-
)
|
151 |
-
|
152 |
-
return x
|
153 |
-
|
154 |
-
|
155 |
-
class ResidualConvUnit(nn.Module):
|
156 |
-
"""Residual convolution module.
|
157 |
-
"""
|
158 |
-
|
159 |
-
def __init__(self, features):
|
160 |
-
"""Init.
|
161 |
-
|
162 |
-
Args:
|
163 |
-
features (int): number of features
|
164 |
-
"""
|
165 |
-
super().__init__()
|
166 |
-
|
167 |
-
self.conv1 = nn.Conv2d(
|
168 |
-
features, features, kernel_size=3, stride=1, padding=1, bias=True
|
169 |
-
)
|
170 |
-
|
171 |
-
self.conv2 = nn.Conv2d(
|
172 |
-
features, features, kernel_size=3, stride=1, padding=1, bias=True
|
173 |
-
)
|
174 |
-
|
175 |
-
self.relu = nn.ReLU(inplace=True)
|
176 |
-
|
177 |
-
def forward(self, x):
|
178 |
-
"""Forward pass.
|
179 |
-
|
180 |
-
Args:
|
181 |
-
x (tensor): input
|
182 |
-
|
183 |
-
Returns:
|
184 |
-
tensor: output
|
185 |
-
"""
|
186 |
-
out = self.relu(x)
|
187 |
-
out = self.conv1(out)
|
188 |
-
out = self.relu(out)
|
189 |
-
out = self.conv2(out)
|
190 |
-
|
191 |
-
return out + x
|
192 |
-
|
193 |
-
|
194 |
-
class FeatureFusionBlock(nn.Module):
|
195 |
-
"""Feature fusion block.
|
196 |
-
"""
|
197 |
-
|
198 |
-
def __init__(self, features):
|
199 |
-
"""Init.
|
200 |
-
|
201 |
-
Args:
|
202 |
-
features (int): number of features
|
203 |
-
"""
|
204 |
-
super(FeatureFusionBlock, self).__init__()
|
205 |
-
|
206 |
-
self.resConfUnit1 = ResidualConvUnit(features)
|
207 |
-
self.resConfUnit2 = ResidualConvUnit(features)
|
208 |
-
|
209 |
-
def forward(self, *xs):
|
210 |
-
"""Forward pass.
|
211 |
-
|
212 |
-
Returns:
|
213 |
-
tensor: output
|
214 |
-
"""
|
215 |
-
output = xs[0]
|
216 |
-
|
217 |
-
if len(xs) == 2:
|
218 |
-
output += self.resConfUnit1(xs[1])
|
219 |
-
|
220 |
-
output = self.resConfUnit2(output)
|
221 |
-
|
222 |
-
output = nn.functional.interpolate(
|
223 |
-
output, scale_factor=2, mode="bilinear", align_corners=True
|
224 |
-
)
|
225 |
-
|
226 |
-
return output
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
class ResidualConvUnit_custom(nn.Module):
|
232 |
-
"""Residual convolution module.
|
233 |
-
"""
|
234 |
-
|
235 |
-
def __init__(self, features, activation, bn):
|
236 |
-
"""Init.
|
237 |
-
|
238 |
-
Args:
|
239 |
-
features (int): number of features
|
240 |
-
"""
|
241 |
-
super().__init__()
|
242 |
-
|
243 |
-
self.bn = bn
|
244 |
-
|
245 |
-
self.groups=1
|
246 |
-
|
247 |
-
self.conv1 = nn.Conv2d(
|
248 |
-
features, features, kernel_size=3, stride=1, padding=1, bias=True, groups=self.groups
|
249 |
-
)
|
250 |
-
|
251 |
-
self.conv2 = nn.Conv2d(
|
252 |
-
features, features, kernel_size=3, stride=1, padding=1, bias=True, groups=self.groups
|
253 |
-
)
|
254 |
-
|
255 |
-
if self.bn==True:
|
256 |
-
self.bn1 = nn.BatchNorm2d(features)
|
257 |
-
self.bn2 = nn.BatchNorm2d(features)
|
258 |
-
|
259 |
-
self.activation = activation
|
260 |
-
|
261 |
-
self.skip_add = nn.quantized.FloatFunctional()
|
262 |
-
|
263 |
-
def forward(self, x):
|
264 |
-
"""Forward pass.
|
265 |
-
|
266 |
-
Args:
|
267 |
-
x (tensor): input
|
268 |
-
|
269 |
-
Returns:
|
270 |
-
tensor: output
|
271 |
-
"""
|
272 |
-
|
273 |
-
out = self.activation(x)
|
274 |
-
out = self.conv1(out)
|
275 |
-
if self.bn==True:
|
276 |
-
out = self.bn1(out)
|
277 |
-
|
278 |
-
out = self.activation(out)
|
279 |
-
out = self.conv2(out)
|
280 |
-
if self.bn==True:
|
281 |
-
out = self.bn2(out)
|
282 |
-
|
283 |
-
if self.groups > 1:
|
284 |
-
out = self.conv_merge(out)
|
285 |
-
|
286 |
-
return self.skip_add.add(out, x)
|
287 |
-
|
288 |
-
# return out + x
|
289 |
-
|
290 |
-
|
291 |
-
class FeatureFusionBlock_custom(nn.Module):
|
292 |
-
"""Feature fusion block.
|
293 |
-
"""
|
294 |
-
|
295 |
-
def __init__(self, features, activation, deconv=False, bn=False, expand=False, align_corners=True):
|
296 |
-
"""Init.
|
297 |
-
|
298 |
-
Args:
|
299 |
-
features (int): number of features
|
300 |
-
"""
|
301 |
-
super(FeatureFusionBlock_custom, self).__init__()
|
302 |
-
|
303 |
-
self.deconv = deconv
|
304 |
-
self.align_corners = align_corners
|
305 |
-
|
306 |
-
self.groups=1
|
307 |
-
|
308 |
-
self.expand = expand
|
309 |
-
out_features = features
|
310 |
-
if self.expand==True:
|
311 |
-
out_features = features//2
|
312 |
-
|
313 |
-
self.out_conv = nn.Conv2d(features, out_features, kernel_size=1, stride=1, padding=0, bias=True, groups=1)
|
314 |
-
|
315 |
-
self.resConfUnit1 = ResidualConvUnit_custom(features, activation, bn)
|
316 |
-
self.resConfUnit2 = ResidualConvUnit_custom(features, activation, bn)
|
317 |
-
|
318 |
-
self.skip_add = nn.quantized.FloatFunctional()
|
319 |
-
|
320 |
-
def forward(self, *xs):
|
321 |
-
"""Forward pass.
|
322 |
-
|
323 |
-
Returns:
|
324 |
-
tensor: output
|
325 |
-
"""
|
326 |
-
output = xs[0]
|
327 |
-
|
328 |
-
if len(xs) == 2:
|
329 |
-
res = self.resConfUnit1(xs[1])
|
330 |
-
output = self.skip_add.add(output, res)
|
331 |
-
# output += res
|
332 |
-
|
333 |
-
output = self.resConfUnit2(output)
|
334 |
-
|
335 |
-
output = nn.functional.interpolate(
|
336 |
-
output, scale_factor=2, mode="bilinear", align_corners=self.align_corners
|
337 |
-
)
|
338 |
-
|
339 |
-
output = self.out_conv(output)
|
340 |
-
|
341 |
-
return output
|
342 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
controlnet_aux_local/midas/midas/dpt_depth.py
DELETED
@@ -1,109 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
import torch.nn as nn
|
3 |
-
import torch.nn.functional as F
|
4 |
-
|
5 |
-
from .base_model import BaseModel
|
6 |
-
from .blocks import (
|
7 |
-
FeatureFusionBlock,
|
8 |
-
FeatureFusionBlock_custom,
|
9 |
-
Interpolate,
|
10 |
-
_make_encoder,
|
11 |
-
forward_vit,
|
12 |
-
)
|
13 |
-
|
14 |
-
|
15 |
-
def _make_fusion_block(features, use_bn):
|
16 |
-
return FeatureFusionBlock_custom(
|
17 |
-
features,
|
18 |
-
nn.ReLU(False),
|
19 |
-
deconv=False,
|
20 |
-
bn=use_bn,
|
21 |
-
expand=False,
|
22 |
-
align_corners=True,
|
23 |
-
)
|
24 |
-
|
25 |
-
|
26 |
-
class DPT(BaseModel):
|
27 |
-
def __init__(
|
28 |
-
self,
|
29 |
-
head,
|
30 |
-
features=256,
|
31 |
-
backbone="vitb_rn50_384",
|
32 |
-
readout="project",
|
33 |
-
channels_last=False,
|
34 |
-
use_bn=False,
|
35 |
-
):
|
36 |
-
|
37 |
-
super(DPT, self).__init__()
|
38 |
-
|
39 |
-
self.channels_last = channels_last
|
40 |
-
|
41 |
-
hooks = {
|
42 |
-
"vitb_rn50_384": [0, 1, 8, 11],
|
43 |
-
"vitb16_384": [2, 5, 8, 11],
|
44 |
-
"vitl16_384": [5, 11, 17, 23],
|
45 |
-
}
|
46 |
-
|
47 |
-
# Instantiate backbone and reassemble blocks
|
48 |
-
self.pretrained, self.scratch = _make_encoder(
|
49 |
-
backbone,
|
50 |
-
features,
|
51 |
-
False, # Set to true of you want to train from scratch, uses ImageNet weights
|
52 |
-
groups=1,
|
53 |
-
expand=False,
|
54 |
-
exportable=False,
|
55 |
-
hooks=hooks[backbone],
|
56 |
-
use_readout=readout,
|
57 |
-
)
|
58 |
-
|
59 |
-
self.scratch.refinenet1 = _make_fusion_block(features, use_bn)
|
60 |
-
self.scratch.refinenet2 = _make_fusion_block(features, use_bn)
|
61 |
-
self.scratch.refinenet3 = _make_fusion_block(features, use_bn)
|
62 |
-
self.scratch.refinenet4 = _make_fusion_block(features, use_bn)
|
63 |
-
|
64 |
-
self.scratch.output_conv = head
|
65 |
-
|
66 |
-
|
67 |
-
def forward(self, x):
|
68 |
-
if self.channels_last == True:
|
69 |
-
x.contiguous(memory_format=torch.channels_last)
|
70 |
-
|
71 |
-
layer_1, layer_2, layer_3, layer_4 = forward_vit(self.pretrained, x)
|
72 |
-
|
73 |
-
layer_1_rn = self.scratch.layer1_rn(layer_1)
|
74 |
-
layer_2_rn = self.scratch.layer2_rn(layer_2)
|
75 |
-
layer_3_rn = self.scratch.layer3_rn(layer_3)
|
76 |
-
layer_4_rn = self.scratch.layer4_rn(layer_4)
|
77 |
-
|
78 |
-
path_4 = self.scratch.refinenet4(layer_4_rn)
|
79 |
-
path_3 = self.scratch.refinenet3(path_4, layer_3_rn)
|
80 |
-
path_2 = self.scratch.refinenet2(path_3, layer_2_rn)
|
81 |
-
path_1 = self.scratch.refinenet1(path_2, layer_1_rn)
|
82 |
-
|
83 |
-
out = self.scratch.output_conv(path_1)
|
84 |
-
|
85 |
-
return out
|
86 |
-
|
87 |
-
|
88 |
-
class DPTDepthModel(DPT):
|
89 |
-
def __init__(self, path=None, non_negative=True, **kwargs):
|
90 |
-
features = kwargs["features"] if "features" in kwargs else 256
|
91 |
-
|
92 |
-
head = nn.Sequential(
|
93 |
-
nn.Conv2d(features, features // 2, kernel_size=3, stride=1, padding=1),
|
94 |
-
Interpolate(scale_factor=2, mode="bilinear", align_corners=True),
|
95 |
-
nn.Conv2d(features // 2, 32, kernel_size=3, stride=1, padding=1),
|
96 |
-
nn.ReLU(True),
|
97 |
-
nn.Conv2d(32, 1, kernel_size=1, stride=1, padding=0),
|
98 |
-
nn.ReLU(True) if non_negative else nn.Identity(),
|
99 |
-
nn.Identity(),
|
100 |
-
)
|
101 |
-
|
102 |
-
super().__init__(head, **kwargs)
|
103 |
-
|
104 |
-
if path is not None:
|
105 |
-
self.load(path)
|
106 |
-
|
107 |
-
def forward(self, x):
|
108 |
-
return super().forward(x).squeeze(dim=1)
|
109 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
controlnet_aux_local/midas/midas/midas_net.py
DELETED
@@ -1,76 +0,0 @@
|
|
1 |
-
"""MidashNet: Network for monocular depth estimation trained by mixing several datasets.
|
2 |
-
This file contains code that is adapted from
|
3 |
-
https://github.com/thomasjpfan/pytorch_refinenet/blob/master/pytorch_refinenet/refinenet/refinenet_4cascade.py
|
4 |
-
"""
|
5 |
-
import torch
|
6 |
-
import torch.nn as nn
|
7 |
-
|
8 |
-
from .base_model import BaseModel
|
9 |
-
from .blocks import FeatureFusionBlock, Interpolate, _make_encoder
|
10 |
-
|
11 |
-
|
12 |
-
class MidasNet(BaseModel):
|
13 |
-
"""Network for monocular depth estimation.
|
14 |
-
"""
|
15 |
-
|
16 |
-
def __init__(self, path=None, features=256, non_negative=True):
|
17 |
-
"""Init.
|
18 |
-
|
19 |
-
Args:
|
20 |
-
path (str, optional): Path to saved model. Defaults to None.
|
21 |
-
features (int, optional): Number of features. Defaults to 256.
|
22 |
-
backbone (str, optional): Backbone network for encoder. Defaults to resnet50
|
23 |
-
"""
|
24 |
-
print("Loading weights: ", path)
|
25 |
-
|
26 |
-
super(MidasNet, self).__init__()
|
27 |
-
|
28 |
-
use_pretrained = False if path is None else True
|
29 |
-
|
30 |
-
self.pretrained, self.scratch = _make_encoder(backbone="resnext101_wsl", features=features, use_pretrained=use_pretrained)
|
31 |
-
|
32 |
-
self.scratch.refinenet4 = FeatureFusionBlock(features)
|
33 |
-
self.scratch.refinenet3 = FeatureFusionBlock(features)
|
34 |
-
self.scratch.refinenet2 = FeatureFusionBlock(features)
|
35 |
-
self.scratch.refinenet1 = FeatureFusionBlock(features)
|
36 |
-
|
37 |
-
self.scratch.output_conv = nn.Sequential(
|
38 |
-
nn.Conv2d(features, 128, kernel_size=3, stride=1, padding=1),
|
39 |
-
Interpolate(scale_factor=2, mode="bilinear"),
|
40 |
-
nn.Conv2d(128, 32, kernel_size=3, stride=1, padding=1),
|
41 |
-
nn.ReLU(True),
|
42 |
-
nn.Conv2d(32, 1, kernel_size=1, stride=1, padding=0),
|
43 |
-
nn.ReLU(True) if non_negative else nn.Identity(),
|
44 |
-
)
|
45 |
-
|
46 |
-
if path:
|
47 |
-
self.load(path)
|
48 |
-
|
49 |
-
def forward(self, x):
|
50 |
-
"""Forward pass.
|
51 |
-
|
52 |
-
Args:
|
53 |
-
x (tensor): input data (image)
|
54 |
-
|
55 |
-
Returns:
|
56 |
-
tensor: depth
|
57 |
-
"""
|
58 |
-
|
59 |
-
layer_1 = self.pretrained.layer1(x)
|
60 |
-
layer_2 = self.pretrained.layer2(layer_1)
|
61 |
-
layer_3 = self.pretrained.layer3(layer_2)
|
62 |
-
layer_4 = self.pretrained.layer4(layer_3)
|
63 |
-
|
64 |
-
layer_1_rn = self.scratch.layer1_rn(layer_1)
|
65 |
-
layer_2_rn = self.scratch.layer2_rn(layer_2)
|
66 |
-
layer_3_rn = self.scratch.layer3_rn(layer_3)
|
67 |
-
layer_4_rn = self.scratch.layer4_rn(layer_4)
|
68 |
-
|
69 |
-
path_4 = self.scratch.refinenet4(layer_4_rn)
|
70 |
-
path_3 = self.scratch.refinenet3(path_4, layer_3_rn)
|
71 |
-
path_2 = self.scratch.refinenet2(path_3, layer_2_rn)
|
72 |
-
path_1 = self.scratch.refinenet1(path_2, layer_1_rn)
|
73 |
-
|
74 |
-
out = self.scratch.output_conv(path_1)
|
75 |
-
|
76 |
-
return torch.squeeze(out, dim=1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
controlnet_aux_local/midas/midas/midas_net_custom.py
DELETED
@@ -1,128 +0,0 @@
|
|
1 |
-
"""MidashNet: Network for monocular depth estimation trained by mixing several datasets.
|
2 |
-
This file contains code that is adapted from
|
3 |
-
https://github.com/thomasjpfan/pytorch_refinenet/blob/master/pytorch_refinenet/refinenet/refinenet_4cascade.py
|
4 |
-
"""
|
5 |
-
import torch
|
6 |
-
import torch.nn as nn
|
7 |
-
|
8 |
-
from .base_model import BaseModel
|
9 |
-
from .blocks import FeatureFusionBlock, FeatureFusionBlock_custom, Interpolate, _make_encoder
|
10 |
-
|
11 |
-
|
12 |
-
class MidasNet_small(BaseModel):
|
13 |
-
"""Network for monocular depth estimation.
|
14 |
-
"""
|
15 |
-
|
16 |
-
def __init__(self, path=None, features=64, backbone="efficientnet_lite3", non_negative=True, exportable=True, channels_last=False, align_corners=True,
|
17 |
-
blocks={'expand': True}):
|
18 |
-
"""Init.
|
19 |
-
|
20 |
-
Args:
|
21 |
-
path (str, optional): Path to saved model. Defaults to None.
|
22 |
-
features (int, optional): Number of features. Defaults to 256.
|
23 |
-
backbone (str, optional): Backbone network for encoder. Defaults to resnet50
|
24 |
-
"""
|
25 |
-
print("Loading weights: ", path)
|
26 |
-
|
27 |
-
super(MidasNet_small, self).__init__()
|
28 |
-
|
29 |
-
use_pretrained = False if path else True
|
30 |
-
|
31 |
-
self.channels_last = channels_last
|
32 |
-
self.blocks = blocks
|
33 |
-
self.backbone = backbone
|
34 |
-
|
35 |
-
self.groups = 1
|
36 |
-
|
37 |
-
features1=features
|
38 |
-
features2=features
|
39 |
-
features3=features
|
40 |
-
features4=features
|
41 |
-
self.expand = False
|
42 |
-
if "expand" in self.blocks and self.blocks['expand'] == True:
|
43 |
-
self.expand = True
|
44 |
-
features1=features
|
45 |
-
features2=features*2
|
46 |
-
features3=features*4
|
47 |
-
features4=features*8
|
48 |
-
|
49 |
-
self.pretrained, self.scratch = _make_encoder(self.backbone, features, use_pretrained, groups=self.groups, expand=self.expand, exportable=exportable)
|
50 |
-
|
51 |
-
self.scratch.activation = nn.ReLU(False)
|
52 |
-
|
53 |
-
self.scratch.refinenet4 = FeatureFusionBlock_custom(features4, self.scratch.activation, deconv=False, bn=False, expand=self.expand, align_corners=align_corners)
|
54 |
-
self.scratch.refinenet3 = FeatureFusionBlock_custom(features3, self.scratch.activation, deconv=False, bn=False, expand=self.expand, align_corners=align_corners)
|
55 |
-
self.scratch.refinenet2 = FeatureFusionBlock_custom(features2, self.scratch.activation, deconv=False, bn=False, expand=self.expand, align_corners=align_corners)
|
56 |
-
self.scratch.refinenet1 = FeatureFusionBlock_custom(features1, self.scratch.activation, deconv=False, bn=False, align_corners=align_corners)
|
57 |
-
|
58 |
-
|
59 |
-
self.scratch.output_conv = nn.Sequential(
|
60 |
-
nn.Conv2d(features, features//2, kernel_size=3, stride=1, padding=1, groups=self.groups),
|
61 |
-
Interpolate(scale_factor=2, mode="bilinear"),
|
62 |
-
nn.Conv2d(features//2, 32, kernel_size=3, stride=1, padding=1),
|
63 |
-
self.scratch.activation,
|
64 |
-
nn.Conv2d(32, 1, kernel_size=1, stride=1, padding=0),
|
65 |
-
nn.ReLU(True) if non_negative else nn.Identity(),
|
66 |
-
nn.Identity(),
|
67 |
-
)
|
68 |
-
|
69 |
-
if path:
|
70 |
-
self.load(path)
|
71 |
-
|
72 |
-
|
73 |
-
def forward(self, x):
|
74 |
-
"""Forward pass.
|
75 |
-
|
76 |
-
Args:
|
77 |
-
x (tensor): input data (image)
|
78 |
-
|
79 |
-
Returns:
|
80 |
-
tensor: depth
|
81 |
-
"""
|
82 |
-
if self.channels_last==True:
|
83 |
-
print("self.channels_last = ", self.channels_last)
|
84 |
-
x.contiguous(memory_format=torch.channels_last)
|
85 |
-
|
86 |
-
|
87 |
-
layer_1 = self.pretrained.layer1(x)
|
88 |
-
layer_2 = self.pretrained.layer2(layer_1)
|
89 |
-
layer_3 = self.pretrained.layer3(layer_2)
|
90 |
-
layer_4 = self.pretrained.layer4(layer_3)
|
91 |
-
|
92 |
-
layer_1_rn = self.scratch.layer1_rn(layer_1)
|
93 |
-
layer_2_rn = self.scratch.layer2_rn(layer_2)
|
94 |
-
layer_3_rn = self.scratch.layer3_rn(layer_3)
|
95 |
-
layer_4_rn = self.scratch.layer4_rn(layer_4)
|
96 |
-
|
97 |
-
|
98 |
-
path_4 = self.scratch.refinenet4(layer_4_rn)
|
99 |
-
path_3 = self.scratch.refinenet3(path_4, layer_3_rn)
|
100 |
-
path_2 = self.scratch.refinenet2(path_3, layer_2_rn)
|
101 |
-
path_1 = self.scratch.refinenet1(path_2, layer_1_rn)
|
102 |
-
|
103 |
-
out = self.scratch.output_conv(path_1)
|
104 |
-
|
105 |
-
return torch.squeeze(out, dim=1)
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
def fuse_model(m):
|
110 |
-
prev_previous_type = nn.Identity()
|
111 |
-
prev_previous_name = ''
|
112 |
-
previous_type = nn.Identity()
|
113 |
-
previous_name = ''
|
114 |
-
for name, module in m.named_modules():
|
115 |
-
if prev_previous_type == nn.Conv2d and previous_type == nn.BatchNorm2d and type(module) == nn.ReLU:
|
116 |
-
# print("FUSED ", prev_previous_name, previous_name, name)
|
117 |
-
torch.quantization.fuse_modules(m, [prev_previous_name, previous_name, name], inplace=True)
|
118 |
-
elif prev_previous_type == nn.Conv2d and previous_type == nn.BatchNorm2d:
|
119 |
-
# print("FUSED ", prev_previous_name, previous_name)
|
120 |
-
torch.quantization.fuse_modules(m, [prev_previous_name, previous_name], inplace=True)
|
121 |
-
# elif previous_type == nn.Conv2d and type(module) == nn.ReLU:
|
122 |
-
# print("FUSED ", previous_name, name)
|
123 |
-
# torch.quantization.fuse_modules(m, [previous_name, name], inplace=True)
|
124 |
-
|
125 |
-
prev_previous_type = previous_type
|
126 |
-
prev_previous_name = previous_name
|
127 |
-
previous_type = type(module)
|
128 |
-
previous_name = name
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
controlnet_aux_local/midas/midas/transforms.py
DELETED
@@ -1,234 +0,0 @@
|
|
1 |
-
import numpy as np
|
2 |
-
import cv2
|
3 |
-
import math
|
4 |
-
|
5 |
-
|
6 |
-
def apply_min_size(sample, size, image_interpolation_method=cv2.INTER_AREA):
|
7 |
-
"""Rezise the sample to ensure the given size. Keeps aspect ratio.
|
8 |
-
|
9 |
-
Args:
|
10 |
-
sample (dict): sample
|
11 |
-
size (tuple): image size
|
12 |
-
|
13 |
-
Returns:
|
14 |
-
tuple: new size
|
15 |
-
"""
|
16 |
-
shape = list(sample["disparity"].shape)
|
17 |
-
|
18 |
-
if shape[0] >= size[0] and shape[1] >= size[1]:
|
19 |
-
return sample
|
20 |
-
|
21 |
-
scale = [0, 0]
|
22 |
-
scale[0] = size[0] / shape[0]
|
23 |
-
scale[1] = size[1] / shape[1]
|
24 |
-
|
25 |
-
scale = max(scale)
|
26 |
-
|
27 |
-
shape[0] = math.ceil(scale * shape[0])
|
28 |
-
shape[1] = math.ceil(scale * shape[1])
|
29 |
-
|
30 |
-
# resize
|
31 |
-
sample["image"] = cv2.resize(
|
32 |
-
sample["image"], tuple(shape[::-1]), interpolation=image_interpolation_method
|
33 |
-
)
|
34 |
-
|
35 |
-
sample["disparity"] = cv2.resize(
|
36 |
-
sample["disparity"], tuple(shape[::-1]), interpolation=cv2.INTER_NEAREST
|
37 |
-
)
|
38 |
-
sample["mask"] = cv2.resize(
|
39 |
-
sample["mask"].astype(np.float32),
|
40 |
-
tuple(shape[::-1]),
|
41 |
-
interpolation=cv2.INTER_NEAREST,
|
42 |
-
)
|
43 |
-
sample["mask"] = sample["mask"].astype(bool)
|
44 |
-
|
45 |
-
return tuple(shape)
|
46 |
-
|
47 |
-
|
48 |
-
class Resize(object):
|
49 |
-
"""Resize sample to given size (width, height).
|
50 |
-
"""
|
51 |
-
|
52 |
-
def __init__(
|
53 |
-
self,
|
54 |
-
width,
|
55 |
-
height,
|
56 |
-
resize_target=True,
|
57 |
-
keep_aspect_ratio=False,
|
58 |
-
ensure_multiple_of=1,
|
59 |
-
resize_method="lower_bound",
|
60 |
-
image_interpolation_method=cv2.INTER_AREA,
|
61 |
-
):
|
62 |
-
"""Init.
|
63 |
-
|
64 |
-
Args:
|
65 |
-
width (int): desired output width
|
66 |
-
height (int): desired output height
|
67 |
-
resize_target (bool, optional):
|
68 |
-
True: Resize the full sample (image, mask, target).
|
69 |
-
False: Resize image only.
|
70 |
-
Defaults to True.
|
71 |
-
keep_aspect_ratio (bool, optional):
|
72 |
-
True: Keep the aspect ratio of the input sample.
|
73 |
-
Output sample might not have the given width and height, and
|
74 |
-
resize behaviour depends on the parameter 'resize_method'.
|
75 |
-
Defaults to False.
|
76 |
-
ensure_multiple_of (int, optional):
|
77 |
-
Output width and height is constrained to be multiple of this parameter.
|
78 |
-
Defaults to 1.
|
79 |
-
resize_method (str, optional):
|
80 |
-
"lower_bound": Output will be at least as large as the given size.
|
81 |
-
"upper_bound": Output will be at max as large as the given size. (Output size might be smaller than given size.)
|
82 |
-
"minimal": Scale as least as possible. (Output size might be smaller than given size.)
|
83 |
-
Defaults to "lower_bound".
|
84 |
-
"""
|
85 |
-
self.__width = width
|
86 |
-
self.__height = height
|
87 |
-
|
88 |
-
self.__resize_target = resize_target
|
89 |
-
self.__keep_aspect_ratio = keep_aspect_ratio
|
90 |
-
self.__multiple_of = ensure_multiple_of
|
91 |
-
self.__resize_method = resize_method
|
92 |
-
self.__image_interpolation_method = image_interpolation_method
|
93 |
-
|
94 |
-
def constrain_to_multiple_of(self, x, min_val=0, max_val=None):
|
95 |
-
y = (np.round(x / self.__multiple_of) * self.__multiple_of).astype(int)
|
96 |
-
|
97 |
-
if max_val is not None and y > max_val:
|
98 |
-
y = (np.floor(x / self.__multiple_of) * self.__multiple_of).astype(int)
|
99 |
-
|
100 |
-
if y < min_val:
|
101 |
-
y = (np.ceil(x / self.__multiple_of) * self.__multiple_of).astype(int)
|
102 |
-
|
103 |
-
return y
|
104 |
-
|
105 |
-
def get_size(self, width, height):
|
106 |
-
# determine new height and width
|
107 |
-
scale_height = self.__height / height
|
108 |
-
scale_width = self.__width / width
|
109 |
-
|
110 |
-
if self.__keep_aspect_ratio:
|
111 |
-
if self.__resize_method == "lower_bound":
|
112 |
-
# scale such that output size is lower bound
|
113 |
-
if scale_width > scale_height:
|
114 |
-
# fit width
|
115 |
-
scale_height = scale_width
|
116 |
-
else:
|
117 |
-
# fit height
|
118 |
-
scale_width = scale_height
|
119 |
-
elif self.__resize_method == "upper_bound":
|
120 |
-
# scale such that output size is upper bound
|
121 |
-
if scale_width < scale_height:
|
122 |
-
# fit width
|
123 |
-
scale_height = scale_width
|
124 |
-
else:
|
125 |
-
# fit height
|
126 |
-
scale_width = scale_height
|
127 |
-
elif self.__resize_method == "minimal":
|
128 |
-
# scale as least as possbile
|
129 |
-
if abs(1 - scale_width) < abs(1 - scale_height):
|
130 |
-
# fit width
|
131 |
-
scale_height = scale_width
|
132 |
-
else:
|
133 |
-
# fit height
|
134 |
-
scale_width = scale_height
|
135 |
-
else:
|
136 |
-
raise ValueError(
|
137 |
-
f"resize_method {self.__resize_method} not implemented"
|
138 |
-
)
|
139 |
-
|
140 |
-
if self.__resize_method == "lower_bound":
|
141 |
-
new_height = self.constrain_to_multiple_of(
|
142 |
-
scale_height * height, min_val=self.__height
|
143 |
-
)
|
144 |
-
new_width = self.constrain_to_multiple_of(
|
145 |
-
scale_width * width, min_val=self.__width
|
146 |
-
)
|
147 |
-
elif self.__resize_method == "upper_bound":
|
148 |
-
new_height = self.constrain_to_multiple_of(
|
149 |
-
scale_height * height, max_val=self.__height
|
150 |
-
)
|
151 |
-
new_width = self.constrain_to_multiple_of(
|
152 |
-
scale_width * width, max_val=self.__width
|
153 |
-
)
|
154 |
-
elif self.__resize_method == "minimal":
|
155 |
-
new_height = self.constrain_to_multiple_of(scale_height * height)
|
156 |
-
new_width = self.constrain_to_multiple_of(scale_width * width)
|
157 |
-
else:
|
158 |
-
raise ValueError(f"resize_method {self.__resize_method} not implemented")
|
159 |
-
|
160 |
-
return (new_width, new_height)
|
161 |
-
|
162 |
-
def __call__(self, sample):
|
163 |
-
width, height = self.get_size(
|
164 |
-
sample["image"].shape[1], sample["image"].shape[0]
|
165 |
-
)
|
166 |
-
|
167 |
-
# resize sample
|
168 |
-
sample["image"] = cv2.resize(
|
169 |
-
sample["image"],
|
170 |
-
(width, height),
|
171 |
-
interpolation=self.__image_interpolation_method,
|
172 |
-
)
|
173 |
-
|
174 |
-
if self.__resize_target:
|
175 |
-
if "disparity" in sample:
|
176 |
-
sample["disparity"] = cv2.resize(
|
177 |
-
sample["disparity"],
|
178 |
-
(width, height),
|
179 |
-
interpolation=cv2.INTER_NEAREST,
|
180 |
-
)
|
181 |
-
|
182 |
-
if "depth" in sample:
|
183 |
-
sample["depth"] = cv2.resize(
|
184 |
-
sample["depth"], (width, height), interpolation=cv2.INTER_NEAREST
|
185 |
-
)
|
186 |
-
|
187 |
-
sample["mask"] = cv2.resize(
|
188 |
-
sample["mask"].astype(np.float32),
|
189 |
-
(width, height),
|
190 |
-
interpolation=cv2.INTER_NEAREST,
|
191 |
-
)
|
192 |
-
sample["mask"] = sample["mask"].astype(bool)
|
193 |
-
|
194 |
-
return sample
|
195 |
-
|
196 |
-
|
197 |
-
class NormalizeImage(object):
|
198 |
-
"""Normlize image by given mean and std.
|
199 |
-
"""
|
200 |
-
|
201 |
-
def __init__(self, mean, std):
|
202 |
-
self.__mean = mean
|
203 |
-
self.__std = std
|
204 |
-
|
205 |
-
def __call__(self, sample):
|
206 |
-
sample["image"] = (sample["image"] - self.__mean) / self.__std
|
207 |
-
|
208 |
-
return sample
|
209 |
-
|
210 |
-
|
211 |
-
class PrepareForNet(object):
|
212 |
-
"""Prepare sample for usage as network input.
|
213 |
-
"""
|
214 |
-
|
215 |
-
def __init__(self):
|
216 |
-
pass
|
217 |
-
|
218 |
-
def __call__(self, sample):
|
219 |
-
image = np.transpose(sample["image"], (2, 0, 1))
|
220 |
-
sample["image"] = np.ascontiguousarray(image).astype(np.float32)
|
221 |
-
|
222 |
-
if "mask" in sample:
|
223 |
-
sample["mask"] = sample["mask"].astype(np.float32)
|
224 |
-
sample["mask"] = np.ascontiguousarray(sample["mask"])
|
225 |
-
|
226 |
-
if "disparity" in sample:
|
227 |
-
disparity = sample["disparity"].astype(np.float32)
|
228 |
-
sample["disparity"] = np.ascontiguousarray(disparity)
|
229 |
-
|
230 |
-
if "depth" in sample:
|
231 |
-
depth = sample["depth"].astype(np.float32)
|
232 |
-
sample["depth"] = np.ascontiguousarray(depth)
|
233 |
-
|
234 |
-
return sample
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
controlnet_aux_local/midas/midas/vit.py
DELETED
@@ -1,491 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
import torch.nn as nn
|
3 |
-
import timm
|
4 |
-
import types
|
5 |
-
import math
|
6 |
-
import torch.nn.functional as F
|
7 |
-
|
8 |
-
|
9 |
-
class Slice(nn.Module):
|
10 |
-
def __init__(self, start_index=1):
|
11 |
-
super(Slice, self).__init__()
|
12 |
-
self.start_index = start_index
|
13 |
-
|
14 |
-
def forward(self, x):
|
15 |
-
return x[:, self.start_index :]
|
16 |
-
|
17 |
-
|
18 |
-
class AddReadout(nn.Module):
|
19 |
-
def __init__(self, start_index=1):
|
20 |
-
super(AddReadout, self).__init__()
|
21 |
-
self.start_index = start_index
|
22 |
-
|
23 |
-
def forward(self, x):
|
24 |
-
if self.start_index == 2:
|
25 |
-
readout = (x[:, 0] + x[:, 1]) / 2
|
26 |
-
else:
|
27 |
-
readout = x[:, 0]
|
28 |
-
return x[:, self.start_index :] + readout.unsqueeze(1)
|
29 |
-
|
30 |
-
|
31 |
-
class ProjectReadout(nn.Module):
|
32 |
-
def __init__(self, in_features, start_index=1):
|
33 |
-
super(ProjectReadout, self).__init__()
|
34 |
-
self.start_index = start_index
|
35 |
-
|
36 |
-
self.project = nn.Sequential(nn.Linear(2 * in_features, in_features), nn.GELU())
|
37 |
-
|
38 |
-
def forward(self, x):
|
39 |
-
readout = x[:, 0].unsqueeze(1).expand_as(x[:, self.start_index :])
|
40 |
-
features = torch.cat((x[:, self.start_index :], readout), -1)
|
41 |
-
|
42 |
-
return self.project(features)
|
43 |
-
|
44 |
-
|
45 |
-
class Transpose(nn.Module):
|
46 |
-
def __init__(self, dim0, dim1):
|
47 |
-
super(Transpose, self).__init__()
|
48 |
-
self.dim0 = dim0
|
49 |
-
self.dim1 = dim1
|
50 |
-
|
51 |
-
def forward(self, x):
|
52 |
-
x = x.transpose(self.dim0, self.dim1)
|
53 |
-
return x
|
54 |
-
|
55 |
-
|
56 |
-
def forward_vit(pretrained, x):
|
57 |
-
b, c, h, w = x.shape
|
58 |
-
|
59 |
-
glob = pretrained.model.forward_flex(x)
|
60 |
-
|
61 |
-
layer_1 = pretrained.activations["1"]
|
62 |
-
layer_2 = pretrained.activations["2"]
|
63 |
-
layer_3 = pretrained.activations["3"]
|
64 |
-
layer_4 = pretrained.activations["4"]
|
65 |
-
|
66 |
-
layer_1 = pretrained.act_postprocess1[0:2](layer_1)
|
67 |
-
layer_2 = pretrained.act_postprocess2[0:2](layer_2)
|
68 |
-
layer_3 = pretrained.act_postprocess3[0:2](layer_3)
|
69 |
-
layer_4 = pretrained.act_postprocess4[0:2](layer_4)
|
70 |
-
|
71 |
-
unflatten = nn.Sequential(
|
72 |
-
nn.Unflatten(
|
73 |
-
2,
|
74 |
-
torch.Size(
|
75 |
-
[
|
76 |
-
h // pretrained.model.patch_size[1],
|
77 |
-
w // pretrained.model.patch_size[0],
|
78 |
-
]
|
79 |
-
),
|
80 |
-
)
|
81 |
-
)
|
82 |
-
|
83 |
-
if layer_1.ndim == 3:
|
84 |
-
layer_1 = unflatten(layer_1)
|
85 |
-
if layer_2.ndim == 3:
|
86 |
-
layer_2 = unflatten(layer_2)
|
87 |
-
if layer_3.ndim == 3:
|
88 |
-
layer_3 = unflatten(layer_3)
|
89 |
-
if layer_4.ndim == 3:
|
90 |
-
layer_4 = unflatten(layer_4)
|
91 |
-
|
92 |
-
layer_1 = pretrained.act_postprocess1[3 : len(pretrained.act_postprocess1)](layer_1)
|
93 |
-
layer_2 = pretrained.act_postprocess2[3 : len(pretrained.act_postprocess2)](layer_2)
|
94 |
-
layer_3 = pretrained.act_postprocess3[3 : len(pretrained.act_postprocess3)](layer_3)
|
95 |
-
layer_4 = pretrained.act_postprocess4[3 : len(pretrained.act_postprocess4)](layer_4)
|
96 |
-
|
97 |
-
return layer_1, layer_2, layer_3, layer_4
|
98 |
-
|
99 |
-
|
100 |
-
def _resize_pos_embed(self, posemb, gs_h, gs_w):
|
101 |
-
posemb_tok, posemb_grid = (
|
102 |
-
posemb[:, : self.start_index],
|
103 |
-
posemb[0, self.start_index :],
|
104 |
-
)
|
105 |
-
|
106 |
-
gs_old = int(math.sqrt(len(posemb_grid)))
|
107 |
-
|
108 |
-
posemb_grid = posemb_grid.reshape(1, gs_old, gs_old, -1).permute(0, 3, 1, 2)
|
109 |
-
posemb_grid = F.interpolate(posemb_grid, size=(gs_h, gs_w), mode="bilinear")
|
110 |
-
posemb_grid = posemb_grid.permute(0, 2, 3, 1).reshape(1, gs_h * gs_w, -1)
|
111 |
-
|
112 |
-
posemb = torch.cat([posemb_tok, posemb_grid], dim=1)
|
113 |
-
|
114 |
-
return posemb
|
115 |
-
|
116 |
-
|
117 |
-
def forward_flex(self, x):
|
118 |
-
b, c, h, w = x.shape
|
119 |
-
|
120 |
-
pos_embed = self._resize_pos_embed(
|
121 |
-
self.pos_embed, h // self.patch_size[1], w // self.patch_size[0]
|
122 |
-
)
|
123 |
-
|
124 |
-
B = x.shape[0]
|
125 |
-
|
126 |
-
if hasattr(self.patch_embed, "backbone"):
|
127 |
-
x = self.patch_embed.backbone(x)
|
128 |
-
if isinstance(x, (list, tuple)):
|
129 |
-
x = x[-1] # last feature if backbone outputs list/tuple of features
|
130 |
-
|
131 |
-
x = self.patch_embed.proj(x).flatten(2).transpose(1, 2)
|
132 |
-
|
133 |
-
if getattr(self, "dist_token", None) is not None:
|
134 |
-
cls_tokens = self.cls_token.expand(
|
135 |
-
B, -1, -1
|
136 |
-
) # stole cls_tokens impl from Phil Wang, thanks
|
137 |
-
dist_token = self.dist_token.expand(B, -1, -1)
|
138 |
-
x = torch.cat((cls_tokens, dist_token, x), dim=1)
|
139 |
-
else:
|
140 |
-
cls_tokens = self.cls_token.expand(
|
141 |
-
B, -1, -1
|
142 |
-
) # stole cls_tokens impl from Phil Wang, thanks
|
143 |
-
x = torch.cat((cls_tokens, x), dim=1)
|
144 |
-
|
145 |
-
x = x + pos_embed
|
146 |
-
x = self.pos_drop(x)
|
147 |
-
|
148 |
-
for blk in self.blocks:
|
149 |
-
x = blk(x)
|
150 |
-
|
151 |
-
x = self.norm(x)
|
152 |
-
|
153 |
-
return x
|
154 |
-
|
155 |
-
|
156 |
-
activations = {}
|
157 |
-
|
158 |
-
|
159 |
-
def get_activation(name):
|
160 |
-
def hook(model, input, output):
|
161 |
-
activations[name] = output
|
162 |
-
|
163 |
-
return hook
|
164 |
-
|
165 |
-
|
166 |
-
def get_readout_oper(vit_features, features, use_readout, start_index=1):
|
167 |
-
if use_readout == "ignore":
|
168 |
-
readout_oper = [Slice(start_index)] * len(features)
|
169 |
-
elif use_readout == "add":
|
170 |
-
readout_oper = [AddReadout(start_index)] * len(features)
|
171 |
-
elif use_readout == "project":
|
172 |
-
readout_oper = [
|
173 |
-
ProjectReadout(vit_features, start_index) for out_feat in features
|
174 |
-
]
|
175 |
-
else:
|
176 |
-
assert (
|
177 |
-
False
|
178 |
-
), "wrong operation for readout token, use_readout can be 'ignore', 'add', or 'project'"
|
179 |
-
|
180 |
-
return readout_oper
|
181 |
-
|
182 |
-
|
183 |
-
def _make_vit_b16_backbone(
|
184 |
-
model,
|
185 |
-
features=[96, 192, 384, 768],
|
186 |
-
size=[384, 384],
|
187 |
-
hooks=[2, 5, 8, 11],
|
188 |
-
vit_features=768,
|
189 |
-
use_readout="ignore",
|
190 |
-
start_index=1,
|
191 |
-
):
|
192 |
-
pretrained = nn.Module()
|
193 |
-
|
194 |
-
pretrained.model = model
|
195 |
-
pretrained.model.blocks[hooks[0]].register_forward_hook(get_activation("1"))
|
196 |
-
pretrained.model.blocks[hooks[1]].register_forward_hook(get_activation("2"))
|
197 |
-
pretrained.model.blocks[hooks[2]].register_forward_hook(get_activation("3"))
|
198 |
-
pretrained.model.blocks[hooks[3]].register_forward_hook(get_activation("4"))
|
199 |
-
|
200 |
-
pretrained.activations = activations
|
201 |
-
|
202 |
-
readout_oper = get_readout_oper(vit_features, features, use_readout, start_index)
|
203 |
-
|
204 |
-
# 32, 48, 136, 384
|
205 |
-
pretrained.act_postprocess1 = nn.Sequential(
|
206 |
-
readout_oper[0],
|
207 |
-
Transpose(1, 2),
|
208 |
-
nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
|
209 |
-
nn.Conv2d(
|
210 |
-
in_channels=vit_features,
|
211 |
-
out_channels=features[0],
|
212 |
-
kernel_size=1,
|
213 |
-
stride=1,
|
214 |
-
padding=0,
|
215 |
-
),
|
216 |
-
nn.ConvTranspose2d(
|
217 |
-
in_channels=features[0],
|
218 |
-
out_channels=features[0],
|
219 |
-
kernel_size=4,
|
220 |
-
stride=4,
|
221 |
-
padding=0,
|
222 |
-
bias=True,
|
223 |
-
dilation=1,
|
224 |
-
groups=1,
|
225 |
-
),
|
226 |
-
)
|
227 |
-
|
228 |
-
pretrained.act_postprocess2 = nn.Sequential(
|
229 |
-
readout_oper[1],
|
230 |
-
Transpose(1, 2),
|
231 |
-
nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
|
232 |
-
nn.Conv2d(
|
233 |
-
in_channels=vit_features,
|
234 |
-
out_channels=features[1],
|
235 |
-
kernel_size=1,
|
236 |
-
stride=1,
|
237 |
-
padding=0,
|
238 |
-
),
|
239 |
-
nn.ConvTranspose2d(
|
240 |
-
in_channels=features[1],
|
241 |
-
out_channels=features[1],
|
242 |
-
kernel_size=2,
|
243 |
-
stride=2,
|
244 |
-
padding=0,
|
245 |
-
bias=True,
|
246 |
-
dilation=1,
|
247 |
-
groups=1,
|
248 |
-
),
|
249 |
-
)
|
250 |
-
|
251 |
-
pretrained.act_postprocess3 = nn.Sequential(
|
252 |
-
readout_oper[2],
|
253 |
-
Transpose(1, 2),
|
254 |
-
nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
|
255 |
-
nn.Conv2d(
|
256 |
-
in_channels=vit_features,
|
257 |
-
out_channels=features[2],
|
258 |
-
kernel_size=1,
|
259 |
-
stride=1,
|
260 |
-
padding=0,
|
261 |
-
),
|
262 |
-
)
|
263 |
-
|
264 |
-
pretrained.act_postprocess4 = nn.Sequential(
|
265 |
-
readout_oper[3],
|
266 |
-
Transpose(1, 2),
|
267 |
-
nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
|
268 |
-
nn.Conv2d(
|
269 |
-
in_channels=vit_features,
|
270 |
-
out_channels=features[3],
|
271 |
-
kernel_size=1,
|
272 |
-
stride=1,
|
273 |
-
padding=0,
|
274 |
-
),
|
275 |
-
nn.Conv2d(
|
276 |
-
in_channels=features[3],
|
277 |
-
out_channels=features[3],
|
278 |
-
kernel_size=3,
|
279 |
-
stride=2,
|
280 |
-
padding=1,
|
281 |
-
),
|
282 |
-
)
|
283 |
-
|
284 |
-
pretrained.model.start_index = start_index
|
285 |
-
pretrained.model.patch_size = [16, 16]
|
286 |
-
|
287 |
-
# We inject this function into the VisionTransformer instances so that
|
288 |
-
# we can use it with interpolated position embeddings without modifying the library source.
|
289 |
-
pretrained.model.forward_flex = types.MethodType(forward_flex, pretrained.model)
|
290 |
-
pretrained.model._resize_pos_embed = types.MethodType(
|
291 |
-
_resize_pos_embed, pretrained.model
|
292 |
-
)
|
293 |
-
|
294 |
-
return pretrained
|
295 |
-
|
296 |
-
|
297 |
-
def _make_pretrained_vitl16_384(pretrained, use_readout="ignore", hooks=None):
|
298 |
-
model = timm.create_model("vit_large_patch16_384", pretrained=pretrained)
|
299 |
-
|
300 |
-
hooks = [5, 11, 17, 23] if hooks == None else hooks
|
301 |
-
return _make_vit_b16_backbone(
|
302 |
-
model,
|
303 |
-
features=[256, 512, 1024, 1024],
|
304 |
-
hooks=hooks,
|
305 |
-
vit_features=1024,
|
306 |
-
use_readout=use_readout,
|
307 |
-
)
|
308 |
-
|
309 |
-
|
310 |
-
def _make_pretrained_vitb16_384(pretrained, use_readout="ignore", hooks=None):
|
311 |
-
model = timm.create_model("vit_base_patch16_384", pretrained=pretrained)
|
312 |
-
|
313 |
-
hooks = [2, 5, 8, 11] if hooks == None else hooks
|
314 |
-
return _make_vit_b16_backbone(
|
315 |
-
model, features=[96, 192, 384, 768], hooks=hooks, use_readout=use_readout
|
316 |
-
)
|
317 |
-
|
318 |
-
|
319 |
-
def _make_pretrained_deitb16_384(pretrained, use_readout="ignore", hooks=None):
|
320 |
-
model = timm.create_model("vit_deit_base_patch16_384", pretrained=pretrained)
|
321 |
-
|
322 |
-
hooks = [2, 5, 8, 11] if hooks == None else hooks
|
323 |
-
return _make_vit_b16_backbone(
|
324 |
-
model, features=[96, 192, 384, 768], hooks=hooks, use_readout=use_readout
|
325 |
-
)
|
326 |
-
|
327 |
-
|
328 |
-
def _make_pretrained_deitb16_distil_384(pretrained, use_readout="ignore", hooks=None):
|
329 |
-
model = timm.create_model(
|
330 |
-
"vit_deit_base_distilled_patch16_384", pretrained=pretrained
|
331 |
-
)
|
332 |
-
|
333 |
-
hooks = [2, 5, 8, 11] if hooks == None else hooks
|
334 |
-
return _make_vit_b16_backbone(
|
335 |
-
model,
|
336 |
-
features=[96, 192, 384, 768],
|
337 |
-
hooks=hooks,
|
338 |
-
use_readout=use_readout,
|
339 |
-
start_index=2,
|
340 |
-
)
|
341 |
-
|
342 |
-
|
343 |
-
def _make_vit_b_rn50_backbone(
|
344 |
-
model,
|
345 |
-
features=[256, 512, 768, 768],
|
346 |
-
size=[384, 384],
|
347 |
-
hooks=[0, 1, 8, 11],
|
348 |
-
vit_features=768,
|
349 |
-
use_vit_only=False,
|
350 |
-
use_readout="ignore",
|
351 |
-
start_index=1,
|
352 |
-
):
|
353 |
-
pretrained = nn.Module()
|
354 |
-
|
355 |
-
pretrained.model = model
|
356 |
-
|
357 |
-
if use_vit_only == True:
|
358 |
-
pretrained.model.blocks[hooks[0]].register_forward_hook(get_activation("1"))
|
359 |
-
pretrained.model.blocks[hooks[1]].register_forward_hook(get_activation("2"))
|
360 |
-
else:
|
361 |
-
pretrained.model.patch_embed.backbone.stages[0].register_forward_hook(
|
362 |
-
get_activation("1")
|
363 |
-
)
|
364 |
-
pretrained.model.patch_embed.backbone.stages[1].register_forward_hook(
|
365 |
-
get_activation("2")
|
366 |
-
)
|
367 |
-
|
368 |
-
pretrained.model.blocks[hooks[2]].register_forward_hook(get_activation("3"))
|
369 |
-
pretrained.model.blocks[hooks[3]].register_forward_hook(get_activation("4"))
|
370 |
-
|
371 |
-
pretrained.activations = activations
|
372 |
-
|
373 |
-
readout_oper = get_readout_oper(vit_features, features, use_readout, start_index)
|
374 |
-
|
375 |
-
if use_vit_only == True:
|
376 |
-
pretrained.act_postprocess1 = nn.Sequential(
|
377 |
-
readout_oper[0],
|
378 |
-
Transpose(1, 2),
|
379 |
-
nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
|
380 |
-
nn.Conv2d(
|
381 |
-
in_channels=vit_features,
|
382 |
-
out_channels=features[0],
|
383 |
-
kernel_size=1,
|
384 |
-
stride=1,
|
385 |
-
padding=0,
|
386 |
-
),
|
387 |
-
nn.ConvTranspose2d(
|
388 |
-
in_channels=features[0],
|
389 |
-
out_channels=features[0],
|
390 |
-
kernel_size=4,
|
391 |
-
stride=4,
|
392 |
-
padding=0,
|
393 |
-
bias=True,
|
394 |
-
dilation=1,
|
395 |
-
groups=1,
|
396 |
-
),
|
397 |
-
)
|
398 |
-
|
399 |
-
pretrained.act_postprocess2 = nn.Sequential(
|
400 |
-
readout_oper[1],
|
401 |
-
Transpose(1, 2),
|
402 |
-
nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
|
403 |
-
nn.Conv2d(
|
404 |
-
in_channels=vit_features,
|
405 |
-
out_channels=features[1],
|
406 |
-
kernel_size=1,
|
407 |
-
stride=1,
|
408 |
-
padding=0,
|
409 |
-
),
|
410 |
-
nn.ConvTranspose2d(
|
411 |
-
in_channels=features[1],
|
412 |
-
out_channels=features[1],
|
413 |
-
kernel_size=2,
|
414 |
-
stride=2,
|
415 |
-
padding=0,
|
416 |
-
bias=True,
|
417 |
-
dilation=1,
|
418 |
-
groups=1,
|
419 |
-
),
|
420 |
-
)
|
421 |
-
else:
|
422 |
-
pretrained.act_postprocess1 = nn.Sequential(
|
423 |
-
nn.Identity(), nn.Identity(), nn.Identity()
|
424 |
-
)
|
425 |
-
pretrained.act_postprocess2 = nn.Sequential(
|
426 |
-
nn.Identity(), nn.Identity(), nn.Identity()
|
427 |
-
)
|
428 |
-
|
429 |
-
pretrained.act_postprocess3 = nn.Sequential(
|
430 |
-
readout_oper[2],
|
431 |
-
Transpose(1, 2),
|
432 |
-
nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
|
433 |
-
nn.Conv2d(
|
434 |
-
in_channels=vit_features,
|
435 |
-
out_channels=features[2],
|
436 |
-
kernel_size=1,
|
437 |
-
stride=1,
|
438 |
-
padding=0,
|
439 |
-
),
|
440 |
-
)
|
441 |
-
|
442 |
-
pretrained.act_postprocess4 = nn.Sequential(
|
443 |
-
readout_oper[3],
|
444 |
-
Transpose(1, 2),
|
445 |
-
nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
|
446 |
-
nn.Conv2d(
|
447 |
-
in_channels=vit_features,
|
448 |
-
out_channels=features[3],
|
449 |
-
kernel_size=1,
|
450 |
-
stride=1,
|
451 |
-
padding=0,
|
452 |
-
),
|
453 |
-
nn.Conv2d(
|
454 |
-
in_channels=features[3],
|
455 |
-
out_channels=features[3],
|
456 |
-
kernel_size=3,
|
457 |
-
stride=2,
|
458 |
-
padding=1,
|
459 |
-
),
|
460 |
-
)
|
461 |
-
|
462 |
-
pretrained.model.start_index = start_index
|
463 |
-
pretrained.model.patch_size = [16, 16]
|
464 |
-
|
465 |
-
# We inject this function into the VisionTransformer instances so that
|
466 |
-
# we can use it with interpolated position embeddings without modifying the library source.
|
467 |
-
pretrained.model.forward_flex = types.MethodType(forward_flex, pretrained.model)
|
468 |
-
|
469 |
-
# We inject this function into the VisionTransformer instances so that
|
470 |
-
# we can use it with interpolated position embeddings without modifying the library source.
|
471 |
-
pretrained.model._resize_pos_embed = types.MethodType(
|
472 |
-
_resize_pos_embed, pretrained.model
|
473 |
-
)
|
474 |
-
|
475 |
-
return pretrained
|
476 |
-
|
477 |
-
|
478 |
-
def _make_pretrained_vitb_rn50_384(
|
479 |
-
pretrained, use_readout="ignore", hooks=None, use_vit_only=False
|
480 |
-
):
|
481 |
-
model = timm.create_model("vit_base_resnet50_384", pretrained=pretrained)
|
482 |
-
|
483 |
-
hooks = [0, 1, 8, 11] if hooks == None else hooks
|
484 |
-
return _make_vit_b_rn50_backbone(
|
485 |
-
model,
|
486 |
-
features=[256, 512, 768, 768],
|
487 |
-
size=[384, 384],
|
488 |
-
hooks=hooks,
|
489 |
-
use_vit_only=use_vit_only,
|
490 |
-
use_readout=use_readout,
|
491 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
controlnet_aux_local/midas/utils.py
DELETED
@@ -1,189 +0,0 @@
|
|
1 |
-
"""Utils for monoDepth."""
|
2 |
-
import sys
|
3 |
-
import re
|
4 |
-
import numpy as np
|
5 |
-
import cv2
|
6 |
-
import torch
|
7 |
-
|
8 |
-
|
9 |
-
def read_pfm(path):
|
10 |
-
"""Read pfm file.
|
11 |
-
|
12 |
-
Args:
|
13 |
-
path (str): path to file
|
14 |
-
|
15 |
-
Returns:
|
16 |
-
tuple: (data, scale)
|
17 |
-
"""
|
18 |
-
with open(path, "rb") as file:
|
19 |
-
|
20 |
-
color = None
|
21 |
-
width = None
|
22 |
-
height = None
|
23 |
-
scale = None
|
24 |
-
endian = None
|
25 |
-
|
26 |
-
header = file.readline().rstrip()
|
27 |
-
if header.decode("ascii") == "PF":
|
28 |
-
color = True
|
29 |
-
elif header.decode("ascii") == "Pf":
|
30 |
-
color = False
|
31 |
-
else:
|
32 |
-
raise Exception("Not a PFM file: " + path)
|
33 |
-
|
34 |
-
dim_match = re.match(r"^(\d+)\s(\d+)\s$", file.readline().decode("ascii"))
|
35 |
-
if dim_match:
|
36 |
-
width, height = list(map(int, dim_match.groups()))
|
37 |
-
else:
|
38 |
-
raise Exception("Malformed PFM header.")
|
39 |
-
|
40 |
-
scale = float(file.readline().decode("ascii").rstrip())
|
41 |
-
if scale < 0:
|
42 |
-
# little-endian
|
43 |
-
endian = "<"
|
44 |
-
scale = -scale
|
45 |
-
else:
|
46 |
-
# big-endian
|
47 |
-
endian = ">"
|
48 |
-
|
49 |
-
data = np.fromfile(file, endian + "f")
|
50 |
-
shape = (height, width, 3) if color else (height, width)
|
51 |
-
|
52 |
-
data = np.reshape(data, shape)
|
53 |
-
data = np.flipud(data)
|
54 |
-
|
55 |
-
return data, scale
|
56 |
-
|
57 |
-
|
58 |
-
def write_pfm(path, image, scale=1):
|
59 |
-
"""Write pfm file.
|
60 |
-
|
61 |
-
Args:
|
62 |
-
path (str): pathto file
|
63 |
-
image (array): data
|
64 |
-
scale (int, optional): Scale. Defaults to 1.
|
65 |
-
"""
|
66 |
-
|
67 |
-
with open(path, "wb") as file:
|
68 |
-
color = None
|
69 |
-
|
70 |
-
if image.dtype.name != "float32":
|
71 |
-
raise Exception("Image dtype must be float32.")
|
72 |
-
|
73 |
-
image = np.flipud(image)
|
74 |
-
|
75 |
-
if len(image.shape) == 3 and image.shape[2] == 3: # color image
|
76 |
-
color = True
|
77 |
-
elif (
|
78 |
-
len(image.shape) == 2 or len(image.shape) == 3 and image.shape[2] == 1
|
79 |
-
): # greyscale
|
80 |
-
color = False
|
81 |
-
else:
|
82 |
-
raise Exception("Image must have H x W x 3, H x W x 1 or H x W dimensions.")
|
83 |
-
|
84 |
-
file.write("PF\n" if color else "Pf\n".encode())
|
85 |
-
file.write("%d %d\n".encode() % (image.shape[1], image.shape[0]))
|
86 |
-
|
87 |
-
endian = image.dtype.byteorder
|
88 |
-
|
89 |
-
if endian == "<" or endian == "=" and sys.byteorder == "little":
|
90 |
-
scale = -scale
|
91 |
-
|
92 |
-
file.write("%f\n".encode() % scale)
|
93 |
-
|
94 |
-
image.tofile(file)
|
95 |
-
|
96 |
-
|
97 |
-
def read_image(path):
|
98 |
-
"""Read image and output RGB image (0-1).
|
99 |
-
|
100 |
-
Args:
|
101 |
-
path (str): path to file
|
102 |
-
|
103 |
-
Returns:
|
104 |
-
array: RGB image (0-1)
|
105 |
-
"""
|
106 |
-
img = cv2.imread(path)
|
107 |
-
|
108 |
-
if img.ndim == 2:
|
109 |
-
img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
|
110 |
-
|
111 |
-
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) / 255.0
|
112 |
-
|
113 |
-
return img
|
114 |
-
|
115 |
-
|
116 |
-
def resize_image(img):
|
117 |
-
"""Resize image and make it fit for network.
|
118 |
-
|
119 |
-
Args:
|
120 |
-
img (array): image
|
121 |
-
|
122 |
-
Returns:
|
123 |
-
tensor: data ready for network
|
124 |
-
"""
|
125 |
-
height_orig = img.shape[0]
|
126 |
-
width_orig = img.shape[1]
|
127 |
-
|
128 |
-
if width_orig > height_orig:
|
129 |
-
scale = width_orig / 384
|
130 |
-
else:
|
131 |
-
scale = height_orig / 384
|
132 |
-
|
133 |
-
height = (np.ceil(height_orig / scale / 32) * 32).astype(int)
|
134 |
-
width = (np.ceil(width_orig / scale / 32) * 32).astype(int)
|
135 |
-
|
136 |
-
img_resized = cv2.resize(img, (width, height), interpolation=cv2.INTER_AREA)
|
137 |
-
|
138 |
-
img_resized = (
|
139 |
-
torch.from_numpy(np.transpose(img_resized, (2, 0, 1))).contiguous().float()
|
140 |
-
)
|
141 |
-
img_resized = img_resized.unsqueeze(0)
|
142 |
-
|
143 |
-
return img_resized
|
144 |
-
|
145 |
-
|
146 |
-
def resize_depth(depth, width, height):
|
147 |
-
"""Resize depth map and bring to CPU (numpy).
|
148 |
-
|
149 |
-
Args:
|
150 |
-
depth (tensor): depth
|
151 |
-
width (int): image width
|
152 |
-
height (int): image height
|
153 |
-
|
154 |
-
Returns:
|
155 |
-
array: processed depth
|
156 |
-
"""
|
157 |
-
depth = torch.squeeze(depth[0, :, :, :]).to("cpu")
|
158 |
-
|
159 |
-
depth_resized = cv2.resize(
|
160 |
-
depth.numpy(), (width, height), interpolation=cv2.INTER_CUBIC
|
161 |
-
)
|
162 |
-
|
163 |
-
return depth_resized
|
164 |
-
|
165 |
-
def write_depth(path, depth, bits=1):
|
166 |
-
"""Write depth map to pfm and png file.
|
167 |
-
|
168 |
-
Args:
|
169 |
-
path (str): filepath without extension
|
170 |
-
depth (array): depth
|
171 |
-
"""
|
172 |
-
write_pfm(path + ".pfm", depth.astype(np.float32))
|
173 |
-
|
174 |
-
depth_min = depth.min()
|
175 |
-
depth_max = depth.max()
|
176 |
-
|
177 |
-
max_val = (2**(8*bits))-1
|
178 |
-
|
179 |
-
if depth_max - depth_min > np.finfo("float").eps:
|
180 |
-
out = max_val * (depth - depth_min) / (depth_max - depth_min)
|
181 |
-
else:
|
182 |
-
out = np.zeros(depth.shape, dtype=depth.type)
|
183 |
-
|
184 |
-
if bits == 1:
|
185 |
-
cv2.imwrite(path + ".png", out.astype("uint8"))
|
186 |
-
elif bits == 2:
|
187 |
-
cv2.imwrite(path + ".png", out.astype("uint16"))
|
188 |
-
|
189 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
controlnet_aux_local/mlsd/__init__.py
DELETED
@@ -1,79 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
import warnings
|
3 |
-
|
4 |
-
import cv2
|
5 |
-
import numpy as np
|
6 |
-
import torch
|
7 |
-
from huggingface_hub import hf_hub_download
|
8 |
-
from PIL import Image
|
9 |
-
|
10 |
-
from ..util import HWC3, resize_image
|
11 |
-
from .models.mbv2_mlsd_large import MobileV2_MLSD_Large
|
12 |
-
from .utils import pred_lines
|
13 |
-
|
14 |
-
|
15 |
-
class MLSDdetector:
|
16 |
-
def __init__(self, model):
|
17 |
-
self.model = model
|
18 |
-
|
19 |
-
@classmethod
|
20 |
-
def from_pretrained(cls, pretrained_model_or_path, filename=None, cache_dir=None, local_files_only=False):
|
21 |
-
if pretrained_model_or_path == "lllyasviel/ControlNet":
|
22 |
-
filename = filename or "annotator/ckpts/mlsd_large_512_fp32.pth"
|
23 |
-
else:
|
24 |
-
filename = filename or "mlsd_large_512_fp32.pth"
|
25 |
-
|
26 |
-
if os.path.isdir(pretrained_model_or_path):
|
27 |
-
model_path = os.path.join(pretrained_model_or_path, filename)
|
28 |
-
else:
|
29 |
-
model_path = hf_hub_download(pretrained_model_or_path, filename, cache_dir=cache_dir, local_files_only=local_files_only)
|
30 |
-
|
31 |
-
model = MobileV2_MLSD_Large()
|
32 |
-
model.load_state_dict(torch.load(model_path), strict=True)
|
33 |
-
model.eval()
|
34 |
-
|
35 |
-
return cls(model)
|
36 |
-
|
37 |
-
def to(self, device):
|
38 |
-
self.model.to(device)
|
39 |
-
return self
|
40 |
-
|
41 |
-
def __call__(self, input_image, thr_v=0.1, thr_d=0.1, detect_resolution=512, image_resolution=512, output_type="pil", **kwargs):
|
42 |
-
if "return_pil" in kwargs:
|
43 |
-
warnings.warn("return_pil is deprecated. Use output_type instead.", DeprecationWarning)
|
44 |
-
output_type = "pil" if kwargs["return_pil"] else "np"
|
45 |
-
if type(output_type) is bool:
|
46 |
-
warnings.warn("Passing `True` or `False` to `output_type` is deprecated and will raise an error in future versions")
|
47 |
-
if output_type:
|
48 |
-
output_type = "pil"
|
49 |
-
|
50 |
-
if not isinstance(input_image, np.ndarray):
|
51 |
-
input_image = np.array(input_image, dtype=np.uint8)
|
52 |
-
|
53 |
-
input_image = HWC3(input_image)
|
54 |
-
input_image = resize_image(input_image, detect_resolution)
|
55 |
-
|
56 |
-
assert input_image.ndim == 3
|
57 |
-
img = input_image
|
58 |
-
img_output = np.zeros_like(img)
|
59 |
-
try:
|
60 |
-
with torch.no_grad():
|
61 |
-
lines = pred_lines(img, self.model, [img.shape[0], img.shape[1]], thr_v, thr_d)
|
62 |
-
for line in lines:
|
63 |
-
x_start, y_start, x_end, y_end = [int(val) for val in line]
|
64 |
-
cv2.line(img_output, (x_start, y_start), (x_end, y_end), [255, 255, 255], 1)
|
65 |
-
except Exception as e:
|
66 |
-
pass
|
67 |
-
|
68 |
-
detected_map = img_output[:, :, 0]
|
69 |
-
detected_map = HWC3(detected_map)
|
70 |
-
|
71 |
-
img = resize_image(input_image, image_resolution)
|
72 |
-
H, W, C = img.shape
|
73 |
-
|
74 |
-
detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_LINEAR)
|
75 |
-
|
76 |
-
if output_type == "pil":
|
77 |
-
detected_map = Image.fromarray(detected_map)
|
78 |
-
|
79 |
-
return detected_map
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
controlnet_aux_local/mlsd/models/__init__.py
DELETED
File without changes
|
controlnet_aux_local/mlsd/models/mbv2_mlsd_large.py
DELETED
@@ -1,292 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
import sys
|
3 |
-
import torch
|
4 |
-
import torch.nn as nn
|
5 |
-
import torch.utils.model_zoo as model_zoo
|
6 |
-
from torch.nn import functional as F
|
7 |
-
|
8 |
-
|
9 |
-
class BlockTypeA(nn.Module):
|
10 |
-
def __init__(self, in_c1, in_c2, out_c1, out_c2, upscale = True):
|
11 |
-
super(BlockTypeA, self).__init__()
|
12 |
-
self.conv1 = nn.Sequential(
|
13 |
-
nn.Conv2d(in_c2, out_c2, kernel_size=1),
|
14 |
-
nn.BatchNorm2d(out_c2),
|
15 |
-
nn.ReLU(inplace=True)
|
16 |
-
)
|
17 |
-
self.conv2 = nn.Sequential(
|
18 |
-
nn.Conv2d(in_c1, out_c1, kernel_size=1),
|
19 |
-
nn.BatchNorm2d(out_c1),
|
20 |
-
nn.ReLU(inplace=True)
|
21 |
-
)
|
22 |
-
self.upscale = upscale
|
23 |
-
|
24 |
-
def forward(self, a, b):
|
25 |
-
b = self.conv1(b)
|
26 |
-
a = self.conv2(a)
|
27 |
-
if self.upscale:
|
28 |
-
b = F.interpolate(b, scale_factor=2.0, mode='bilinear', align_corners=True)
|
29 |
-
return torch.cat((a, b), dim=1)
|
30 |
-
|
31 |
-
|
32 |
-
class BlockTypeB(nn.Module):
|
33 |
-
def __init__(self, in_c, out_c):
|
34 |
-
super(BlockTypeB, self).__init__()
|
35 |
-
self.conv1 = nn.Sequential(
|
36 |
-
nn.Conv2d(in_c, in_c, kernel_size=3, padding=1),
|
37 |
-
nn.BatchNorm2d(in_c),
|
38 |
-
nn.ReLU()
|
39 |
-
)
|
40 |
-
self.conv2 = nn.Sequential(
|
41 |
-
nn.Conv2d(in_c, out_c, kernel_size=3, padding=1),
|
42 |
-
nn.BatchNorm2d(out_c),
|
43 |
-
nn.ReLU()
|
44 |
-
)
|
45 |
-
|
46 |
-
def forward(self, x):
|
47 |
-
x = self.conv1(x) + x
|
48 |
-
x = self.conv2(x)
|
49 |
-
return x
|
50 |
-
|
51 |
-
class BlockTypeC(nn.Module):
|
52 |
-
def __init__(self, in_c, out_c):
|
53 |
-
super(BlockTypeC, self).__init__()
|
54 |
-
self.conv1 = nn.Sequential(
|
55 |
-
nn.Conv2d(in_c, in_c, kernel_size=3, padding=5, dilation=5),
|
56 |
-
nn.BatchNorm2d(in_c),
|
57 |
-
nn.ReLU()
|
58 |
-
)
|
59 |
-
self.conv2 = nn.Sequential(
|
60 |
-
nn.Conv2d(in_c, in_c, kernel_size=3, padding=1),
|
61 |
-
nn.BatchNorm2d(in_c),
|
62 |
-
nn.ReLU()
|
63 |
-
)
|
64 |
-
self.conv3 = nn.Conv2d(in_c, out_c, kernel_size=1)
|
65 |
-
|
66 |
-
def forward(self, x):
|
67 |
-
x = self.conv1(x)
|
68 |
-
x = self.conv2(x)
|
69 |
-
x = self.conv3(x)
|
70 |
-
return x
|
71 |
-
|
72 |
-
def _make_divisible(v, divisor, min_value=None):
|
73 |
-
"""
|
74 |
-
This function is taken from the original tf repo.
|
75 |
-
It ensures that all layers have a channel number that is divisible by 8
|
76 |
-
It can be seen here:
|
77 |
-
https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet.py
|
78 |
-
:param v:
|
79 |
-
:param divisor:
|
80 |
-
:param min_value:
|
81 |
-
:return:
|
82 |
-
"""
|
83 |
-
if min_value is None:
|
84 |
-
min_value = divisor
|
85 |
-
new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
|
86 |
-
# Make sure that round down does not go down by more than 10%.
|
87 |
-
if new_v < 0.9 * v:
|
88 |
-
new_v += divisor
|
89 |
-
return new_v
|
90 |
-
|
91 |
-
|
92 |
-
class ConvBNReLU(nn.Sequential):
|
93 |
-
def __init__(self, in_planes, out_planes, kernel_size=3, stride=1, groups=1):
|
94 |
-
self.channel_pad = out_planes - in_planes
|
95 |
-
self.stride = stride
|
96 |
-
#padding = (kernel_size - 1) // 2
|
97 |
-
|
98 |
-
# TFLite uses slightly different padding than PyTorch
|
99 |
-
if stride == 2:
|
100 |
-
padding = 0
|
101 |
-
else:
|
102 |
-
padding = (kernel_size - 1) // 2
|
103 |
-
|
104 |
-
super(ConvBNReLU, self).__init__(
|
105 |
-
nn.Conv2d(in_planes, out_planes, kernel_size, stride, padding, groups=groups, bias=False),
|
106 |
-
nn.BatchNorm2d(out_planes),
|
107 |
-
nn.ReLU6(inplace=True)
|
108 |
-
)
|
109 |
-
self.max_pool = nn.MaxPool2d(kernel_size=stride, stride=stride)
|
110 |
-
|
111 |
-
|
112 |
-
def forward(self, x):
|
113 |
-
# TFLite uses different padding
|
114 |
-
if self.stride == 2:
|
115 |
-
x = F.pad(x, (0, 1, 0, 1), "constant", 0)
|
116 |
-
#print(x.shape)
|
117 |
-
|
118 |
-
for module in self:
|
119 |
-
if not isinstance(module, nn.MaxPool2d):
|
120 |
-
x = module(x)
|
121 |
-
return x
|
122 |
-
|
123 |
-
|
124 |
-
class InvertedResidual(nn.Module):
|
125 |
-
def __init__(self, inp, oup, stride, expand_ratio):
|
126 |
-
super(InvertedResidual, self).__init__()
|
127 |
-
self.stride = stride
|
128 |
-
assert stride in [1, 2]
|
129 |
-
|
130 |
-
hidden_dim = int(round(inp * expand_ratio))
|
131 |
-
self.use_res_connect = self.stride == 1 and inp == oup
|
132 |
-
|
133 |
-
layers = []
|
134 |
-
if expand_ratio != 1:
|
135 |
-
# pw
|
136 |
-
layers.append(ConvBNReLU(inp, hidden_dim, kernel_size=1))
|
137 |
-
layers.extend([
|
138 |
-
# dw
|
139 |
-
ConvBNReLU(hidden_dim, hidden_dim, stride=stride, groups=hidden_dim),
|
140 |
-
# pw-linear
|
141 |
-
nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False),
|
142 |
-
nn.BatchNorm2d(oup),
|
143 |
-
])
|
144 |
-
self.conv = nn.Sequential(*layers)
|
145 |
-
|
146 |
-
def forward(self, x):
|
147 |
-
if self.use_res_connect:
|
148 |
-
return x + self.conv(x)
|
149 |
-
else:
|
150 |
-
return self.conv(x)
|
151 |
-
|
152 |
-
|
153 |
-
class MobileNetV2(nn.Module):
|
154 |
-
def __init__(self, pretrained=True):
|
155 |
-
"""
|
156 |
-
MobileNet V2 main class
|
157 |
-
Args:
|
158 |
-
num_classes (int): Number of classes
|
159 |
-
width_mult (float): Width multiplier - adjusts number of channels in each layer by this amount
|
160 |
-
inverted_residual_setting: Network structure
|
161 |
-
round_nearest (int): Round the number of channels in each layer to be a multiple of this number
|
162 |
-
Set to 1 to turn off rounding
|
163 |
-
block: Module specifying inverted residual building block for mobilenet
|
164 |
-
"""
|
165 |
-
super(MobileNetV2, self).__init__()
|
166 |
-
|
167 |
-
block = InvertedResidual
|
168 |
-
input_channel = 32
|
169 |
-
last_channel = 1280
|
170 |
-
width_mult = 1.0
|
171 |
-
round_nearest = 8
|
172 |
-
|
173 |
-
inverted_residual_setting = [
|
174 |
-
# t, c, n, s
|
175 |
-
[1, 16, 1, 1],
|
176 |
-
[6, 24, 2, 2],
|
177 |
-
[6, 32, 3, 2],
|
178 |
-
[6, 64, 4, 2],
|
179 |
-
[6, 96, 3, 1],
|
180 |
-
#[6, 160, 3, 2],
|
181 |
-
#[6, 320, 1, 1],
|
182 |
-
]
|
183 |
-
|
184 |
-
# only check the first element, assuming user knows t,c,n,s are required
|
185 |
-
if len(inverted_residual_setting) == 0 or len(inverted_residual_setting[0]) != 4:
|
186 |
-
raise ValueError("inverted_residual_setting should be non-empty "
|
187 |
-
"or a 4-element list, got {}".format(inverted_residual_setting))
|
188 |
-
|
189 |
-
# building first layer
|
190 |
-
input_channel = _make_divisible(input_channel * width_mult, round_nearest)
|
191 |
-
self.last_channel = _make_divisible(last_channel * max(1.0, width_mult), round_nearest)
|
192 |
-
features = [ConvBNReLU(4, input_channel, stride=2)]
|
193 |
-
# building inverted residual blocks
|
194 |
-
for t, c, n, s in inverted_residual_setting:
|
195 |
-
output_channel = _make_divisible(c * width_mult, round_nearest)
|
196 |
-
for i in range(n):
|
197 |
-
stride = s if i == 0 else 1
|
198 |
-
features.append(block(input_channel, output_channel, stride, expand_ratio=t))
|
199 |
-
input_channel = output_channel
|
200 |
-
|
201 |
-
self.features = nn.Sequential(*features)
|
202 |
-
self.fpn_selected = [1, 3, 6, 10, 13]
|
203 |
-
# weight initialization
|
204 |
-
for m in self.modules():
|
205 |
-
if isinstance(m, nn.Conv2d):
|
206 |
-
nn.init.kaiming_normal_(m.weight, mode='fan_out')
|
207 |
-
if m.bias is not None:
|
208 |
-
nn.init.zeros_(m.bias)
|
209 |
-
elif isinstance(m, nn.BatchNorm2d):
|
210 |
-
nn.init.ones_(m.weight)
|
211 |
-
nn.init.zeros_(m.bias)
|
212 |
-
elif isinstance(m, nn.Linear):
|
213 |
-
nn.init.normal_(m.weight, 0, 0.01)
|
214 |
-
nn.init.zeros_(m.bias)
|
215 |
-
if pretrained:
|
216 |
-
self._load_pretrained_model()
|
217 |
-
|
218 |
-
def _forward_impl(self, x):
|
219 |
-
# This exists since TorchScript doesn't support inheritance, so the superclass method
|
220 |
-
# (this one) needs to have a name other than `forward` that can be accessed in a subclass
|
221 |
-
fpn_features = []
|
222 |
-
for i, f in enumerate(self.features):
|
223 |
-
if i > self.fpn_selected[-1]:
|
224 |
-
break
|
225 |
-
x = f(x)
|
226 |
-
if i in self.fpn_selected:
|
227 |
-
fpn_features.append(x)
|
228 |
-
|
229 |
-
c1, c2, c3, c4, c5 = fpn_features
|
230 |
-
return c1, c2, c3, c4, c5
|
231 |
-
|
232 |
-
|
233 |
-
def forward(self, x):
|
234 |
-
return self._forward_impl(x)
|
235 |
-
|
236 |
-
def _load_pretrained_model(self):
|
237 |
-
pretrain_dict = model_zoo.load_url('https://download.pytorch.org/models/mobilenet_v2-b0353104.pth')
|
238 |
-
model_dict = {}
|
239 |
-
state_dict = self.state_dict()
|
240 |
-
for k, v in pretrain_dict.items():
|
241 |
-
if k in state_dict:
|
242 |
-
model_dict[k] = v
|
243 |
-
state_dict.update(model_dict)
|
244 |
-
self.load_state_dict(state_dict)
|
245 |
-
|
246 |
-
|
247 |
-
class MobileV2_MLSD_Large(nn.Module):
|
248 |
-
def __init__(self):
|
249 |
-
super(MobileV2_MLSD_Large, self).__init__()
|
250 |
-
|
251 |
-
self.backbone = MobileNetV2(pretrained=False)
|
252 |
-
## A, B
|
253 |
-
self.block15 = BlockTypeA(in_c1= 64, in_c2= 96,
|
254 |
-
out_c1= 64, out_c2=64,
|
255 |
-
upscale=False)
|
256 |
-
self.block16 = BlockTypeB(128, 64)
|
257 |
-
|
258 |
-
## A, B
|
259 |
-
self.block17 = BlockTypeA(in_c1 = 32, in_c2 = 64,
|
260 |
-
out_c1= 64, out_c2= 64)
|
261 |
-
self.block18 = BlockTypeB(128, 64)
|
262 |
-
|
263 |
-
## A, B
|
264 |
-
self.block19 = BlockTypeA(in_c1=24, in_c2=64,
|
265 |
-
out_c1=64, out_c2=64)
|
266 |
-
self.block20 = BlockTypeB(128, 64)
|
267 |
-
|
268 |
-
## A, B, C
|
269 |
-
self.block21 = BlockTypeA(in_c1=16, in_c2=64,
|
270 |
-
out_c1=64, out_c2=64)
|
271 |
-
self.block22 = BlockTypeB(128, 64)
|
272 |
-
|
273 |
-
self.block23 = BlockTypeC(64, 16)
|
274 |
-
|
275 |
-
def forward(self, x):
|
276 |
-
c1, c2, c3, c4, c5 = self.backbone(x)
|
277 |
-
|
278 |
-
x = self.block15(c4, c5)
|
279 |
-
x = self.block16(x)
|
280 |
-
|
281 |
-
x = self.block17(c3, x)
|
282 |
-
x = self.block18(x)
|
283 |
-
|
284 |
-
x = self.block19(c2, x)
|
285 |
-
x = self.block20(x)
|
286 |
-
|
287 |
-
x = self.block21(c1, x)
|
288 |
-
x = self.block22(x)
|
289 |
-
x = self.block23(x)
|
290 |
-
x = x[:, 7:, :, :]
|
291 |
-
|
292 |
-
return x
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
controlnet_aux_local/mlsd/models/mbv2_mlsd_tiny.py
DELETED
@@ -1,275 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
import sys
|
3 |
-
import torch
|
4 |
-
import torch.nn as nn
|
5 |
-
import torch.utils.model_zoo as model_zoo
|
6 |
-
from torch.nn import functional as F
|
7 |
-
|
8 |
-
|
9 |
-
class BlockTypeA(nn.Module):
|
10 |
-
def __init__(self, in_c1, in_c2, out_c1, out_c2, upscale = True):
|
11 |
-
super(BlockTypeA, self).__init__()
|
12 |
-
self.conv1 = nn.Sequential(
|
13 |
-
nn.Conv2d(in_c2, out_c2, kernel_size=1),
|
14 |
-
nn.BatchNorm2d(out_c2),
|
15 |
-
nn.ReLU(inplace=True)
|
16 |
-
)
|
17 |
-
self.conv2 = nn.Sequential(
|
18 |
-
nn.Conv2d(in_c1, out_c1, kernel_size=1),
|
19 |
-
nn.BatchNorm2d(out_c1),
|
20 |
-
nn.ReLU(inplace=True)
|
21 |
-
)
|
22 |
-
self.upscale = upscale
|
23 |
-
|
24 |
-
def forward(self, a, b):
|
25 |
-
b = self.conv1(b)
|
26 |
-
a = self.conv2(a)
|
27 |
-
b = F.interpolate(b, scale_factor=2.0, mode='bilinear', align_corners=True)
|
28 |
-
return torch.cat((a, b), dim=1)
|
29 |
-
|
30 |
-
|
31 |
-
class BlockTypeB(nn.Module):
|
32 |
-
def __init__(self, in_c, out_c):
|
33 |
-
super(BlockTypeB, self).__init__()
|
34 |
-
self.conv1 = nn.Sequential(
|
35 |
-
nn.Conv2d(in_c, in_c, kernel_size=3, padding=1),
|
36 |
-
nn.BatchNorm2d(in_c),
|
37 |
-
nn.ReLU()
|
38 |
-
)
|
39 |
-
self.conv2 = nn.Sequential(
|
40 |
-
nn.Conv2d(in_c, out_c, kernel_size=3, padding=1),
|
41 |
-
nn.BatchNorm2d(out_c),
|
42 |
-
nn.ReLU()
|
43 |
-
)
|
44 |
-
|
45 |
-
def forward(self, x):
|
46 |
-
x = self.conv1(x) + x
|
47 |
-
x = self.conv2(x)
|
48 |
-
return x
|
49 |
-
|
50 |
-
class BlockTypeC(nn.Module):
|
51 |
-
def __init__(self, in_c, out_c):
|
52 |
-
super(BlockTypeC, self).__init__()
|
53 |
-
self.conv1 = nn.Sequential(
|
54 |
-
nn.Conv2d(in_c, in_c, kernel_size=3, padding=5, dilation=5),
|
55 |
-
nn.BatchNorm2d(in_c),
|
56 |
-
nn.ReLU()
|
57 |
-
)
|
58 |
-
self.conv2 = nn.Sequential(
|
59 |
-
nn.Conv2d(in_c, in_c, kernel_size=3, padding=1),
|
60 |
-
nn.BatchNorm2d(in_c),
|
61 |
-
nn.ReLU()
|
62 |
-
)
|
63 |
-
self.conv3 = nn.Conv2d(in_c, out_c, kernel_size=1)
|
64 |
-
|
65 |
-
def forward(self, x):
|
66 |
-
x = self.conv1(x)
|
67 |
-
x = self.conv2(x)
|
68 |
-
x = self.conv3(x)
|
69 |
-
return x
|
70 |
-
|
71 |
-
def _make_divisible(v, divisor, min_value=None):
|
72 |
-
"""
|
73 |
-
This function is taken from the original tf repo.
|
74 |
-
It ensures that all layers have a channel number that is divisible by 8
|
75 |
-
It can be seen here:
|
76 |
-
https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet.py
|
77 |
-
:param v:
|
78 |
-
:param divisor:
|
79 |
-
:param min_value:
|
80 |
-
:return:
|
81 |
-
"""
|
82 |
-
if min_value is None:
|
83 |
-
min_value = divisor
|
84 |
-
new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
|
85 |
-
# Make sure that round down does not go down by more than 10%.
|
86 |
-
if new_v < 0.9 * v:
|
87 |
-
new_v += divisor
|
88 |
-
return new_v
|
89 |
-
|
90 |
-
|
91 |
-
class ConvBNReLU(nn.Sequential):
|
92 |
-
def __init__(self, in_planes, out_planes, kernel_size=3, stride=1, groups=1):
|
93 |
-
self.channel_pad = out_planes - in_planes
|
94 |
-
self.stride = stride
|
95 |
-
#padding = (kernel_size - 1) // 2
|
96 |
-
|
97 |
-
# TFLite uses slightly different padding than PyTorch
|
98 |
-
if stride == 2:
|
99 |
-
padding = 0
|
100 |
-
else:
|
101 |
-
padding = (kernel_size - 1) // 2
|
102 |
-
|
103 |
-
super(ConvBNReLU, self).__init__(
|
104 |
-
nn.Conv2d(in_planes, out_planes, kernel_size, stride, padding, groups=groups, bias=False),
|
105 |
-
nn.BatchNorm2d(out_planes),
|
106 |
-
nn.ReLU6(inplace=True)
|
107 |
-
)
|
108 |
-
self.max_pool = nn.MaxPool2d(kernel_size=stride, stride=stride)
|
109 |
-
|
110 |
-
|
111 |
-
def forward(self, x):
|
112 |
-
# TFLite uses different padding
|
113 |
-
if self.stride == 2:
|
114 |
-
x = F.pad(x, (0, 1, 0, 1), "constant", 0)
|
115 |
-
#print(x.shape)
|
116 |
-
|
117 |
-
for module in self:
|
118 |
-
if not isinstance(module, nn.MaxPool2d):
|
119 |
-
x = module(x)
|
120 |
-
return x
|
121 |
-
|
122 |
-
|
123 |
-
class InvertedResidual(nn.Module):
|
124 |
-
def __init__(self, inp, oup, stride, expand_ratio):
|
125 |
-
super(InvertedResidual, self).__init__()
|
126 |
-
self.stride = stride
|
127 |
-
assert stride in [1, 2]
|
128 |
-
|
129 |
-
hidden_dim = int(round(inp * expand_ratio))
|
130 |
-
self.use_res_connect = self.stride == 1 and inp == oup
|
131 |
-
|
132 |
-
layers = []
|
133 |
-
if expand_ratio != 1:
|
134 |
-
# pw
|
135 |
-
layers.append(ConvBNReLU(inp, hidden_dim, kernel_size=1))
|
136 |
-
layers.extend([
|
137 |
-
# dw
|
138 |
-
ConvBNReLU(hidden_dim, hidden_dim, stride=stride, groups=hidden_dim),
|
139 |
-
# pw-linear
|
140 |
-
nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False),
|
141 |
-
nn.BatchNorm2d(oup),
|
142 |
-
])
|
143 |
-
self.conv = nn.Sequential(*layers)
|
144 |
-
|
145 |
-
def forward(self, x):
|
146 |
-
if self.use_res_connect:
|
147 |
-
return x + self.conv(x)
|
148 |
-
else:
|
149 |
-
return self.conv(x)
|
150 |
-
|
151 |
-
|
152 |
-
class MobileNetV2(nn.Module):
|
153 |
-
def __init__(self, pretrained=True):
|
154 |
-
"""
|
155 |
-
MobileNet V2 main class
|
156 |
-
Args:
|
157 |
-
num_classes (int): Number of classes
|
158 |
-
width_mult (float): Width multiplier - adjusts number of channels in each layer by this amount
|
159 |
-
inverted_residual_setting: Network structure
|
160 |
-
round_nearest (int): Round the number of channels in each layer to be a multiple of this number
|
161 |
-
Set to 1 to turn off rounding
|
162 |
-
block: Module specifying inverted residual building block for mobilenet
|
163 |
-
"""
|
164 |
-
super(MobileNetV2, self).__init__()
|
165 |
-
|
166 |
-
block = InvertedResidual
|
167 |
-
input_channel = 32
|
168 |
-
last_channel = 1280
|
169 |
-
width_mult = 1.0
|
170 |
-
round_nearest = 8
|
171 |
-
|
172 |
-
inverted_residual_setting = [
|
173 |
-
# t, c, n, s
|
174 |
-
[1, 16, 1, 1],
|
175 |
-
[6, 24, 2, 2],
|
176 |
-
[6, 32, 3, 2],
|
177 |
-
[6, 64, 4, 2],
|
178 |
-
#[6, 96, 3, 1],
|
179 |
-
#[6, 160, 3, 2],
|
180 |
-
#[6, 320, 1, 1],
|
181 |
-
]
|
182 |
-
|
183 |
-
# only check the first element, assuming user knows t,c,n,s are required
|
184 |
-
if len(inverted_residual_setting) == 0 or len(inverted_residual_setting[0]) != 4:
|
185 |
-
raise ValueError("inverted_residual_setting should be non-empty "
|
186 |
-
"or a 4-element list, got {}".format(inverted_residual_setting))
|
187 |
-
|
188 |
-
# building first layer
|
189 |
-
input_channel = _make_divisible(input_channel * width_mult, round_nearest)
|
190 |
-
self.last_channel = _make_divisible(last_channel * max(1.0, width_mult), round_nearest)
|
191 |
-
features = [ConvBNReLU(4, input_channel, stride=2)]
|
192 |
-
# building inverted residual blocks
|
193 |
-
for t, c, n, s in inverted_residual_setting:
|
194 |
-
output_channel = _make_divisible(c * width_mult, round_nearest)
|
195 |
-
for i in range(n):
|
196 |
-
stride = s if i == 0 else 1
|
197 |
-
features.append(block(input_channel, output_channel, stride, expand_ratio=t))
|
198 |
-
input_channel = output_channel
|
199 |
-
self.features = nn.Sequential(*features)
|
200 |
-
|
201 |
-
self.fpn_selected = [3, 6, 10]
|
202 |
-
# weight initialization
|
203 |
-
for m in self.modules():
|
204 |
-
if isinstance(m, nn.Conv2d):
|
205 |
-
nn.init.kaiming_normal_(m.weight, mode='fan_out')
|
206 |
-
if m.bias is not None:
|
207 |
-
nn.init.zeros_(m.bias)
|
208 |
-
elif isinstance(m, nn.BatchNorm2d):
|
209 |
-
nn.init.ones_(m.weight)
|
210 |
-
nn.init.zeros_(m.bias)
|
211 |
-
elif isinstance(m, nn.Linear):
|
212 |
-
nn.init.normal_(m.weight, 0, 0.01)
|
213 |
-
nn.init.zeros_(m.bias)
|
214 |
-
|
215 |
-
#if pretrained:
|
216 |
-
# self._load_pretrained_model()
|
217 |
-
|
218 |
-
def _forward_impl(self, x):
|
219 |
-
# This exists since TorchScript doesn't support inheritance, so the superclass method
|
220 |
-
# (this one) needs to have a name other than `forward` that can be accessed in a subclass
|
221 |
-
fpn_features = []
|
222 |
-
for i, f in enumerate(self.features):
|
223 |
-
if i > self.fpn_selected[-1]:
|
224 |
-
break
|
225 |
-
x = f(x)
|
226 |
-
if i in self.fpn_selected:
|
227 |
-
fpn_features.append(x)
|
228 |
-
|
229 |
-
c2, c3, c4 = fpn_features
|
230 |
-
return c2, c3, c4
|
231 |
-
|
232 |
-
|
233 |
-
def forward(self, x):
|
234 |
-
return self._forward_impl(x)
|
235 |
-
|
236 |
-
def _load_pretrained_model(self):
|
237 |
-
pretrain_dict = model_zoo.load_url('https://download.pytorch.org/models/mobilenet_v2-b0353104.pth')
|
238 |
-
model_dict = {}
|
239 |
-
state_dict = self.state_dict()
|
240 |
-
for k, v in pretrain_dict.items():
|
241 |
-
if k in state_dict:
|
242 |
-
model_dict[k] = v
|
243 |
-
state_dict.update(model_dict)
|
244 |
-
self.load_state_dict(state_dict)
|
245 |
-
|
246 |
-
|
247 |
-
class MobileV2_MLSD_Tiny(nn.Module):
|
248 |
-
def __init__(self):
|
249 |
-
super(MobileV2_MLSD_Tiny, self).__init__()
|
250 |
-
|
251 |
-
self.backbone = MobileNetV2(pretrained=True)
|
252 |
-
|
253 |
-
self.block12 = BlockTypeA(in_c1= 32, in_c2= 64,
|
254 |
-
out_c1= 64, out_c2=64)
|
255 |
-
self.block13 = BlockTypeB(128, 64)
|
256 |
-
|
257 |
-
self.block14 = BlockTypeA(in_c1 = 24, in_c2 = 64,
|
258 |
-
out_c1= 32, out_c2= 32)
|
259 |
-
self.block15 = BlockTypeB(64, 64)
|
260 |
-
|
261 |
-
self.block16 = BlockTypeC(64, 16)
|
262 |
-
|
263 |
-
def forward(self, x):
|
264 |
-
c2, c3, c4 = self.backbone(x)
|
265 |
-
|
266 |
-
x = self.block12(c3, c4)
|
267 |
-
x = self.block13(x)
|
268 |
-
x = self.block14(c2, x)
|
269 |
-
x = self.block15(x)
|
270 |
-
x = self.block16(x)
|
271 |
-
x = x[:, 7:, :, :]
|
272 |
-
#print(x.shape)
|
273 |
-
x = F.interpolate(x, scale_factor=2.0, mode='bilinear', align_corners=True)
|
274 |
-
|
275 |
-
return x
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
controlnet_aux_local/mlsd/utils.py
DELETED
@@ -1,584 +0,0 @@
|
|
1 |
-
'''
|
2 |
-
modified by lihaoweicv
|
3 |
-
pytorch version
|
4 |
-
'''
|
5 |
-
|
6 |
-
'''
|
7 |
-
M-LSD
|
8 |
-
Copyright 2021-present NAVER Corp.
|
9 |
-
Apache License v2.0
|
10 |
-
'''
|
11 |
-
|
12 |
-
import os
|
13 |
-
import numpy as np
|
14 |
-
import cv2
|
15 |
-
import torch
|
16 |
-
from torch.nn import functional as F
|
17 |
-
|
18 |
-
|
19 |
-
def deccode_output_score_and_ptss(tpMap, topk_n = 200, ksize = 5):
|
20 |
-
'''
|
21 |
-
tpMap:
|
22 |
-
center: tpMap[1, 0, :, :]
|
23 |
-
displacement: tpMap[1, 1:5, :, :]
|
24 |
-
'''
|
25 |
-
b, c, h, w = tpMap.shape
|
26 |
-
assert b==1, 'only support bsize==1'
|
27 |
-
displacement = tpMap[:, 1:5, :, :][0]
|
28 |
-
center = tpMap[:, 0, :, :]
|
29 |
-
heat = torch.sigmoid(center)
|
30 |
-
hmax = F.max_pool2d( heat, (ksize, ksize), stride=1, padding=(ksize-1)//2)
|
31 |
-
keep = (hmax == heat).float()
|
32 |
-
heat = heat * keep
|
33 |
-
heat = heat.reshape(-1, )
|
34 |
-
|
35 |
-
scores, indices = torch.topk(heat, topk_n, dim=-1, largest=True)
|
36 |
-
yy = torch.floor_divide(indices, w).unsqueeze(-1)
|
37 |
-
xx = torch.fmod(indices, w).unsqueeze(-1)
|
38 |
-
ptss = torch.cat((yy, xx),dim=-1)
|
39 |
-
|
40 |
-
ptss = ptss.detach().cpu().numpy()
|
41 |
-
scores = scores.detach().cpu().numpy()
|
42 |
-
displacement = displacement.detach().cpu().numpy()
|
43 |
-
displacement = displacement.transpose((1,2,0))
|
44 |
-
return ptss, scores, displacement
|
45 |
-
|
46 |
-
|
47 |
-
def pred_lines(image, model,
|
48 |
-
input_shape=[512, 512],
|
49 |
-
score_thr=0.10,
|
50 |
-
dist_thr=20.0):
|
51 |
-
h, w, _ = image.shape
|
52 |
-
|
53 |
-
device = next(iter(model.parameters())).device
|
54 |
-
h_ratio, w_ratio = [h / input_shape[0], w / input_shape[1]]
|
55 |
-
|
56 |
-
resized_image = np.concatenate([cv2.resize(image, (input_shape[1], input_shape[0]), interpolation=cv2.INTER_AREA),
|
57 |
-
np.ones([input_shape[0], input_shape[1], 1])], axis=-1)
|
58 |
-
|
59 |
-
resized_image = resized_image.transpose((2,0,1))
|
60 |
-
batch_image = np.expand_dims(resized_image, axis=0).astype('float32')
|
61 |
-
batch_image = (batch_image / 127.5) - 1.0
|
62 |
-
|
63 |
-
batch_image = torch.from_numpy(batch_image).float()
|
64 |
-
batch_image = batch_image.to(device)
|
65 |
-
outputs = model(batch_image)
|
66 |
-
pts, pts_score, vmap = deccode_output_score_and_ptss(outputs, 200, 3)
|
67 |
-
start = vmap[:, :, :2]
|
68 |
-
end = vmap[:, :, 2:]
|
69 |
-
dist_map = np.sqrt(np.sum((start - end) ** 2, axis=-1))
|
70 |
-
|
71 |
-
segments_list = []
|
72 |
-
for center, score in zip(pts, pts_score):
|
73 |
-
y, x = center
|
74 |
-
distance = dist_map[y, x]
|
75 |
-
if score > score_thr and distance > dist_thr:
|
76 |
-
disp_x_start, disp_y_start, disp_x_end, disp_y_end = vmap[y, x, :]
|
77 |
-
x_start = x + disp_x_start
|
78 |
-
y_start = y + disp_y_start
|
79 |
-
x_end = x + disp_x_end
|
80 |
-
y_end = y + disp_y_end
|
81 |
-
segments_list.append([x_start, y_start, x_end, y_end])
|
82 |
-
|
83 |
-
lines = 2 * np.array(segments_list) # 256 > 512
|
84 |
-
lines[:, 0] = lines[:, 0] * w_ratio
|
85 |
-
lines[:, 1] = lines[:, 1] * h_ratio
|
86 |
-
lines[:, 2] = lines[:, 2] * w_ratio
|
87 |
-
lines[:, 3] = lines[:, 3] * h_ratio
|
88 |
-
|
89 |
-
return lines
|
90 |
-
|
91 |
-
|
92 |
-
def pred_squares(image,
|
93 |
-
model,
|
94 |
-
input_shape=[512, 512],
|
95 |
-
params={'score': 0.06,
|
96 |
-
'outside_ratio': 0.28,
|
97 |
-
'inside_ratio': 0.45,
|
98 |
-
'w_overlap': 0.0,
|
99 |
-
'w_degree': 1.95,
|
100 |
-
'w_length': 0.0,
|
101 |
-
'w_area': 1.86,
|
102 |
-
'w_center': 0.14}):
|
103 |
-
'''
|
104 |
-
shape = [height, width]
|
105 |
-
'''
|
106 |
-
h, w, _ = image.shape
|
107 |
-
original_shape = [h, w]
|
108 |
-
device = next(iter(model.parameters())).device
|
109 |
-
|
110 |
-
resized_image = np.concatenate([cv2.resize(image, (input_shape[0], input_shape[1]), interpolation=cv2.INTER_AREA),
|
111 |
-
np.ones([input_shape[0], input_shape[1], 1])], axis=-1)
|
112 |
-
resized_image = resized_image.transpose((2, 0, 1))
|
113 |
-
batch_image = np.expand_dims(resized_image, axis=0).astype('float32')
|
114 |
-
batch_image = (batch_image / 127.5) - 1.0
|
115 |
-
|
116 |
-
batch_image = torch.from_numpy(batch_image).float().to(device)
|
117 |
-
outputs = model(batch_image)
|
118 |
-
|
119 |
-
pts, pts_score, vmap = deccode_output_score_and_ptss(outputs, 200, 3)
|
120 |
-
start = vmap[:, :, :2] # (x, y)
|
121 |
-
end = vmap[:, :, 2:] # (x, y)
|
122 |
-
dist_map = np.sqrt(np.sum((start - end) ** 2, axis=-1))
|
123 |
-
|
124 |
-
junc_list = []
|
125 |
-
segments_list = []
|
126 |
-
for junc, score in zip(pts, pts_score):
|
127 |
-
y, x = junc
|
128 |
-
distance = dist_map[y, x]
|
129 |
-
if score > params['score'] and distance > 20.0:
|
130 |
-
junc_list.append([x, y])
|
131 |
-
disp_x_start, disp_y_start, disp_x_end, disp_y_end = vmap[y, x, :]
|
132 |
-
d_arrow = 1.0
|
133 |
-
x_start = x + d_arrow * disp_x_start
|
134 |
-
y_start = y + d_arrow * disp_y_start
|
135 |
-
x_end = x + d_arrow * disp_x_end
|
136 |
-
y_end = y + d_arrow * disp_y_end
|
137 |
-
segments_list.append([x_start, y_start, x_end, y_end])
|
138 |
-
|
139 |
-
segments = np.array(segments_list)
|
140 |
-
|
141 |
-
####### post processing for squares
|
142 |
-
# 1. get unique lines
|
143 |
-
point = np.array([[0, 0]])
|
144 |
-
point = point[0]
|
145 |
-
start = segments[:, :2]
|
146 |
-
end = segments[:, 2:]
|
147 |
-
diff = start - end
|
148 |
-
a = diff[:, 1]
|
149 |
-
b = -diff[:, 0]
|
150 |
-
c = a * start[:, 0] + b * start[:, 1]
|
151 |
-
|
152 |
-
d = np.abs(a * point[0] + b * point[1] - c) / np.sqrt(a ** 2 + b ** 2 + 1e-10)
|
153 |
-
theta = np.arctan2(diff[:, 0], diff[:, 1]) * 180 / np.pi
|
154 |
-
theta[theta < 0.0] += 180
|
155 |
-
hough = np.concatenate([d[:, None], theta[:, None]], axis=-1)
|
156 |
-
|
157 |
-
d_quant = 1
|
158 |
-
theta_quant = 2
|
159 |
-
hough[:, 0] //= d_quant
|
160 |
-
hough[:, 1] //= theta_quant
|
161 |
-
_, indices, counts = np.unique(hough, axis=0, return_index=True, return_counts=True)
|
162 |
-
|
163 |
-
acc_map = np.zeros([512 // d_quant + 1, 360 // theta_quant + 1], dtype='float32')
|
164 |
-
idx_map = np.zeros([512 // d_quant + 1, 360 // theta_quant + 1], dtype='int32') - 1
|
165 |
-
yx_indices = hough[indices, :].astype('int32')
|
166 |
-
acc_map[yx_indices[:, 0], yx_indices[:, 1]] = counts
|
167 |
-
idx_map[yx_indices[:, 0], yx_indices[:, 1]] = indices
|
168 |
-
|
169 |
-
acc_map_np = acc_map
|
170 |
-
# acc_map = acc_map[None, :, :, None]
|
171 |
-
#
|
172 |
-
# ### fast suppression using tensorflow op
|
173 |
-
# acc_map = tf.constant(acc_map, dtype=tf.float32)
|
174 |
-
# max_acc_map = tf.keras.layers.MaxPool2D(pool_size=(5, 5), strides=1, padding='same')(acc_map)
|
175 |
-
# acc_map = acc_map * tf.cast(tf.math.equal(acc_map, max_acc_map), tf.float32)
|
176 |
-
# flatten_acc_map = tf.reshape(acc_map, [1, -1])
|
177 |
-
# topk_values, topk_indices = tf.math.top_k(flatten_acc_map, k=len(pts))
|
178 |
-
# _, h, w, _ = acc_map.shape
|
179 |
-
# y = tf.expand_dims(topk_indices // w, axis=-1)
|
180 |
-
# x = tf.expand_dims(topk_indices % w, axis=-1)
|
181 |
-
# yx = tf.concat([y, x], axis=-1)
|
182 |
-
|
183 |
-
### fast suppression using pytorch op
|
184 |
-
acc_map = torch.from_numpy(acc_map_np).unsqueeze(0).unsqueeze(0)
|
185 |
-
_,_, h, w = acc_map.shape
|
186 |
-
max_acc_map = F.max_pool2d(acc_map,kernel_size=5, stride=1, padding=2)
|
187 |
-
acc_map = acc_map * ( (acc_map == max_acc_map).float() )
|
188 |
-
flatten_acc_map = acc_map.reshape([-1, ])
|
189 |
-
|
190 |
-
scores, indices = torch.topk(flatten_acc_map, len(pts), dim=-1, largest=True)
|
191 |
-
yy = torch.div(indices, w, rounding_mode='floor').unsqueeze(-1)
|
192 |
-
xx = torch.fmod(indices, w).unsqueeze(-1)
|
193 |
-
yx = torch.cat((yy, xx), dim=-1)
|
194 |
-
|
195 |
-
yx = yx.detach().cpu().numpy()
|
196 |
-
|
197 |
-
topk_values = scores.detach().cpu().numpy()
|
198 |
-
indices = idx_map[yx[:, 0], yx[:, 1]]
|
199 |
-
basis = 5 // 2
|
200 |
-
|
201 |
-
merged_segments = []
|
202 |
-
for yx_pt, max_indice, value in zip(yx, indices, topk_values):
|
203 |
-
y, x = yx_pt
|
204 |
-
if max_indice == -1 or value == 0:
|
205 |
-
continue
|
206 |
-
segment_list = []
|
207 |
-
for y_offset in range(-basis, basis + 1):
|
208 |
-
for x_offset in range(-basis, basis + 1):
|
209 |
-
indice = idx_map[y + y_offset, x + x_offset]
|
210 |
-
cnt = int(acc_map_np[y + y_offset, x + x_offset])
|
211 |
-
if indice != -1:
|
212 |
-
segment_list.append(segments[indice])
|
213 |
-
if cnt > 1:
|
214 |
-
check_cnt = 1
|
215 |
-
current_hough = hough[indice]
|
216 |
-
for new_indice, new_hough in enumerate(hough):
|
217 |
-
if (current_hough == new_hough).all() and indice != new_indice:
|
218 |
-
segment_list.append(segments[new_indice])
|
219 |
-
check_cnt += 1
|
220 |
-
if check_cnt == cnt:
|
221 |
-
break
|
222 |
-
group_segments = np.array(segment_list).reshape([-1, 2])
|
223 |
-
sorted_group_segments = np.sort(group_segments, axis=0)
|
224 |
-
x_min, y_min = sorted_group_segments[0, :]
|
225 |
-
x_max, y_max = sorted_group_segments[-1, :]
|
226 |
-
|
227 |
-
deg = theta[max_indice]
|
228 |
-
if deg >= 90:
|
229 |
-
merged_segments.append([x_min, y_max, x_max, y_min])
|
230 |
-
else:
|
231 |
-
merged_segments.append([x_min, y_min, x_max, y_max])
|
232 |
-
|
233 |
-
# 2. get intersections
|
234 |
-
new_segments = np.array(merged_segments) # (x1, y1, x2, y2)
|
235 |
-
start = new_segments[:, :2] # (x1, y1)
|
236 |
-
end = new_segments[:, 2:] # (x2, y2)
|
237 |
-
new_centers = (start + end) / 2.0
|
238 |
-
diff = start - end
|
239 |
-
dist_segments = np.sqrt(np.sum(diff ** 2, axis=-1))
|
240 |
-
|
241 |
-
# ax + by = c
|
242 |
-
a = diff[:, 1]
|
243 |
-
b = -diff[:, 0]
|
244 |
-
c = a * start[:, 0] + b * start[:, 1]
|
245 |
-
pre_det = a[:, None] * b[None, :]
|
246 |
-
det = pre_det - np.transpose(pre_det)
|
247 |
-
|
248 |
-
pre_inter_y = a[:, None] * c[None, :]
|
249 |
-
inter_y = (pre_inter_y - np.transpose(pre_inter_y)) / (det + 1e-10)
|
250 |
-
pre_inter_x = c[:, None] * b[None, :]
|
251 |
-
inter_x = (pre_inter_x - np.transpose(pre_inter_x)) / (det + 1e-10)
|
252 |
-
inter_pts = np.concatenate([inter_x[:, :, None], inter_y[:, :, None]], axis=-1).astype('int32')
|
253 |
-
|
254 |
-
# 3. get corner information
|
255 |
-
# 3.1 get distance
|
256 |
-
'''
|
257 |
-
dist_segments:
|
258 |
-
| dist(0), dist(1), dist(2), ...|
|
259 |
-
dist_inter_to_segment1:
|
260 |
-
| dist(inter,0), dist(inter,0), dist(inter,0), ... |
|
261 |
-
| dist(inter,1), dist(inter,1), dist(inter,1), ... |
|
262 |
-
...
|
263 |
-
dist_inter_to_semgnet2:
|
264 |
-
| dist(inter,0), dist(inter,1), dist(inter,2), ... |
|
265 |
-
| dist(inter,0), dist(inter,1), dist(inter,2), ... |
|
266 |
-
...
|
267 |
-
'''
|
268 |
-
|
269 |
-
dist_inter_to_segment1_start = np.sqrt(
|
270 |
-
np.sum(((inter_pts - start[:, None, :]) ** 2), axis=-1, keepdims=True)) # [n_batch, n_batch, 1]
|
271 |
-
dist_inter_to_segment1_end = np.sqrt(
|
272 |
-
np.sum(((inter_pts - end[:, None, :]) ** 2), axis=-1, keepdims=True)) # [n_batch, n_batch, 1]
|
273 |
-
dist_inter_to_segment2_start = np.sqrt(
|
274 |
-
np.sum(((inter_pts - start[None, :, :]) ** 2), axis=-1, keepdims=True)) # [n_batch, n_batch, 1]
|
275 |
-
dist_inter_to_segment2_end = np.sqrt(
|
276 |
-
np.sum(((inter_pts - end[None, :, :]) ** 2), axis=-1, keepdims=True)) # [n_batch, n_batch, 1]
|
277 |
-
|
278 |
-
# sort ascending
|
279 |
-
dist_inter_to_segment1 = np.sort(
|
280 |
-
np.concatenate([dist_inter_to_segment1_start, dist_inter_to_segment1_end], axis=-1),
|
281 |
-
axis=-1) # [n_batch, n_batch, 2]
|
282 |
-
dist_inter_to_segment2 = np.sort(
|
283 |
-
np.concatenate([dist_inter_to_segment2_start, dist_inter_to_segment2_end], axis=-1),
|
284 |
-
axis=-1) # [n_batch, n_batch, 2]
|
285 |
-
|
286 |
-
# 3.2 get degree
|
287 |
-
inter_to_start = new_centers[:, None, :] - inter_pts
|
288 |
-
deg_inter_to_start = np.arctan2(inter_to_start[:, :, 1], inter_to_start[:, :, 0]) * 180 / np.pi
|
289 |
-
deg_inter_to_start[deg_inter_to_start < 0.0] += 360
|
290 |
-
inter_to_end = new_centers[None, :, :] - inter_pts
|
291 |
-
deg_inter_to_end = np.arctan2(inter_to_end[:, :, 1], inter_to_end[:, :, 0]) * 180 / np.pi
|
292 |
-
deg_inter_to_end[deg_inter_to_end < 0.0] += 360
|
293 |
-
|
294 |
-
'''
|
295 |
-
B -- G
|
296 |
-
| |
|
297 |
-
C -- R
|
298 |
-
B : blue / G: green / C: cyan / R: red
|
299 |
-
|
300 |
-
0 -- 1
|
301 |
-
| |
|
302 |
-
3 -- 2
|
303 |
-
'''
|
304 |
-
# rename variables
|
305 |
-
deg1_map, deg2_map = deg_inter_to_start, deg_inter_to_end
|
306 |
-
# sort deg ascending
|
307 |
-
deg_sort = np.sort(np.concatenate([deg1_map[:, :, None], deg2_map[:, :, None]], axis=-1), axis=-1)
|
308 |
-
|
309 |
-
deg_diff_map = np.abs(deg1_map - deg2_map)
|
310 |
-
# we only consider the smallest degree of intersect
|
311 |
-
deg_diff_map[deg_diff_map > 180] = 360 - deg_diff_map[deg_diff_map > 180]
|
312 |
-
|
313 |
-
# define available degree range
|
314 |
-
deg_range = [60, 120]
|
315 |
-
|
316 |
-
corner_dict = {corner_info: [] for corner_info in range(4)}
|
317 |
-
inter_points = []
|
318 |
-
for i in range(inter_pts.shape[0]):
|
319 |
-
for j in range(i + 1, inter_pts.shape[1]):
|
320 |
-
# i, j > line index, always i < j
|
321 |
-
x, y = inter_pts[i, j, :]
|
322 |
-
deg1, deg2 = deg_sort[i, j, :]
|
323 |
-
deg_diff = deg_diff_map[i, j]
|
324 |
-
|
325 |
-
check_degree = deg_diff > deg_range[0] and deg_diff < deg_range[1]
|
326 |
-
|
327 |
-
outside_ratio = params['outside_ratio'] # over ratio >>> drop it!
|
328 |
-
inside_ratio = params['inside_ratio'] # over ratio >>> drop it!
|
329 |
-
check_distance = ((dist_inter_to_segment1[i, j, 1] >= dist_segments[i] and \
|
330 |
-
dist_inter_to_segment1[i, j, 0] <= dist_segments[i] * outside_ratio) or \
|
331 |
-
(dist_inter_to_segment1[i, j, 1] <= dist_segments[i] and \
|
332 |
-
dist_inter_to_segment1[i, j, 0] <= dist_segments[i] * inside_ratio)) and \
|
333 |
-
((dist_inter_to_segment2[i, j, 1] >= dist_segments[j] and \
|
334 |
-
dist_inter_to_segment2[i, j, 0] <= dist_segments[j] * outside_ratio) or \
|
335 |
-
(dist_inter_to_segment2[i, j, 1] <= dist_segments[j] and \
|
336 |
-
dist_inter_to_segment2[i, j, 0] <= dist_segments[j] * inside_ratio))
|
337 |
-
|
338 |
-
if check_degree and check_distance:
|
339 |
-
corner_info = None
|
340 |
-
|
341 |
-
if (deg1 >= 0 and deg1 <= 45 and deg2 >= 45 and deg2 <= 120) or \
|
342 |
-
(deg2 >= 315 and deg1 >= 45 and deg1 <= 120):
|
343 |
-
corner_info, color_info = 0, 'blue'
|
344 |
-
elif (deg1 >= 45 and deg1 <= 125 and deg2 >= 125 and deg2 <= 225):
|
345 |
-
corner_info, color_info = 1, 'green'
|
346 |
-
elif (deg1 >= 125 and deg1 <= 225 and deg2 >= 225 and deg2 <= 315):
|
347 |
-
corner_info, color_info = 2, 'black'
|
348 |
-
elif (deg1 >= 0 and deg1 <= 45 and deg2 >= 225 and deg2 <= 315) or \
|
349 |
-
(deg2 >= 315 and deg1 >= 225 and deg1 <= 315):
|
350 |
-
corner_info, color_info = 3, 'cyan'
|
351 |
-
else:
|
352 |
-
corner_info, color_info = 4, 'red' # we don't use it
|
353 |
-
continue
|
354 |
-
|
355 |
-
corner_dict[corner_info].append([x, y, i, j])
|
356 |
-
inter_points.append([x, y])
|
357 |
-
|
358 |
-
square_list = []
|
359 |
-
connect_list = []
|
360 |
-
segments_list = []
|
361 |
-
for corner0 in corner_dict[0]:
|
362 |
-
for corner1 in corner_dict[1]:
|
363 |
-
connect01 = False
|
364 |
-
for corner0_line in corner0[2:]:
|
365 |
-
if corner0_line in corner1[2:]:
|
366 |
-
connect01 = True
|
367 |
-
break
|
368 |
-
if connect01:
|
369 |
-
for corner2 in corner_dict[2]:
|
370 |
-
connect12 = False
|
371 |
-
for corner1_line in corner1[2:]:
|
372 |
-
if corner1_line in corner2[2:]:
|
373 |
-
connect12 = True
|
374 |
-
break
|
375 |
-
if connect12:
|
376 |
-
for corner3 in corner_dict[3]:
|
377 |
-
connect23 = False
|
378 |
-
for corner2_line in corner2[2:]:
|
379 |
-
if corner2_line in corner3[2:]:
|
380 |
-
connect23 = True
|
381 |
-
break
|
382 |
-
if connect23:
|
383 |
-
for corner3_line in corner3[2:]:
|
384 |
-
if corner3_line in corner0[2:]:
|
385 |
-
# SQUARE!!!
|
386 |
-
'''
|
387 |
-
0 -- 1
|
388 |
-
| |
|
389 |
-
3 -- 2
|
390 |
-
square_list:
|
391 |
-
order: 0 > 1 > 2 > 3
|
392 |
-
| x0, y0, x1, y1, x2, y2, x3, y3 |
|
393 |
-
| x0, y0, x1, y1, x2, y2, x3, y3 |
|
394 |
-
...
|
395 |
-
connect_list:
|
396 |
-
order: 01 > 12 > 23 > 30
|
397 |
-
| line_idx01, line_idx12, line_idx23, line_idx30 |
|
398 |
-
| line_idx01, line_idx12, line_idx23, line_idx30 |
|
399 |
-
...
|
400 |
-
segments_list:
|
401 |
-
order: 0 > 1 > 2 > 3
|
402 |
-
| line_idx0_i, line_idx0_j, line_idx1_i, line_idx1_j, line_idx2_i, line_idx2_j, line_idx3_i, line_idx3_j |
|
403 |
-
| line_idx0_i, line_idx0_j, line_idx1_i, line_idx1_j, line_idx2_i, line_idx2_j, line_idx3_i, line_idx3_j |
|
404 |
-
...
|
405 |
-
'''
|
406 |
-
square_list.append(corner0[:2] + corner1[:2] + corner2[:2] + corner3[:2])
|
407 |
-
connect_list.append([corner0_line, corner1_line, corner2_line, corner3_line])
|
408 |
-
segments_list.append(corner0[2:] + corner1[2:] + corner2[2:] + corner3[2:])
|
409 |
-
|
410 |
-
def check_outside_inside(segments_info, connect_idx):
|
411 |
-
# return 'outside or inside', min distance, cover_param, peri_param
|
412 |
-
if connect_idx == segments_info[0]:
|
413 |
-
check_dist_mat = dist_inter_to_segment1
|
414 |
-
else:
|
415 |
-
check_dist_mat = dist_inter_to_segment2
|
416 |
-
|
417 |
-
i, j = segments_info
|
418 |
-
min_dist, max_dist = check_dist_mat[i, j, :]
|
419 |
-
connect_dist = dist_segments[connect_idx]
|
420 |
-
if max_dist > connect_dist:
|
421 |
-
return 'outside', min_dist, 0, 1
|
422 |
-
else:
|
423 |
-
return 'inside', min_dist, -1, -1
|
424 |
-
|
425 |
-
top_square = None
|
426 |
-
|
427 |
-
try:
|
428 |
-
map_size = input_shape[0] / 2
|
429 |
-
squares = np.array(square_list).reshape([-1, 4, 2])
|
430 |
-
score_array = []
|
431 |
-
connect_array = np.array(connect_list)
|
432 |
-
segments_array = np.array(segments_list).reshape([-1, 4, 2])
|
433 |
-
|
434 |
-
# get degree of corners:
|
435 |
-
squares_rollup = np.roll(squares, 1, axis=1)
|
436 |
-
squares_rolldown = np.roll(squares, -1, axis=1)
|
437 |
-
vec1 = squares_rollup - squares
|
438 |
-
normalized_vec1 = vec1 / (np.linalg.norm(vec1, axis=-1, keepdims=True) + 1e-10)
|
439 |
-
vec2 = squares_rolldown - squares
|
440 |
-
normalized_vec2 = vec2 / (np.linalg.norm(vec2, axis=-1, keepdims=True) + 1e-10)
|
441 |
-
inner_products = np.sum(normalized_vec1 * normalized_vec2, axis=-1) # [n_squares, 4]
|
442 |
-
squares_degree = np.arccos(inner_products) * 180 / np.pi # [n_squares, 4]
|
443 |
-
|
444 |
-
# get square score
|
445 |
-
overlap_scores = []
|
446 |
-
degree_scores = []
|
447 |
-
length_scores = []
|
448 |
-
|
449 |
-
for connects, segments, square, degree in zip(connect_array, segments_array, squares, squares_degree):
|
450 |
-
'''
|
451 |
-
0 -- 1
|
452 |
-
| |
|
453 |
-
3 -- 2
|
454 |
-
|
455 |
-
# segments: [4, 2]
|
456 |
-
# connects: [4]
|
457 |
-
'''
|
458 |
-
|
459 |
-
###################################### OVERLAP SCORES
|
460 |
-
cover = 0
|
461 |
-
perimeter = 0
|
462 |
-
# check 0 > 1 > 2 > 3
|
463 |
-
square_length = []
|
464 |
-
|
465 |
-
for start_idx in range(4):
|
466 |
-
end_idx = (start_idx + 1) % 4
|
467 |
-
|
468 |
-
connect_idx = connects[start_idx] # segment idx of segment01
|
469 |
-
start_segments = segments[start_idx]
|
470 |
-
end_segments = segments[end_idx]
|
471 |
-
|
472 |
-
start_point = square[start_idx]
|
473 |
-
end_point = square[end_idx]
|
474 |
-
|
475 |
-
# check whether outside or inside
|
476 |
-
start_position, start_min, start_cover_param, start_peri_param = check_outside_inside(start_segments,
|
477 |
-
connect_idx)
|
478 |
-
end_position, end_min, end_cover_param, end_peri_param = check_outside_inside(end_segments, connect_idx)
|
479 |
-
|
480 |
-
cover += dist_segments[connect_idx] + start_cover_param * start_min + end_cover_param * end_min
|
481 |
-
perimeter += dist_segments[connect_idx] + start_peri_param * start_min + end_peri_param * end_min
|
482 |
-
|
483 |
-
square_length.append(
|
484 |
-
dist_segments[connect_idx] + start_peri_param * start_min + end_peri_param * end_min)
|
485 |
-
|
486 |
-
overlap_scores.append(cover / perimeter)
|
487 |
-
######################################
|
488 |
-
###################################### DEGREE SCORES
|
489 |
-
'''
|
490 |
-
deg0 vs deg2
|
491 |
-
deg1 vs deg3
|
492 |
-
'''
|
493 |
-
deg0, deg1, deg2, deg3 = degree
|
494 |
-
deg_ratio1 = deg0 / deg2
|
495 |
-
if deg_ratio1 > 1.0:
|
496 |
-
deg_ratio1 = 1 / deg_ratio1
|
497 |
-
deg_ratio2 = deg1 / deg3
|
498 |
-
if deg_ratio2 > 1.0:
|
499 |
-
deg_ratio2 = 1 / deg_ratio2
|
500 |
-
degree_scores.append((deg_ratio1 + deg_ratio2) / 2)
|
501 |
-
######################################
|
502 |
-
###################################### LENGTH SCORES
|
503 |
-
'''
|
504 |
-
len0 vs len2
|
505 |
-
len1 vs len3
|
506 |
-
'''
|
507 |
-
len0, len1, len2, len3 = square_length
|
508 |
-
len_ratio1 = len0 / len2 if len2 > len0 else len2 / len0
|
509 |
-
len_ratio2 = len1 / len3 if len3 > len1 else len3 / len1
|
510 |
-
length_scores.append((len_ratio1 + len_ratio2) / 2)
|
511 |
-
|
512 |
-
######################################
|
513 |
-
|
514 |
-
overlap_scores = np.array(overlap_scores)
|
515 |
-
overlap_scores /= np.max(overlap_scores)
|
516 |
-
|
517 |
-
degree_scores = np.array(degree_scores)
|
518 |
-
# degree_scores /= np.max(degree_scores)
|
519 |
-
|
520 |
-
length_scores = np.array(length_scores)
|
521 |
-
|
522 |
-
###################################### AREA SCORES
|
523 |
-
area_scores = np.reshape(squares, [-1, 4, 2])
|
524 |
-
area_x = area_scores[:, :, 0]
|
525 |
-
area_y = area_scores[:, :, 1]
|
526 |
-
correction = area_x[:, -1] * area_y[:, 0] - area_y[:, -1] * area_x[:, 0]
|
527 |
-
area_scores = np.sum(area_x[:, :-1] * area_y[:, 1:], axis=-1) - np.sum(area_y[:, :-1] * area_x[:, 1:], axis=-1)
|
528 |
-
area_scores = 0.5 * np.abs(area_scores + correction)
|
529 |
-
area_scores /= (map_size * map_size) # np.max(area_scores)
|
530 |
-
######################################
|
531 |
-
|
532 |
-
###################################### CENTER SCORES
|
533 |
-
centers = np.array([[256 // 2, 256 // 2]], dtype='float32') # [1, 2]
|
534 |
-
# squares: [n, 4, 2]
|
535 |
-
square_centers = np.mean(squares, axis=1) # [n, 2]
|
536 |
-
center2center = np.sqrt(np.sum((centers - square_centers) ** 2))
|
537 |
-
center_scores = center2center / (map_size / np.sqrt(2.0))
|
538 |
-
|
539 |
-
'''
|
540 |
-
score_w = [overlap, degree, area, center, length]
|
541 |
-
'''
|
542 |
-
score_w = [0.0, 1.0, 10.0, 0.5, 1.0]
|
543 |
-
score_array = params['w_overlap'] * overlap_scores \
|
544 |
-
+ params['w_degree'] * degree_scores \
|
545 |
-
+ params['w_area'] * area_scores \
|
546 |
-
- params['w_center'] * center_scores \
|
547 |
-
+ params['w_length'] * length_scores
|
548 |
-
|
549 |
-
best_square = []
|
550 |
-
|
551 |
-
sorted_idx = np.argsort(score_array)[::-1]
|
552 |
-
score_array = score_array[sorted_idx]
|
553 |
-
squares = squares[sorted_idx]
|
554 |
-
|
555 |
-
except Exception as e:
|
556 |
-
pass
|
557 |
-
|
558 |
-
'''return list
|
559 |
-
merged_lines, squares, scores
|
560 |
-
'''
|
561 |
-
|
562 |
-
try:
|
563 |
-
new_segments[:, 0] = new_segments[:, 0] * 2 / input_shape[1] * original_shape[1]
|
564 |
-
new_segments[:, 1] = new_segments[:, 1] * 2 / input_shape[0] * original_shape[0]
|
565 |
-
new_segments[:, 2] = new_segments[:, 2] * 2 / input_shape[1] * original_shape[1]
|
566 |
-
new_segments[:, 3] = new_segments[:, 3] * 2 / input_shape[0] * original_shape[0]
|
567 |
-
except:
|
568 |
-
new_segments = []
|
569 |
-
|
570 |
-
try:
|
571 |
-
squares[:, :, 0] = squares[:, :, 0] * 2 / input_shape[1] * original_shape[1]
|
572 |
-
squares[:, :, 1] = squares[:, :, 1] * 2 / input_shape[0] * original_shape[0]
|
573 |
-
except:
|
574 |
-
squares = []
|
575 |
-
score_array = []
|
576 |
-
|
577 |
-
try:
|
578 |
-
inter_points = np.array(inter_points)
|
579 |
-
inter_points[:, 0] = inter_points[:, 0] * 2 / input_shape[1] * original_shape[1]
|
580 |
-
inter_points[:, 1] = inter_points[:, 1] * 2 / input_shape[0] * original_shape[0]
|
581 |
-
except:
|
582 |
-
inter_points = []
|
583 |
-
|
584 |
-
return new_segments, squares, score_array, inter_points
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
controlnet_aux_local/open_pose/__init__.py
DELETED
@@ -1,234 +0,0 @@
|
|
1 |
-
# Openpose
|
2 |
-
# Original from CMU https://github.com/CMU-Perceptual-Computing-Lab/openpose
|
3 |
-
# 2nd Edited by https://github.com/Hzzone/pytorch-openpose
|
4 |
-
# 3rd Edited by ControlNet
|
5 |
-
# 4th Edited by ControlNet (added face and correct hands)
|
6 |
-
# 5th Edited by ControlNet (Improved JSON serialization/deserialization, and lots of bug fixs)
|
7 |
-
# This preprocessor is licensed by CMU for non-commercial use only.
|
8 |
-
|
9 |
-
|
10 |
-
import os
|
11 |
-
|
12 |
-
os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE"
|
13 |
-
|
14 |
-
import json
|
15 |
-
import warnings
|
16 |
-
from typing import Callable, List, NamedTuple, Tuple, Union
|
17 |
-
|
18 |
-
import cv2
|
19 |
-
import numpy as np
|
20 |
-
import torch
|
21 |
-
from huggingface_hub import hf_hub_download
|
22 |
-
from PIL import Image
|
23 |
-
|
24 |
-
from ..util import HWC3, resize_image
|
25 |
-
from . import util
|
26 |
-
from .body import Body, BodyResult, Keypoint
|
27 |
-
from .face import Face
|
28 |
-
from .hand import Hand
|
29 |
-
|
30 |
-
HandResult = List[Keypoint]
|
31 |
-
FaceResult = List[Keypoint]
|
32 |
-
|
33 |
-
class PoseResult(NamedTuple):
|
34 |
-
body: BodyResult
|
35 |
-
left_hand: Union[HandResult, None]
|
36 |
-
right_hand: Union[HandResult, None]
|
37 |
-
face: Union[FaceResult, None]
|
38 |
-
|
39 |
-
def draw_poses(poses: List[PoseResult], H, W, draw_body=True, draw_hand=True, draw_face=True):
|
40 |
-
"""
|
41 |
-
Draw the detected poses on an empty canvas.
|
42 |
-
|
43 |
-
Args:
|
44 |
-
poses (List[PoseResult]): A list of PoseResult objects containing the detected poses.
|
45 |
-
H (int): The height of the canvas.
|
46 |
-
W (int): The width of the canvas.
|
47 |
-
draw_body (bool, optional): Whether to draw body keypoints. Defaults to True.
|
48 |
-
draw_hand (bool, optional): Whether to draw hand keypoints. Defaults to True.
|
49 |
-
draw_face (bool, optional): Whether to draw face keypoints. Defaults to True.
|
50 |
-
|
51 |
-
Returns:
|
52 |
-
numpy.ndarray: A 3D numpy array representing the canvas with the drawn poses.
|
53 |
-
"""
|
54 |
-
canvas = np.zeros(shape=(H, W, 3), dtype=np.uint8)
|
55 |
-
|
56 |
-
for pose in poses:
|
57 |
-
if draw_body:
|
58 |
-
canvas = util.draw_bodypose(canvas, pose.body.keypoints)
|
59 |
-
|
60 |
-
if draw_hand:
|
61 |
-
canvas = util.draw_handpose(canvas, pose.left_hand)
|
62 |
-
canvas = util.draw_handpose(canvas, pose.right_hand)
|
63 |
-
|
64 |
-
if draw_face:
|
65 |
-
canvas = util.draw_facepose(canvas, pose.face)
|
66 |
-
|
67 |
-
return canvas
|
68 |
-
|
69 |
-
|
70 |
-
class OpenposeDetector:
|
71 |
-
"""
|
72 |
-
A class for detecting human poses in images using the Openpose model.
|
73 |
-
|
74 |
-
Attributes:
|
75 |
-
model_dir (str): Path to the directory where the pose models are stored.
|
76 |
-
"""
|
77 |
-
def __init__(self, body_estimation, hand_estimation=None, face_estimation=None):
|
78 |
-
self.body_estimation = body_estimation
|
79 |
-
self.hand_estimation = hand_estimation
|
80 |
-
self.face_estimation = face_estimation
|
81 |
-
|
82 |
-
@classmethod
|
83 |
-
def from_pretrained(cls, pretrained_model_or_path, filename=None, hand_filename=None, face_filename=None, cache_dir=None, local_files_only=False):
|
84 |
-
|
85 |
-
if pretrained_model_or_path == "lllyasviel/ControlNet":
|
86 |
-
filename = filename or "annotator/ckpts/body_pose_model.pth"
|
87 |
-
hand_filename = hand_filename or "annotator/ckpts/hand_pose_model.pth"
|
88 |
-
face_filename = face_filename or "facenet.pth"
|
89 |
-
|
90 |
-
face_pretrained_model_or_path = "lllyasviel/Annotators"
|
91 |
-
else:
|
92 |
-
filename = filename or "body_pose_model.pth"
|
93 |
-
hand_filename = hand_filename or "hand_pose_model.pth"
|
94 |
-
face_filename = face_filename or "facenet.pth"
|
95 |
-
|
96 |
-
face_pretrained_model_or_path = pretrained_model_or_path
|
97 |
-
|
98 |
-
if os.path.isdir(pretrained_model_or_path):
|
99 |
-
body_model_path = os.path.join(pretrained_model_or_path, filename)
|
100 |
-
hand_model_path = os.path.join(pretrained_model_or_path, hand_filename)
|
101 |
-
face_model_path = os.path.join(face_pretrained_model_or_path, face_filename)
|
102 |
-
else:
|
103 |
-
body_model_path = hf_hub_download(pretrained_model_or_path, filename, cache_dir=cache_dir, local_files_only=local_files_only)
|
104 |
-
hand_model_path = hf_hub_download(pretrained_model_or_path, hand_filename, cache_dir=cache_dir, local_files_only=local_files_only)
|
105 |
-
face_model_path = hf_hub_download(face_pretrained_model_or_path, face_filename, cache_dir=cache_dir, local_files_only=local_files_only)
|
106 |
-
|
107 |
-
body_estimation = Body(body_model_path)
|
108 |
-
hand_estimation = Hand(hand_model_path)
|
109 |
-
face_estimation = Face(face_model_path)
|
110 |
-
|
111 |
-
return cls(body_estimation, hand_estimation, face_estimation)
|
112 |
-
|
113 |
-
def to(self, device):
|
114 |
-
self.body_estimation.to(device)
|
115 |
-
self.hand_estimation.to(device)
|
116 |
-
self.face_estimation.to(device)
|
117 |
-
return self
|
118 |
-
|
119 |
-
def detect_hands(self, body: BodyResult, oriImg) -> Tuple[Union[HandResult, None], Union[HandResult, None]]:
|
120 |
-
left_hand = None
|
121 |
-
right_hand = None
|
122 |
-
H, W, _ = oriImg.shape
|
123 |
-
for x, y, w, is_left in util.handDetect(body, oriImg):
|
124 |
-
peaks = self.hand_estimation(oriImg[y:y+w, x:x+w, :]).astype(np.float32)
|
125 |
-
if peaks.ndim == 2 and peaks.shape[1] == 2:
|
126 |
-
peaks[:, 0] = np.where(peaks[:, 0] < 1e-6, -1, peaks[:, 0] + x) / float(W)
|
127 |
-
peaks[:, 1] = np.where(peaks[:, 1] < 1e-6, -1, peaks[:, 1] + y) / float(H)
|
128 |
-
|
129 |
-
hand_result = [
|
130 |
-
Keypoint(x=peak[0], y=peak[1])
|
131 |
-
for peak in peaks
|
132 |
-
]
|
133 |
-
|
134 |
-
if is_left:
|
135 |
-
left_hand = hand_result
|
136 |
-
else:
|
137 |
-
right_hand = hand_result
|
138 |
-
|
139 |
-
return left_hand, right_hand
|
140 |
-
|
141 |
-
def detect_face(self, body: BodyResult, oriImg) -> Union[FaceResult, None]:
|
142 |
-
face = util.faceDetect(body, oriImg)
|
143 |
-
if face is None:
|
144 |
-
return None
|
145 |
-
|
146 |
-
x, y, w = face
|
147 |
-
H, W, _ = oriImg.shape
|
148 |
-
heatmaps = self.face_estimation(oriImg[y:y+w, x:x+w, :])
|
149 |
-
peaks = self.face_estimation.compute_peaks_from_heatmaps(heatmaps).astype(np.float32)
|
150 |
-
if peaks.ndim == 2 and peaks.shape[1] == 2:
|
151 |
-
peaks[:, 0] = np.where(peaks[:, 0] < 1e-6, -1, peaks[:, 0] + x) / float(W)
|
152 |
-
peaks[:, 1] = np.where(peaks[:, 1] < 1e-6, -1, peaks[:, 1] + y) / float(H)
|
153 |
-
return [
|
154 |
-
Keypoint(x=peak[0], y=peak[1])
|
155 |
-
for peak in peaks
|
156 |
-
]
|
157 |
-
|
158 |
-
return None
|
159 |
-
|
160 |
-
def detect_poses(self, oriImg, include_hand=False, include_face=False) -> List[PoseResult]:
|
161 |
-
"""
|
162 |
-
Detect poses in the given image.
|
163 |
-
Args:
|
164 |
-
oriImg (numpy.ndarray): The input image for pose detection.
|
165 |
-
include_hand (bool, optional): Whether to include hand detection. Defaults to False.
|
166 |
-
include_face (bool, optional): Whether to include face detection. Defaults to False.
|
167 |
-
|
168 |
-
Returns:
|
169 |
-
List[PoseResult]: A list of PoseResult objects containing the detected poses.
|
170 |
-
"""
|
171 |
-
oriImg = oriImg[:, :, ::-1].copy()
|
172 |
-
H, W, C = oriImg.shape
|
173 |
-
with torch.no_grad():
|
174 |
-
candidate, subset = self.body_estimation(oriImg)
|
175 |
-
bodies = self.body_estimation.format_body_result(candidate, subset)
|
176 |
-
|
177 |
-
results = []
|
178 |
-
for body in bodies:
|
179 |
-
left_hand, right_hand, face = (None,) * 3
|
180 |
-
if include_hand:
|
181 |
-
left_hand, right_hand = self.detect_hands(body, oriImg)
|
182 |
-
if include_face:
|
183 |
-
face = self.detect_face(body, oriImg)
|
184 |
-
|
185 |
-
results.append(PoseResult(BodyResult(
|
186 |
-
keypoints=[
|
187 |
-
Keypoint(
|
188 |
-
x=keypoint.x / float(W),
|
189 |
-
y=keypoint.y / float(H)
|
190 |
-
) if keypoint is not None else None
|
191 |
-
for keypoint in body.keypoints
|
192 |
-
],
|
193 |
-
total_score=body.total_score,
|
194 |
-
total_parts=body.total_parts
|
195 |
-
), left_hand, right_hand, face))
|
196 |
-
|
197 |
-
return results
|
198 |
-
|
199 |
-
def __call__(self, input_image, detect_resolution=512, image_resolution=512, include_body=True, include_hand=False, include_face=False, hand_and_face=None, output_type="pil", **kwargs):
|
200 |
-
if hand_and_face is not None:
|
201 |
-
warnings.warn("hand_and_face is deprecated. Use include_hand and include_face instead.", DeprecationWarning)
|
202 |
-
include_hand = hand_and_face
|
203 |
-
include_face = hand_and_face
|
204 |
-
|
205 |
-
if "return_pil" in kwargs:
|
206 |
-
warnings.warn("return_pil is deprecated. Use output_type instead.", DeprecationWarning)
|
207 |
-
output_type = "pil" if kwargs["return_pil"] else "np"
|
208 |
-
if type(output_type) is bool:
|
209 |
-
warnings.warn("Passing `True` or `False` to `output_type` is deprecated and will raise an error in future versions")
|
210 |
-
if output_type:
|
211 |
-
output_type = "pil"
|
212 |
-
|
213 |
-
if not isinstance(input_image, np.ndarray):
|
214 |
-
input_image = np.array(input_image, dtype=np.uint8)
|
215 |
-
|
216 |
-
input_image = HWC3(input_image)
|
217 |
-
input_image = resize_image(input_image, detect_resolution)
|
218 |
-
H, W, C = input_image.shape
|
219 |
-
|
220 |
-
poses = self.detect_poses(input_image, include_hand, include_face)
|
221 |
-
canvas = draw_poses(poses, H, W, draw_body=include_body, draw_hand=include_hand, draw_face=include_face)
|
222 |
-
|
223 |
-
detected_map = canvas
|
224 |
-
detected_map = HWC3(detected_map)
|
225 |
-
|
226 |
-
img = resize_image(input_image, image_resolution)
|
227 |
-
H, W, C = img.shape
|
228 |
-
|
229 |
-
detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_LINEAR)
|
230 |
-
|
231 |
-
if output_type == "pil":
|
232 |
-
detected_map = Image.fromarray(detected_map)
|
233 |
-
|
234 |
-
return detected_map
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
controlnet_aux_local/open_pose/body.py
DELETED
@@ -1,260 +0,0 @@
|
|
1 |
-
import math
|
2 |
-
from typing import List, NamedTuple, Union
|
3 |
-
|
4 |
-
import cv2
|
5 |
-
import numpy as np
|
6 |
-
import torch
|
7 |
-
from scipy.ndimage.filters import gaussian_filter
|
8 |
-
|
9 |
-
from . import util
|
10 |
-
from .model import bodypose_model
|
11 |
-
|
12 |
-
|
13 |
-
class Keypoint(NamedTuple):
|
14 |
-
x: float
|
15 |
-
y: float
|
16 |
-
score: float = 1.0
|
17 |
-
id: int = -1
|
18 |
-
|
19 |
-
|
20 |
-
class BodyResult(NamedTuple):
|
21 |
-
# Note: Using `Union` instead of `|` operator as the ladder is a Python
|
22 |
-
# 3.10 feature.
|
23 |
-
# Annotator code should be Python 3.8 Compatible, as controlnet repo uses
|
24 |
-
# Python 3.8 environment.
|
25 |
-
# https://github.com/lllyasviel/ControlNet/blob/d3284fcd0972c510635a4f5abe2eeb71dc0de524/environment.yaml#L6
|
26 |
-
keypoints: List[Union[Keypoint, None]]
|
27 |
-
total_score: float
|
28 |
-
total_parts: int
|
29 |
-
|
30 |
-
|
31 |
-
class Body(object):
|
32 |
-
def __init__(self, model_path):
|
33 |
-
self.model = bodypose_model()
|
34 |
-
model_dict = util.transfer(self.model, torch.load(model_path))
|
35 |
-
self.model.load_state_dict(model_dict)
|
36 |
-
self.model.eval()
|
37 |
-
|
38 |
-
def to(self, device):
|
39 |
-
self.model.to(device)
|
40 |
-
return self
|
41 |
-
|
42 |
-
def __call__(self, oriImg):
|
43 |
-
device = next(iter(self.model.parameters())).device
|
44 |
-
# scale_search = [0.5, 1.0, 1.5, 2.0]
|
45 |
-
scale_search = [0.5]
|
46 |
-
boxsize = 368
|
47 |
-
stride = 8
|
48 |
-
padValue = 128
|
49 |
-
thre1 = 0.1
|
50 |
-
thre2 = 0.05
|
51 |
-
multiplier = [x * boxsize / oriImg.shape[0] for x in scale_search]
|
52 |
-
heatmap_avg = np.zeros((oriImg.shape[0], oriImg.shape[1], 19))
|
53 |
-
paf_avg = np.zeros((oriImg.shape[0], oriImg.shape[1], 38))
|
54 |
-
|
55 |
-
for m in range(len(multiplier)):
|
56 |
-
scale = multiplier[m]
|
57 |
-
imageToTest = util.smart_resize_k(oriImg, fx=scale, fy=scale)
|
58 |
-
imageToTest_padded, pad = util.padRightDownCorner(imageToTest, stride, padValue)
|
59 |
-
im = np.transpose(np.float32(imageToTest_padded[:, :, :, np.newaxis]), (3, 2, 0, 1)) / 256 - 0.5
|
60 |
-
im = np.ascontiguousarray(im)
|
61 |
-
|
62 |
-
data = torch.from_numpy(im).float()
|
63 |
-
data = data.to(device)
|
64 |
-
# data = data.permute([2, 0, 1]).unsqueeze(0).float()
|
65 |
-
with torch.no_grad():
|
66 |
-
Mconv7_stage6_L1, Mconv7_stage6_L2 = self.model(data)
|
67 |
-
Mconv7_stage6_L1 = Mconv7_stage6_L1.cpu().numpy()
|
68 |
-
Mconv7_stage6_L2 = Mconv7_stage6_L2.cpu().numpy()
|
69 |
-
|
70 |
-
# extract outputs, resize, and remove padding
|
71 |
-
# heatmap = np.transpose(np.squeeze(net.blobs[output_blobs.keys()[1]].data), (1, 2, 0)) # output 1 is heatmaps
|
72 |
-
heatmap = np.transpose(np.squeeze(Mconv7_stage6_L2), (1, 2, 0)) # output 1 is heatmaps
|
73 |
-
heatmap = util.smart_resize_k(heatmap, fx=stride, fy=stride)
|
74 |
-
heatmap = heatmap[:imageToTest_padded.shape[0] - pad[2], :imageToTest_padded.shape[1] - pad[3], :]
|
75 |
-
heatmap = util.smart_resize(heatmap, (oriImg.shape[0], oriImg.shape[1]))
|
76 |
-
|
77 |
-
# paf = np.transpose(np.squeeze(net.blobs[output_blobs.keys()[0]].data), (1, 2, 0)) # output 0 is PAFs
|
78 |
-
paf = np.transpose(np.squeeze(Mconv7_stage6_L1), (1, 2, 0)) # output 0 is PAFs
|
79 |
-
paf = util.smart_resize_k(paf, fx=stride, fy=stride)
|
80 |
-
paf = paf[:imageToTest_padded.shape[0] - pad[2], :imageToTest_padded.shape[1] - pad[3], :]
|
81 |
-
paf = util.smart_resize(paf, (oriImg.shape[0], oriImg.shape[1]))
|
82 |
-
|
83 |
-
heatmap_avg += heatmap_avg + heatmap / len(multiplier)
|
84 |
-
paf_avg += + paf / len(multiplier)
|
85 |
-
|
86 |
-
all_peaks = []
|
87 |
-
peak_counter = 0
|
88 |
-
|
89 |
-
for part in range(18):
|
90 |
-
map_ori = heatmap_avg[:, :, part]
|
91 |
-
one_heatmap = gaussian_filter(map_ori, sigma=3)
|
92 |
-
|
93 |
-
map_left = np.zeros(one_heatmap.shape)
|
94 |
-
map_left[1:, :] = one_heatmap[:-1, :]
|
95 |
-
map_right = np.zeros(one_heatmap.shape)
|
96 |
-
map_right[:-1, :] = one_heatmap[1:, :]
|
97 |
-
map_up = np.zeros(one_heatmap.shape)
|
98 |
-
map_up[:, 1:] = one_heatmap[:, :-1]
|
99 |
-
map_down = np.zeros(one_heatmap.shape)
|
100 |
-
map_down[:, :-1] = one_heatmap[:, 1:]
|
101 |
-
|
102 |
-
peaks_binary = np.logical_and.reduce(
|
103 |
-
(one_heatmap >= map_left, one_heatmap >= map_right, one_heatmap >= map_up, one_heatmap >= map_down, one_heatmap > thre1))
|
104 |
-
peaks = list(zip(np.nonzero(peaks_binary)[1], np.nonzero(peaks_binary)[0])) # note reverse
|
105 |
-
peaks_with_score = [x + (map_ori[x[1], x[0]],) for x in peaks]
|
106 |
-
peak_id = range(peak_counter, peak_counter + len(peaks))
|
107 |
-
peaks_with_score_and_id = [peaks_with_score[i] + (peak_id[i],) for i in range(len(peak_id))]
|
108 |
-
|
109 |
-
all_peaks.append(peaks_with_score_and_id)
|
110 |
-
peak_counter += len(peaks)
|
111 |
-
|
112 |
-
# find connection in the specified sequence, center 29 is in the position 15
|
113 |
-
limbSeq = [[2, 3], [2, 6], [3, 4], [4, 5], [6, 7], [7, 8], [2, 9], [9, 10], \
|
114 |
-
[10, 11], [2, 12], [12, 13], [13, 14], [2, 1], [1, 15], [15, 17], \
|
115 |
-
[1, 16], [16, 18], [3, 17], [6, 18]]
|
116 |
-
# the middle joints heatmap correpondence
|
117 |
-
mapIdx = [[31, 32], [39, 40], [33, 34], [35, 36], [41, 42], [43, 44], [19, 20], [21, 22], \
|
118 |
-
[23, 24], [25, 26], [27, 28], [29, 30], [47, 48], [49, 50], [53, 54], [51, 52], \
|
119 |
-
[55, 56], [37, 38], [45, 46]]
|
120 |
-
|
121 |
-
connection_all = []
|
122 |
-
special_k = []
|
123 |
-
mid_num = 10
|
124 |
-
|
125 |
-
for k in range(len(mapIdx)):
|
126 |
-
score_mid = paf_avg[:, :, [x - 19 for x in mapIdx[k]]]
|
127 |
-
candA = all_peaks[limbSeq[k][0] - 1]
|
128 |
-
candB = all_peaks[limbSeq[k][1] - 1]
|
129 |
-
nA = len(candA)
|
130 |
-
nB = len(candB)
|
131 |
-
indexA, indexB = limbSeq[k]
|
132 |
-
if (nA != 0 and nB != 0):
|
133 |
-
connection_candidate = []
|
134 |
-
for i in range(nA):
|
135 |
-
for j in range(nB):
|
136 |
-
vec = np.subtract(candB[j][:2], candA[i][:2])
|
137 |
-
norm = math.sqrt(vec[0] * vec[0] + vec[1] * vec[1])
|
138 |
-
norm = max(0.001, norm)
|
139 |
-
vec = np.divide(vec, norm)
|
140 |
-
|
141 |
-
startend = list(zip(np.linspace(candA[i][0], candB[j][0], num=mid_num), \
|
142 |
-
np.linspace(candA[i][1], candB[j][1], num=mid_num)))
|
143 |
-
|
144 |
-
vec_x = np.array([score_mid[int(round(startend[I][1])), int(round(startend[I][0])), 0] \
|
145 |
-
for I in range(len(startend))])
|
146 |
-
vec_y = np.array([score_mid[int(round(startend[I][1])), int(round(startend[I][0])), 1] \
|
147 |
-
for I in range(len(startend))])
|
148 |
-
|
149 |
-
score_midpts = np.multiply(vec_x, vec[0]) + np.multiply(vec_y, vec[1])
|
150 |
-
score_with_dist_prior = sum(score_midpts) / len(score_midpts) + min(
|
151 |
-
0.5 * oriImg.shape[0] / norm - 1, 0)
|
152 |
-
criterion1 = len(np.nonzero(score_midpts > thre2)[0]) > 0.8 * len(score_midpts)
|
153 |
-
criterion2 = score_with_dist_prior > 0
|
154 |
-
if criterion1 and criterion2:
|
155 |
-
connection_candidate.append(
|
156 |
-
[i, j, score_with_dist_prior, score_with_dist_prior + candA[i][2] + candB[j][2]])
|
157 |
-
|
158 |
-
connection_candidate = sorted(connection_candidate, key=lambda x: x[2], reverse=True)
|
159 |
-
connection = np.zeros((0, 5))
|
160 |
-
for c in range(len(connection_candidate)):
|
161 |
-
i, j, s = connection_candidate[c][0:3]
|
162 |
-
if (i not in connection[:, 3] and j not in connection[:, 4]):
|
163 |
-
connection = np.vstack([connection, [candA[i][3], candB[j][3], s, i, j]])
|
164 |
-
if (len(connection) >= min(nA, nB)):
|
165 |
-
break
|
166 |
-
|
167 |
-
connection_all.append(connection)
|
168 |
-
else:
|
169 |
-
special_k.append(k)
|
170 |
-
connection_all.append([])
|
171 |
-
|
172 |
-
# last number in each row is the total parts number of that person
|
173 |
-
# the second last number in each row is the score of the overall configuration
|
174 |
-
subset = -1 * np.ones((0, 20))
|
175 |
-
candidate = np.array([item for sublist in all_peaks for item in sublist])
|
176 |
-
|
177 |
-
for k in range(len(mapIdx)):
|
178 |
-
if k not in special_k:
|
179 |
-
partAs = connection_all[k][:, 0]
|
180 |
-
partBs = connection_all[k][:, 1]
|
181 |
-
indexA, indexB = np.array(limbSeq[k]) - 1
|
182 |
-
|
183 |
-
for i in range(len(connection_all[k])): # = 1:size(temp,1)
|
184 |
-
found = 0
|
185 |
-
subset_idx = [-1, -1]
|
186 |
-
for j in range(len(subset)): # 1:size(subset,1):
|
187 |
-
if subset[j][indexA] == partAs[i] or subset[j][indexB] == partBs[i]:
|
188 |
-
subset_idx[found] = j
|
189 |
-
found += 1
|
190 |
-
|
191 |
-
if found == 1:
|
192 |
-
j = subset_idx[0]
|
193 |
-
if subset[j][indexB] != partBs[i]:
|
194 |
-
subset[j][indexB] = partBs[i]
|
195 |
-
subset[j][-1] += 1
|
196 |
-
subset[j][-2] += candidate[partBs[i].astype(int), 2] + connection_all[k][i][2]
|
197 |
-
elif found == 2: # if found 2 and disjoint, merge them
|
198 |
-
j1, j2 = subset_idx
|
199 |
-
membership = ((subset[j1] >= 0).astype(int) + (subset[j2] >= 0).astype(int))[:-2]
|
200 |
-
if len(np.nonzero(membership == 2)[0]) == 0: # merge
|
201 |
-
subset[j1][:-2] += (subset[j2][:-2] + 1)
|
202 |
-
subset[j1][-2:] += subset[j2][-2:]
|
203 |
-
subset[j1][-2] += connection_all[k][i][2]
|
204 |
-
subset = np.delete(subset, j2, 0)
|
205 |
-
else: # as like found == 1
|
206 |
-
subset[j1][indexB] = partBs[i]
|
207 |
-
subset[j1][-1] += 1
|
208 |
-
subset[j1][-2] += candidate[partBs[i].astype(int), 2] + connection_all[k][i][2]
|
209 |
-
|
210 |
-
# if find no partA in the subset, create a new subset
|
211 |
-
elif not found and k < 17:
|
212 |
-
row = -1 * np.ones(20)
|
213 |
-
row[indexA] = partAs[i]
|
214 |
-
row[indexB] = partBs[i]
|
215 |
-
row[-1] = 2
|
216 |
-
row[-2] = sum(candidate[connection_all[k][i, :2].astype(int), 2]) + connection_all[k][i][2]
|
217 |
-
subset = np.vstack([subset, row])
|
218 |
-
# delete some rows of subset which has few parts occur
|
219 |
-
deleteIdx = []
|
220 |
-
for i in range(len(subset)):
|
221 |
-
if subset[i][-1] < 4 or subset[i][-2] / subset[i][-1] < 0.4:
|
222 |
-
deleteIdx.append(i)
|
223 |
-
subset = np.delete(subset, deleteIdx, axis=0)
|
224 |
-
|
225 |
-
# subset: n*20 array, 0-17 is the index in candidate, 18 is the total score, 19 is the total parts
|
226 |
-
# candidate: x, y, score, id
|
227 |
-
return candidate, subset
|
228 |
-
|
229 |
-
@staticmethod
|
230 |
-
def format_body_result(candidate: np.ndarray, subset: np.ndarray) -> List[BodyResult]:
|
231 |
-
"""
|
232 |
-
Format the body results from the candidate and subset arrays into a list of BodyResult objects.
|
233 |
-
|
234 |
-
Args:
|
235 |
-
candidate (np.ndarray): An array of candidates containing the x, y coordinates, score, and id
|
236 |
-
for each body part.
|
237 |
-
subset (np.ndarray): An array of subsets containing indices to the candidate array for each
|
238 |
-
person detected. The last two columns of each row hold the total score and total parts
|
239 |
-
of the person.
|
240 |
-
|
241 |
-
Returns:
|
242 |
-
List[BodyResult]: A list of BodyResult objects, where each object represents a person with
|
243 |
-
detected keypoints, total score, and total parts.
|
244 |
-
"""
|
245 |
-
return [
|
246 |
-
BodyResult(
|
247 |
-
keypoints=[
|
248 |
-
Keypoint(
|
249 |
-
x=candidate[candidate_index][0],
|
250 |
-
y=candidate[candidate_index][1],
|
251 |
-
score=candidate[candidate_index][2],
|
252 |
-
id=candidate[candidate_index][3]
|
253 |
-
) if candidate_index != -1 else None
|
254 |
-
for candidate_index in person[:18].astype(int)
|
255 |
-
],
|
256 |
-
total_score=person[18],
|
257 |
-
total_parts=person[19]
|
258 |
-
)
|
259 |
-
for person in subset
|
260 |
-
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
controlnet_aux_local/open_pose/face.py
DELETED
@@ -1,364 +0,0 @@
|
|
1 |
-
import logging
|
2 |
-
|
3 |
-
import numpy as np
|
4 |
-
import torch
|
5 |
-
import torch.nn.functional as F
|
6 |
-
from torch.nn import Conv2d, MaxPool2d, Module, ReLU, init
|
7 |
-
from torchvision.transforms import ToPILImage, ToTensor
|
8 |
-
|
9 |
-
from . import util
|
10 |
-
|
11 |
-
|
12 |
-
class FaceNet(Module):
|
13 |
-
"""Model the cascading heatmaps. """
|
14 |
-
def __init__(self):
|
15 |
-
super(FaceNet, self).__init__()
|
16 |
-
# cnn to make feature map
|
17 |
-
self.relu = ReLU()
|
18 |
-
self.max_pooling_2d = MaxPool2d(kernel_size=2, stride=2)
|
19 |
-
self.conv1_1 = Conv2d(in_channels=3, out_channels=64,
|
20 |
-
kernel_size=3, stride=1, padding=1)
|
21 |
-
self.conv1_2 = Conv2d(
|
22 |
-
in_channels=64, out_channels=64, kernel_size=3, stride=1,
|
23 |
-
padding=1)
|
24 |
-
self.conv2_1 = Conv2d(
|
25 |
-
in_channels=64, out_channels=128, kernel_size=3, stride=1,
|
26 |
-
padding=1)
|
27 |
-
self.conv2_2 = Conv2d(
|
28 |
-
in_channels=128, out_channels=128, kernel_size=3, stride=1,
|
29 |
-
padding=1)
|
30 |
-
self.conv3_1 = Conv2d(
|
31 |
-
in_channels=128, out_channels=256, kernel_size=3, stride=1,
|
32 |
-
padding=1)
|
33 |
-
self.conv3_2 = Conv2d(
|
34 |
-
in_channels=256, out_channels=256, kernel_size=3, stride=1,
|
35 |
-
padding=1)
|
36 |
-
self.conv3_3 = Conv2d(
|
37 |
-
in_channels=256, out_channels=256, kernel_size=3, stride=1,
|
38 |
-
padding=1)
|
39 |
-
self.conv3_4 = Conv2d(
|
40 |
-
in_channels=256, out_channels=256, kernel_size=3, stride=1,
|
41 |
-
padding=1)
|
42 |
-
self.conv4_1 = Conv2d(
|
43 |
-
in_channels=256, out_channels=512, kernel_size=3, stride=1,
|
44 |
-
padding=1)
|
45 |
-
self.conv4_2 = Conv2d(
|
46 |
-
in_channels=512, out_channels=512, kernel_size=3, stride=1,
|
47 |
-
padding=1)
|
48 |
-
self.conv4_3 = Conv2d(
|
49 |
-
in_channels=512, out_channels=512, kernel_size=3, stride=1,
|
50 |
-
padding=1)
|
51 |
-
self.conv4_4 = Conv2d(
|
52 |
-
in_channels=512, out_channels=512, kernel_size=3, stride=1,
|
53 |
-
padding=1)
|
54 |
-
self.conv5_1 = Conv2d(
|
55 |
-
in_channels=512, out_channels=512, kernel_size=3, stride=1,
|
56 |
-
padding=1)
|
57 |
-
self.conv5_2 = Conv2d(
|
58 |
-
in_channels=512, out_channels=512, kernel_size=3, stride=1,
|
59 |
-
padding=1)
|
60 |
-
self.conv5_3_CPM = Conv2d(
|
61 |
-
in_channels=512, out_channels=128, kernel_size=3, stride=1,
|
62 |
-
padding=1)
|
63 |
-
|
64 |
-
# stage1
|
65 |
-
self.conv6_1_CPM = Conv2d(
|
66 |
-
in_channels=128, out_channels=512, kernel_size=1, stride=1,
|
67 |
-
padding=0)
|
68 |
-
self.conv6_2_CPM = Conv2d(
|
69 |
-
in_channels=512, out_channels=71, kernel_size=1, stride=1,
|
70 |
-
padding=0)
|
71 |
-
|
72 |
-
# stage2
|
73 |
-
self.Mconv1_stage2 = Conv2d(
|
74 |
-
in_channels=199, out_channels=128, kernel_size=7, stride=1,
|
75 |
-
padding=3)
|
76 |
-
self.Mconv2_stage2 = Conv2d(
|
77 |
-
in_channels=128, out_channels=128, kernel_size=7, stride=1,
|
78 |
-
padding=3)
|
79 |
-
self.Mconv3_stage2 = Conv2d(
|
80 |
-
in_channels=128, out_channels=128, kernel_size=7, stride=1,
|
81 |
-
padding=3)
|
82 |
-
self.Mconv4_stage2 = Conv2d(
|
83 |
-
in_channels=128, out_channels=128, kernel_size=7, stride=1,
|
84 |
-
padding=3)
|
85 |
-
self.Mconv5_stage2 = Conv2d(
|
86 |
-
in_channels=128, out_channels=128, kernel_size=7, stride=1,
|
87 |
-
padding=3)
|
88 |
-
self.Mconv6_stage2 = Conv2d(
|
89 |
-
in_channels=128, out_channels=128, kernel_size=1, stride=1,
|
90 |
-
padding=0)
|
91 |
-
self.Mconv7_stage2 = Conv2d(
|
92 |
-
in_channels=128, out_channels=71, kernel_size=1, stride=1,
|
93 |
-
padding=0)
|
94 |
-
|
95 |
-
# stage3
|
96 |
-
self.Mconv1_stage3 = Conv2d(
|
97 |
-
in_channels=199, out_channels=128, kernel_size=7, stride=1,
|
98 |
-
padding=3)
|
99 |
-
self.Mconv2_stage3 = Conv2d(
|
100 |
-
in_channels=128, out_channels=128, kernel_size=7, stride=1,
|
101 |
-
padding=3)
|
102 |
-
self.Mconv3_stage3 = Conv2d(
|
103 |
-
in_channels=128, out_channels=128, kernel_size=7, stride=1,
|
104 |
-
padding=3)
|
105 |
-
self.Mconv4_stage3 = Conv2d(
|
106 |
-
in_channels=128, out_channels=128, kernel_size=7, stride=1,
|
107 |
-
padding=3)
|
108 |
-
self.Mconv5_stage3 = Conv2d(
|
109 |
-
in_channels=128, out_channels=128, kernel_size=7, stride=1,
|
110 |
-
padding=3)
|
111 |
-
self.Mconv6_stage3 = Conv2d(
|
112 |
-
in_channels=128, out_channels=128, kernel_size=1, stride=1,
|
113 |
-
padding=0)
|
114 |
-
self.Mconv7_stage3 = Conv2d(
|
115 |
-
in_channels=128, out_channels=71, kernel_size=1, stride=1,
|
116 |
-
padding=0)
|
117 |
-
|
118 |
-
# stage4
|
119 |
-
self.Mconv1_stage4 = Conv2d(
|
120 |
-
in_channels=199, out_channels=128, kernel_size=7, stride=1,
|
121 |
-
padding=3)
|
122 |
-
self.Mconv2_stage4 = Conv2d(
|
123 |
-
in_channels=128, out_channels=128, kernel_size=7, stride=1,
|
124 |
-
padding=3)
|
125 |
-
self.Mconv3_stage4 = Conv2d(
|
126 |
-
in_channels=128, out_channels=128, kernel_size=7, stride=1,
|
127 |
-
padding=3)
|
128 |
-
self.Mconv4_stage4 = Conv2d(
|
129 |
-
in_channels=128, out_channels=128, kernel_size=7, stride=1,
|
130 |
-
padding=3)
|
131 |
-
self.Mconv5_stage4 = Conv2d(
|
132 |
-
in_channels=128, out_channels=128, kernel_size=7, stride=1,
|
133 |
-
padding=3)
|
134 |
-
self.Mconv6_stage4 = Conv2d(
|
135 |
-
in_channels=128, out_channels=128, kernel_size=1, stride=1,
|
136 |
-
padding=0)
|
137 |
-
self.Mconv7_stage4 = Conv2d(
|
138 |
-
in_channels=128, out_channels=71, kernel_size=1, stride=1,
|
139 |
-
padding=0)
|
140 |
-
|
141 |
-
# stage5
|
142 |
-
self.Mconv1_stage5 = Conv2d(
|
143 |
-
in_channels=199, out_channels=128, kernel_size=7, stride=1,
|
144 |
-
padding=3)
|
145 |
-
self.Mconv2_stage5 = Conv2d(
|
146 |
-
in_channels=128, out_channels=128, kernel_size=7, stride=1,
|
147 |
-
padding=3)
|
148 |
-
self.Mconv3_stage5 = Conv2d(
|
149 |
-
in_channels=128, out_channels=128, kernel_size=7, stride=1,
|
150 |
-
padding=3)
|
151 |
-
self.Mconv4_stage5 = Conv2d(
|
152 |
-
in_channels=128, out_channels=128, kernel_size=7, stride=1,
|
153 |
-
padding=3)
|
154 |
-
self.Mconv5_stage5 = Conv2d(
|
155 |
-
in_channels=128, out_channels=128, kernel_size=7, stride=1,
|
156 |
-
padding=3)
|
157 |
-
self.Mconv6_stage5 = Conv2d(
|
158 |
-
in_channels=128, out_channels=128, kernel_size=1, stride=1,
|
159 |
-
padding=0)
|
160 |
-
self.Mconv7_stage5 = Conv2d(
|
161 |
-
in_channels=128, out_channels=71, kernel_size=1, stride=1,
|
162 |
-
padding=0)
|
163 |
-
|
164 |
-
# stage6
|
165 |
-
self.Mconv1_stage6 = Conv2d(
|
166 |
-
in_channels=199, out_channels=128, kernel_size=7, stride=1,
|
167 |
-
padding=3)
|
168 |
-
self.Mconv2_stage6 = Conv2d(
|
169 |
-
in_channels=128, out_channels=128, kernel_size=7, stride=1,
|
170 |
-
padding=3)
|
171 |
-
self.Mconv3_stage6 = Conv2d(
|
172 |
-
in_channels=128, out_channels=128, kernel_size=7, stride=1,
|
173 |
-
padding=3)
|
174 |
-
self.Mconv4_stage6 = Conv2d(
|
175 |
-
in_channels=128, out_channels=128, kernel_size=7, stride=1,
|
176 |
-
padding=3)
|
177 |
-
self.Mconv5_stage6 = Conv2d(
|
178 |
-
in_channels=128, out_channels=128, kernel_size=7, stride=1,
|
179 |
-
padding=3)
|
180 |
-
self.Mconv6_stage6 = Conv2d(
|
181 |
-
in_channels=128, out_channels=128, kernel_size=1, stride=1,
|
182 |
-
padding=0)
|
183 |
-
self.Mconv7_stage6 = Conv2d(
|
184 |
-
in_channels=128, out_channels=71, kernel_size=1, stride=1,
|
185 |
-
padding=0)
|
186 |
-
|
187 |
-
for m in self.modules():
|
188 |
-
if isinstance(m, Conv2d):
|
189 |
-
init.constant_(m.bias, 0)
|
190 |
-
|
191 |
-
def forward(self, x):
|
192 |
-
"""Return a list of heatmaps."""
|
193 |
-
heatmaps = []
|
194 |
-
|
195 |
-
h = self.relu(self.conv1_1(x))
|
196 |
-
h = self.relu(self.conv1_2(h))
|
197 |
-
h = self.max_pooling_2d(h)
|
198 |
-
h = self.relu(self.conv2_1(h))
|
199 |
-
h = self.relu(self.conv2_2(h))
|
200 |
-
h = self.max_pooling_2d(h)
|
201 |
-
h = self.relu(self.conv3_1(h))
|
202 |
-
h = self.relu(self.conv3_2(h))
|
203 |
-
h = self.relu(self.conv3_3(h))
|
204 |
-
h = self.relu(self.conv3_4(h))
|
205 |
-
h = self.max_pooling_2d(h)
|
206 |
-
h = self.relu(self.conv4_1(h))
|
207 |
-
h = self.relu(self.conv4_2(h))
|
208 |
-
h = self.relu(self.conv4_3(h))
|
209 |
-
h = self.relu(self.conv4_4(h))
|
210 |
-
h = self.relu(self.conv5_1(h))
|
211 |
-
h = self.relu(self.conv5_2(h))
|
212 |
-
h = self.relu(self.conv5_3_CPM(h))
|
213 |
-
feature_map = h
|
214 |
-
|
215 |
-
# stage1
|
216 |
-
h = self.relu(self.conv6_1_CPM(h))
|
217 |
-
h = self.conv6_2_CPM(h)
|
218 |
-
heatmaps.append(h)
|
219 |
-
|
220 |
-
# stage2
|
221 |
-
h = torch.cat([h, feature_map], dim=1) # channel concat
|
222 |
-
h = self.relu(self.Mconv1_stage2(h))
|
223 |
-
h = self.relu(self.Mconv2_stage2(h))
|
224 |
-
h = self.relu(self.Mconv3_stage2(h))
|
225 |
-
h = self.relu(self.Mconv4_stage2(h))
|
226 |
-
h = self.relu(self.Mconv5_stage2(h))
|
227 |
-
h = self.relu(self.Mconv6_stage2(h))
|
228 |
-
h = self.Mconv7_stage2(h)
|
229 |
-
heatmaps.append(h)
|
230 |
-
|
231 |
-
# stage3
|
232 |
-
h = torch.cat([h, feature_map], dim=1) # channel concat
|
233 |
-
h = self.relu(self.Mconv1_stage3(h))
|
234 |
-
h = self.relu(self.Mconv2_stage3(h))
|
235 |
-
h = self.relu(self.Mconv3_stage3(h))
|
236 |
-
h = self.relu(self.Mconv4_stage3(h))
|
237 |
-
h = self.relu(self.Mconv5_stage3(h))
|
238 |
-
h = self.relu(self.Mconv6_stage3(h))
|
239 |
-
h = self.Mconv7_stage3(h)
|
240 |
-
heatmaps.append(h)
|
241 |
-
|
242 |
-
# stage4
|
243 |
-
h = torch.cat([h, feature_map], dim=1) # channel concat
|
244 |
-
h = self.relu(self.Mconv1_stage4(h))
|
245 |
-
h = self.relu(self.Mconv2_stage4(h))
|
246 |
-
h = self.relu(self.Mconv3_stage4(h))
|
247 |
-
h = self.relu(self.Mconv4_stage4(h))
|
248 |
-
h = self.relu(self.Mconv5_stage4(h))
|
249 |
-
h = self.relu(self.Mconv6_stage4(h))
|
250 |
-
h = self.Mconv7_stage4(h)
|
251 |
-
heatmaps.append(h)
|
252 |
-
|
253 |
-
# stage5
|
254 |
-
h = torch.cat([h, feature_map], dim=1) # channel concat
|
255 |
-
h = self.relu(self.Mconv1_stage5(h))
|
256 |
-
h = self.relu(self.Mconv2_stage5(h))
|
257 |
-
h = self.relu(self.Mconv3_stage5(h))
|
258 |
-
h = self.relu(self.Mconv4_stage5(h))
|
259 |
-
h = self.relu(self.Mconv5_stage5(h))
|
260 |
-
h = self.relu(self.Mconv6_stage5(h))
|
261 |
-
h = self.Mconv7_stage5(h)
|
262 |
-
heatmaps.append(h)
|
263 |
-
|
264 |
-
# stage6
|
265 |
-
h = torch.cat([h, feature_map], dim=1) # channel concat
|
266 |
-
h = self.relu(self.Mconv1_stage6(h))
|
267 |
-
h = self.relu(self.Mconv2_stage6(h))
|
268 |
-
h = self.relu(self.Mconv3_stage6(h))
|
269 |
-
h = self.relu(self.Mconv4_stage6(h))
|
270 |
-
h = self.relu(self.Mconv5_stage6(h))
|
271 |
-
h = self.relu(self.Mconv6_stage6(h))
|
272 |
-
h = self.Mconv7_stage6(h)
|
273 |
-
heatmaps.append(h)
|
274 |
-
|
275 |
-
return heatmaps
|
276 |
-
|
277 |
-
|
278 |
-
LOG = logging.getLogger(__name__)
|
279 |
-
TOTEN = ToTensor()
|
280 |
-
TOPIL = ToPILImage()
|
281 |
-
|
282 |
-
|
283 |
-
params = {
|
284 |
-
'gaussian_sigma': 2.5,
|
285 |
-
'inference_img_size': 736, # 368, 736, 1312
|
286 |
-
'heatmap_peak_thresh': 0.1,
|
287 |
-
'crop_scale': 1.5,
|
288 |
-
'line_indices': [
|
289 |
-
[0, 1], [1, 2], [2, 3], [3, 4], [4, 5], [5, 6],
|
290 |
-
[6, 7], [7, 8], [8, 9], [9, 10], [10, 11], [11, 12], [12, 13],
|
291 |
-
[13, 14], [14, 15], [15, 16],
|
292 |
-
[17, 18], [18, 19], [19, 20], [20, 21],
|
293 |
-
[22, 23], [23, 24], [24, 25], [25, 26],
|
294 |
-
[27, 28], [28, 29], [29, 30],
|
295 |
-
[31, 32], [32, 33], [33, 34], [34, 35],
|
296 |
-
[36, 37], [37, 38], [38, 39], [39, 40], [40, 41], [41, 36],
|
297 |
-
[42, 43], [43, 44], [44, 45], [45, 46], [46, 47], [47, 42],
|
298 |
-
[48, 49], [49, 50], [50, 51], [51, 52], [52, 53], [53, 54],
|
299 |
-
[54, 55], [55, 56], [56, 57], [57, 58], [58, 59], [59, 48],
|
300 |
-
[60, 61], [61, 62], [62, 63], [63, 64], [64, 65], [65, 66],
|
301 |
-
[66, 67], [67, 60]
|
302 |
-
],
|
303 |
-
}
|
304 |
-
|
305 |
-
|
306 |
-
class Face(object):
|
307 |
-
"""
|
308 |
-
The OpenPose face landmark detector model.
|
309 |
-
|
310 |
-
Args:
|
311 |
-
inference_size: set the size of the inference image size, suggested:
|
312 |
-
368, 736, 1312, default 736
|
313 |
-
gaussian_sigma: blur the heatmaps, default 2.5
|
314 |
-
heatmap_peak_thresh: return landmark if over threshold, default 0.1
|
315 |
-
|
316 |
-
"""
|
317 |
-
def __init__(self, face_model_path,
|
318 |
-
inference_size=None,
|
319 |
-
gaussian_sigma=None,
|
320 |
-
heatmap_peak_thresh=None):
|
321 |
-
self.inference_size = inference_size or params["inference_img_size"]
|
322 |
-
self.sigma = gaussian_sigma or params['gaussian_sigma']
|
323 |
-
self.threshold = heatmap_peak_thresh or params["heatmap_peak_thresh"]
|
324 |
-
self.model = FaceNet()
|
325 |
-
self.model.load_state_dict(torch.load(face_model_path))
|
326 |
-
self.model.eval()
|
327 |
-
|
328 |
-
def to(self, device):
|
329 |
-
self.model.to(device)
|
330 |
-
return self
|
331 |
-
|
332 |
-
def __call__(self, face_img):
|
333 |
-
device = next(iter(self.model.parameters())).device
|
334 |
-
H, W, C = face_img.shape
|
335 |
-
|
336 |
-
w_size = 384
|
337 |
-
x_data = torch.from_numpy(util.smart_resize(face_img, (w_size, w_size))).permute([2, 0, 1]) / 256.0 - 0.5
|
338 |
-
|
339 |
-
x_data = x_data.to(device)
|
340 |
-
|
341 |
-
with torch.no_grad():
|
342 |
-
hs = self.model(x_data[None, ...])
|
343 |
-
heatmaps = F.interpolate(
|
344 |
-
hs[-1],
|
345 |
-
(H, W),
|
346 |
-
mode='bilinear', align_corners=True).cpu().numpy()[0]
|
347 |
-
return heatmaps
|
348 |
-
|
349 |
-
def compute_peaks_from_heatmaps(self, heatmaps):
|
350 |
-
all_peaks = []
|
351 |
-
for part in range(heatmaps.shape[0]):
|
352 |
-
map_ori = heatmaps[part].copy()
|
353 |
-
binary = np.ascontiguousarray(map_ori > 0.05, dtype=np.uint8)
|
354 |
-
|
355 |
-
if np.sum(binary) == 0:
|
356 |
-
continue
|
357 |
-
|
358 |
-
positions = np.where(binary > 0.5)
|
359 |
-
intensities = map_ori[positions]
|
360 |
-
mi = np.argmax(intensities)
|
361 |
-
y, x = positions[0][mi], positions[1][mi]
|
362 |
-
all_peaks.append([x, y])
|
363 |
-
|
364 |
-
return np.array(all_peaks)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|