Spaces:
Sleeping
Sleeping
"""A Simple chatbot that uses the LangChain and Gradio UI to answer questions about wandb documentation.""" | |
import os | |
from types import SimpleNamespace | |
import gradio as gr | |
import wandb | |
from chain import get_answer, load_chain, load_vector_store | |
from config import default_config | |
class Chat: | |
"""A chatbot interface that persists the vectorstore and chain between calls.""" | |
def __init__( | |
self, | |
config: SimpleNamespace, | |
): | |
"""Initialize the chatbot. | |
Args: | |
config (SimpleNamespace): The configuration. | |
""" | |
self.config = config | |
wandb.login(key="a03a121cd37f545717bea361f3a994169985957d") | |
self.wandb_run = wandb.init( | |
project=self.config.project, | |
entity=self.config.entity, | |
job_type=self.config.job_type, | |
config=self.config, | |
settings=wandb.Settings(start_method="fork") | |
) | |
self.vector_store = None | |
self.chain = None | |
def __call__( | |
self, | |
question: str, | |
history: list[tuple[str, str]] | None = None, | |
openai_api_key: str = None, | |
): | |
"""Answer a question about MASSA documentation using the LangChain QA chain and vector store retriever. | |
Args: | |
question (str): The question to answer. | |
history (list[tuple[str, str]] | None, optional): The chat history. Defaults to None. | |
openai_api_key (str, optional): The OpenAI API key. Defaults to None. | |
Returns: | |
list[tuple[str, str]], list[tuple[str, str]]: The chat history before and after the question is answered. | |
""" | |
if openai_api_key is not None: | |
openai_key = openai_api_key | |
elif os.environ["OPENAI_API_KEY"]: | |
openai_key = os.environ["OPENAI_API_KEY"] | |
else: | |
raise ValueError( | |
"Please provide your OpenAI API key as an argument or set the OPENAI_API_KEY environment variable" | |
) | |
if self.vector_store is None: | |
self.vector_store = load_vector_store( | |
wandb_run=self.wandb_run, openai_api_key=openai_key | |
) | |
if self.chain is None: | |
self.chain = load_chain( | |
self.wandb_run, self.vector_store, openai_api_key=openai_key | |
) | |
history = history or [] | |
question = question.lower() | |
response = get_answer( | |
chain=self.chain, | |
question=question, | |
chat_history=history, | |
) | |
history.append((question, response)) | |
return history, history | |
with gr.Blocks() as demo: | |
gr.HTML( | |
"""<div style="text-align: center; max-width: 700px; margin: 0 auto;"> | |
<div | |
style=" | |
display: inline-flex; | |
align-items: center; | |
gap: 0.8rem; | |
font-size: 1.75rem; | |
" | |
> | |
<h1 style="font-weight: 900; margin-bottom: 7px; margin-top: 5px;"> | |
Massa QandA Bot | |
</h1> | |
</div> | |
<p style="margin-bottom: 10px; font-size: 94%"> | |
Hi, I'm a massa documentaion Q and A bot, start by typing in your OpenAI API key, questions/issues you have related to massa usage and then press enter.<br> | |
Built using <a href="https://langchain.readthedocs.io/en/latest/" target="_blank">LangChain</a> and <a href="https://github.com/gradio-app/gradio" target="_blank">Gradio Github repo</a> | |
</p> | |
</div>""" | |
) | |
with gr.Row(): | |
question = gr.Textbox( | |
label="Type in your questions about massa net here and press Enter!", | |
placeholder="How do I write smart contract with massa ?", | |
) | |
openai_api_key = gr.Textbox( | |
type="password", | |
label="Enter your OpenAI API key here", | |
) | |
state = gr.State() | |
chatbot = gr.Chatbot() | |
question.submit( | |
Chat( | |
config=default_config, | |
), | |
[question, state, openai_api_key], | |
[chatbot, state], | |
) | |
if __name__ == "__main__": | |
demo.queue().launch( | |
share=True, show_error=True | |
# share=False, server_name="0.0.0.0", server_port=8884, show_error=True | |
) | |