Spaces:
Runtime error
Runtime error
File size: 13,445 Bytes
efc13cd 7c0f531 efc13cd ff6da4a efc13cd ff6da4a efc13cd ff6da4a efc13cd ff6da4a efc13cd ff6da4a efc13cd 9a8bbc6 efc13cd ff6da4a efc13cd ff6da4a efc13cd ff6da4a efc13cd f127a22 efc13cd 9a8bbc6 efc13cd 9a8bbc6 efc13cd ff6da4a efc13cd ff6da4a efc13cd ff6da4a efc13cd ff6da4a efc13cd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 |
import spaces
import argparse
import os
import time
from os import path
import shutil
from datetime import datetime
from safetensors.torch import load_file
from huggingface_hub import hf_hub_download
import gradio as gr
import torch
from diffusers import FluxPipeline
from diffusers.pipelines.stable_diffusion import safety_checker
from PIL import Image
from transformers import AutoProcessor, AutoModelForCausalLM
import subprocess
# Flash Attention ์ค์น
subprocess.run('pip install flash-attn --no-build-isolation',
env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"},
shell=True)
# Setup and initialization code
cache_path = path.join(path.dirname(path.abspath(__file__)), "models")
PERSISTENT_DIR = os.environ.get("PERSISTENT_DIR", ".")
gallery_path = path.join(PERSISTENT_DIR, "gallery")
os.environ["TRANSFORMERS_CACHE"] = cache_path
os.environ["HF_HUB_CACHE"] = cache_path
os.environ["HF_HOME"] = cache_path
torch.backends.cuda.matmul.allow_tf32 = True
# Create gallery directory
if not path.exists(gallery_path):
os.makedirs(gallery_path, exist_ok=True)
# Florence ๋ชจ๋ธ ์ด๊ธฐํ
florence_models = {
'gokaygokay/Florence-2-Flux-Large': AutoModelForCausalLM.from_pretrained(
'gokaygokay/Florence-2-Flux-Large',
trust_remote_code=True
).eval(),
'gokaygokay/Florence-2-Flux': AutoModelForCausalLM.from_pretrained(
'gokaygokay/Florence-2-Flux',
trust_remote_code=True
).eval(),
}
florence_processors = {
'gokaygokay/Florence-2-Flux-Large': AutoProcessor.from_pretrained(
'gokaygokay/Florence-2-Flux-Large',
trust_remote_code=True
),
'gokaygokay/Florence-2-Flux': AutoProcessor.from_pretrained(
'gokaygokay/Florence-2-Flux',
trust_remote_code=True
),
}
def filter_prompt(prompt):
inappropriate_keywords = [
"nude", "naked", "nsfw", "porn", "sex", "explicit", "adult", "xxx",
"erotic", "sensual", "seductive", "provocative", "intimate",
"violence", "gore", "blood", "death", "kill", "murder", "torture",
"drug", "suicide", "abuse", "hate", "discrimination"
]
prompt_lower = prompt.lower()
for keyword in inappropriate_keywords:
if keyword in prompt_lower:
return False, "๋ถ์ ์ ํ ๋ด์ฉ์ด ํฌํจ๋ ํ๋กฌํํธ์
๋๋ค."
return True, prompt
class timer:
def __init__(self, method_name="timed process"):
self.method = method_name
def __enter__(self):
self.start = time.time()
print(f"{self.method} starts")
def __exit__(self, exc_type, exc_val, exc_tb):
end = time.time()
print(f"{self.method} took {str(round(end - self.start, 2))}s")
# Model initialization
if not path.exists(cache_path):
os.makedirs(cache_path, exist_ok=True)
pipe = FluxPipeline.from_pretrained(
"black-forest-labs/FLUX.1-dev",
torch_dtype=torch.bfloat16
)
pipe.load_lora_weights(
hf_hub_download(
"ByteDance/Hyper-SD",
"Hyper-FLUX.1-dev-8steps-lora.safetensors"
)
)
pipe.fuse_lora(lora_scale=0.125)
pipe.to(device="cuda", dtype=torch.bfloat16)
pipe.safety_checker = safety_checker.StableDiffusionSafetyChecker.from_pretrained(
"CompVis/stable-diffusion-safety-checker"
)
# CSS ์คํ์ผ
css = """
footer {display: none !important}
.gradio-container {
max-width: 1200px;
margin: auto;
}
.contain {
background: rgba(255, 255, 255, 0.05);
border-radius: 12px;
padding: 20px;
}
.generate-btn {
background: linear-gradient(90deg, #4B79A1 0%, #283E51 100%) !important;
border: none !important;
color: white !important;
}
.generate-btn:hover {
transform: translateY(-2px);
box-shadow: 0 5px 15px rgba(0,0,0,0.2);
}
.title {
text-align: center;
font-size: 2.5em;
font-weight: bold;
margin-bottom: 1em;
background: linear-gradient(90deg, #4B79A1 0%, #283E51 100%);
-webkit-background-clip: text;
-webkit-text-fill-color: transparent;
}
.tabs {
margin-top: 20px;
border-radius: 10px;
overflow: hidden;
}
.tab-nav {
background: linear-gradient(90deg, #4B79A1 0%, #283E51 100%);
padding: 10px;
}
.tab-nav button {
color: white;
border: none;
padding: 10px 20px;
margin: 0 5px;
border-radius: 5px;
transition: all 0.3s ease;
}
.tab-nav button.selected {
background: rgba(255, 255, 255, 0.2);
}
.image-upload-container {
border: 2px dashed #4B79A1;
border-radius: 10px;
padding: 20px;
text-align: center;
transition: all 0.3s ease;
}
.image-upload-container:hover {
border-color: #283E51;
background: rgba(75, 121, 161, 0.1);
}
"""
# CSS์ ์ถ๊ฐํ ์คํ์ผ
additional_css = """
.primary-btn {
background: linear-gradient(90deg, #4B79A1 0%, #283E51 100%) !important;
font-size: 1.2em !important;
padding: 12px 20px !important;
margin-top: 20px !important;
}
hr {
border: none;
border-top: 1px solid rgba(75, 121, 161, 0.2);
margin: 20px 0;
}
.input-section {
background: rgba(255, 255, 255, 0.03);
border-radius: 12px;
padding: 20px;
margin-bottom: 20px;
}
.output-section {
background: rgba(255, 255, 255, 0.03);
border-radius: 12px;
padding: 20px;
}
"""
# ๊ธฐ์กด CSS์ ์๋ก์ด ์คํ์ผ ์ถ๊ฐ
css = css + additional_css
def save_image(image):
"""Save the generated image and return the path"""
try:
if not os.path.exists(gallery_path):
try:
os.makedirs(gallery_path, exist_ok=True)
except Exception as e:
print(f"Failed to create gallery directory: {str(e)}")
return None
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
random_suffix = os.urandom(4).hex()
filename = f"generated_{timestamp}_{random_suffix}.png"
filepath = os.path.join(gallery_path, filename)
try:
if isinstance(image, Image.Image):
image.save(filepath, "PNG", quality=100)
else:
image = Image.fromarray(image)
image.save(filepath, "PNG", quality=100)
if not os.path.exists(filepath):
print(f"Warning: Failed to verify saved image at {filepath}")
return None
return filepath
except Exception as e:
print(f"Failed to save image: {str(e)}")
return None
except Exception as e:
print(f"Error in save_image: {str(e)}")
return None
def load_gallery():
try:
os.makedirs(gallery_path, exist_ok=True)
image_files = []
for f in os.listdir(gallery_path):
if f.lower().endswith(('.png', '.jpg', '.jpeg')):
full_path = os.path.join(gallery_path, f)
image_files.append((full_path, os.path.getmtime(full_path)))
image_files.sort(key=lambda x: x[1], reverse=True)
return [f[0] for f in image_files]
except Exception as e:
print(f"Error loading gallery: {str(e)}")
return []
@spaces.GPU
def generate_caption(image, model_name='gokaygokay/Florence-2-Flux-Large'):
image = Image.fromarray(image)
task_prompt = "<DESCRIPTION>"
prompt = task_prompt + "Describe this image in great detail."
if image.mode != "RGB":
image = image.convert("RGB")
model = florence_models[model_name]
processor = florence_processors[model_name]
inputs = processor(text=prompt, images=image, return_tensors="pt")
generated_ids = model.generate(
input_ids=inputs["input_ids"],
pixel_values=inputs["pixel_values"],
max_new_tokens=1024,
num_beams=3,
repetition_penalty=1.10,
)
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
parsed_answer = processor.post_process_generation(generated_text, task=task_prompt, image_size=(image.width, image.height))
return parsed_answer["<DESCRIPTION>"]
@spaces.GPU
def process_and_save_image(height, width, steps, scales, prompt, seed):
is_safe, filtered_prompt = filter_prompt(prompt)
if not is_safe:
gr.Warning("The prompt contains inappropriate content.")
return None, load_gallery()
with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16), timer("inference"):
try:
generated_image = pipe(
prompt=[filtered_prompt],
generator=torch.Generator().manual_seed(int(seed)),
num_inference_steps=int(steps),
guidance_scale=float(scales),
height=int(height),
width=int(width),
max_sequence_length=256
).images[0]
saved_path = save_image(generated_image)
if saved_path is None:
print("Warning: Failed to save generated image")
return generated_image, load_gallery()
except Exception as e:
print(f"Error in image generation: {str(e)}")
return None, load_gallery()
def get_random_seed():
return torch.randint(0, 1000000, (1,)).item()
def update_seed():
return get_random_seed()
with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo:
gr.HTML('<div class="title">AI Image Generator & Caption</div>')
gr.HTML('<div style="text-align: center; margin-bottom: 2em;">Upload an image for caption or create from text description</div>')
with gr.Row():
# ์ผ์ชฝ ์ปฌ๋ผ: ์
๋ ฅ ์น์
with gr.Column(scale=3):
# ์ด๋ฏธ์ง ์
๋ก๋ ์น์
input_image = gr.Image(
label="Upload Image (Optional)",
type="numpy",
elem_classes=["image-upload-container"]
)
florence_model = gr.Dropdown(
choices=list(florence_models.keys()),
label="Caption Model",
value='gokaygokay/Florence-2-Flux-Large',
visible=True
)
caption_button = gr.Button(
"๐ Generate Caption from Image",
elem_classes=["generate-btn"]
)
# ๊ตฌ๋ถ์
gr.HTML('<hr style="margin: 20px 0;">')
# ํ
์คํธ ํ๋กฌํํธ ์น์
prompt = gr.Textbox(
label="Image Description",
placeholder="Enter text description or use generated caption above...",
lines=3
)
with gr.Accordion("Advanced Settings", open=False):
with gr.Row():
height = gr.Slider(
label="Height",
minimum=256,
maximum=1152,
step=64,
value=1024
)
width = gr.Slider(
label="Width",
minimum=256,
maximum=1152,
step=64,
value=1024
)
with gr.Row():
steps = gr.Slider(
label="Inference Steps",
minimum=6,
maximum=25,
step=1,
value=8
)
scales = gr.Slider(
label="Guidance Scale",
minimum=0.0,
maximum=5.0,
step=0.1,
value=3.5
)
seed = gr.Number(
label="Seed",
value=get_random_seed(),
precision=0
)
randomize_seed = gr.Button(
"๐ฒ Randomize Seed",
elem_classes=["generate-btn"]
)
generate_btn = gr.Button(
"โจ Generate Image",
elem_classes=["generate-btn", "primary-btn"]
)
# ์ค๋ฅธ์ชฝ ์ปฌ๋ผ: ์ถ๋ ฅ ์น์
with gr.Column(scale=4):
output = gr.Image(
label="Generated Image",
elem_classes=["output-image"]
)
gallery = gr.Gallery(
label="Generated Images Gallery",
show_label=True,
columns=[4],
rows=[2],
height="auto",
object_fit="cover",
elem_classes=["gallery-container"]
)
gallery.value = load_gallery()
# Event handlers
caption_button.click(
generate_caption,
inputs=[input_image, florence_model],
outputs=[prompt]
)
generate_btn.click(
process_and_save_image,
inputs=[height, width, steps, scales, prompt, seed],
outputs=[output, gallery]
)
randomize_seed.click(
update_seed,
outputs=[seed]
)
generate_btn.click(
update_seed,
outputs=[seed]
)
if __name__ == "__main__":
demo.launch(allowed_paths=[PERSISTENT_DIR]) |