Spaces:
Runtime error
Runtime error
import os | |
import yaml | |
import torch | |
from tqdm import tqdm | |
import sys | |
sys.path.append(os.path.abspath('./')) | |
from inference.utils import * | |
from train import WurstCoreB | |
from gdf import VPScaler, CosineTNoiseCond, DDPMSampler, P2LossWeight, AdaptiveLossWeight | |
from train import WurstCore_personalized as WurstCoreC | |
import torch.nn.functional as F | |
import numpy as np | |
import random | |
import math | |
import argparse | |
def parse_args(): | |
parser = argparse.ArgumentParser() | |
parser.add_argument( '--height', type=int, default=3072, help='image height') | |
parser.add_argument('--width', type=int, default=4096, help='image width') | |
parser.add_argument('--dtype', type=str, default='bf16', help=' if bf16 does not work, change it to float32 ') | |
parser.add_argument('--seed', type=int, default=23, help='random seed') | |
parser.add_argument('--config_c', type=str, | |
default="configs/training/lora_personalization.yaml" ,help='config file for stage c, latent generation') | |
parser.add_argument('--config_b', type=str, | |
default='configs/inference/stage_b_1b.yaml' ,help='config file for stage b, latent decoding') | |
parser.add_argument( '--prompt', type=str, | |
default='A photo of cat [roubaobao] with sunglasses, Time Square in the background, high quality, detail rich, 8k', help='text prompt') | |
parser.add_argument( '--num_image', type=int, default=4, help='how many images generated') | |
parser.add_argument( '--output_dir', type=str, default='figures/personalized/', help='output directory for generated image') | |
parser.add_argument( '--stage_a_tiled', action='store_true', help='whther or nor to use tiled decoding for stage a to save memory') | |
parser.add_argument( '--pretrained_path_lora', type=str, default='models/lora_cat.safetensors',help='pretrained path of personalized lora parameter') | |
parser.add_argument( '--pretrained_path', type=str, default='models/ultrapixel_t2i.safetensors', help='pretrained path of newly added paramter of UltraPixel') | |
args = parser.parse_args() | |
return args | |
if __name__ == "__main__": | |
args = parse_args() | |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") | |
torch.manual_seed(args.seed) | |
random.seed(args.seed) | |
np.random.seed(args.seed) | |
dtype = torch.bfloat16 if args.dtype == 'bf16' else torch.float | |
# SETUP STAGE C | |
with open(args.config_c, "r", encoding="utf-8") as file: | |
loaded_config = yaml.safe_load(file) | |
core = WurstCoreC(config_dict=loaded_config, device=device, training=False) | |
# SETUP STAGE B | |
with open(args.config_b, "r", encoding="utf-8") as file: | |
config_file_b = yaml.safe_load(file) | |
core_b = WurstCoreB(config_dict=config_file_b, device=device, training=False) | |
extras = core.setup_extras_pre() | |
models = core.setup_models(extras) | |
models.generator.eval().requires_grad_(False) | |
print("STAGE C READY") | |
extras_b = core_b.setup_extras_pre() | |
models_b = core_b.setup_models(extras_b, skip_clip=True) | |
models_b = WurstCoreB.Models( | |
**{**models_b.to_dict(), 'tokenizer': models.tokenizer, 'text_model': models.text_model} | |
) | |
models_b.generator.bfloat16().eval().requires_grad_(False) | |
print("STAGE B READY") | |
batch_size = 1 | |
captions = [args.prompt] * args.num_image | |
height, width = args.height, args.width | |
save_dir = args.output_dir | |
if not os.path.exists(save_dir): | |
os.makedirs(save_dir) | |
pretrained_pth = args.pretrained_path | |
sdd = torch.load(pretrained_pth, map_location='cpu') | |
collect_sd = {} | |
for k, v in sdd.items(): | |
collect_sd[k[7:]] = v | |
models.train_norm.load_state_dict(collect_sd) | |
pretrained_pth_lora = args.pretrained_path_lora | |
sdd = torch.load(pretrained_pth_lora, map_location='cpu') | |
collect_sd = {} | |
for k, v in sdd.items(): | |
collect_sd[k[7:]] = v | |
models.train_lora.load_state_dict(collect_sd) | |
models.generator.eval() | |
models.train_norm.eval() | |
height_lr, width_lr = get_target_lr_size(height / width, std_size=32) | |
stage_c_latent_shape, stage_b_latent_shape = calculate_latent_sizes(height, width, batch_size=batch_size) | |
stage_c_latent_shape_lr, stage_b_latent_shape_lr = calculate_latent_sizes(height_lr, width_lr, batch_size=batch_size) | |
# Stage C Parameters | |
extras.sampling_configs['cfg'] = 4 | |
extras.sampling_configs['shift'] = 1 | |
extras.sampling_configs['timesteps'] = 20 | |
extras.sampling_configs['t_start'] = 1.0 | |
extras.sampling_configs['sampler'] = DDPMSampler(extras.gdf) | |
# Stage B Parameters | |
extras_b.sampling_configs['cfg'] = 1.1 | |
extras_b.sampling_configs['shift'] = 1 | |
extras_b.sampling_configs['timesteps'] = 10 | |
extras_b.sampling_configs['t_start'] = 1.0 | |
for cnt, caption in enumerate(captions): | |
batch = {'captions': [caption] * batch_size} | |
conditions = core.get_conditions(batch, models, extras, is_eval=True, is_unconditional=False, eval_image_embeds=False) | |
unconditions = core.get_conditions(batch, models, extras, is_eval=True, is_unconditional=True, eval_image_embeds=False) | |
conditions_b = core_b.get_conditions(batch, models_b, extras_b, is_eval=True, is_unconditional=False) | |
unconditions_b = core_b.get_conditions(batch, models_b, extras_b, is_eval=True, is_unconditional=True) | |
for cnt, caption in enumerate(captions): | |
batch = {'captions': [caption] * batch_size} | |
conditions = core.get_conditions(batch, models, extras, is_eval=True, is_unconditional=False, eval_image_embeds=False) | |
unconditions = core.get_conditions(batch, models, extras, is_eval=True, is_unconditional=True, eval_image_embeds=False) | |
conditions_b = core_b.get_conditions(batch, models_b, extras_b, is_eval=True, is_unconditional=False) | |
unconditions_b = core_b.get_conditions(batch, models_b, extras_b, is_eval=True, is_unconditional=True) | |
with torch.no_grad(): | |
models.generator.cuda() | |
print('STAGE C GENERATION***************************') | |
with torch.cuda.amp.autocast(dtype=dtype): | |
sampled_c = generation_c(batch, models, extras, core, stage_c_latent_shape, stage_c_latent_shape_lr, device) | |
models.generator.cpu() | |
torch.cuda.empty_cache() | |
conditions_b = core_b.get_conditions(batch, models_b, extras_b, is_eval=True, is_unconditional=False) | |
unconditions_b = core_b.get_conditions(batch, models_b, extras_b, is_eval=True, is_unconditional=True) | |
conditions_b['effnet'] = sampled_c | |
unconditions_b['effnet'] = torch.zeros_like(sampled_c) | |
print('STAGE B + A DECODING***************************') | |
with torch.cuda.amp.autocast(dtype=dtype): | |
sampled = decode_b(conditions_b, unconditions_b, models_b, stage_b_latent_shape, extras_b, device, stage_a_tiled=args.stage_a_tiled) | |
torch.cuda.empty_cache() | |
imgs = show_images(sampled) | |
for idx, img in enumerate(imgs): | |
print(os.path.join(save_dir, args.prompt[:20]+'_' + str(cnt).zfill(5) + '.jpg'), idx) | |
img.save(os.path.join(save_dir, args.prompt[:20]+'_' + str(cnt).zfill(5) + '.jpg')) | |
print('finished! Results at ', save_dir ) | |