Spaces:
Sleeping
Sleeping
import gradio as gr | |
import numpy as np | |
import random | |
import spaces | |
import torch | |
from diffusers import DiffusionPipeline | |
dtype = torch.bfloat16 | |
if torch.cuda.is_available(): | |
device = "cuda" | |
elif torch.backends.mps.is_available(): | |
if not torch.backends.mps.is_built(): | |
print("MPS not available because the current PyTorch install was not " | |
"built with MPS enabled.") | |
device = "mps" | |
else: | |
device = "cpu" | |
MAX_SEED = np.iinfo(np.int32).max | |
MAX_IMAGE_SIZE = 2048 | |
# Initialize the pipeline globally | |
pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16).to(device) | |
lora_weights = { | |
"cajerky": {"path": "bryanbrunetti/cajerky"} | |
} | |
def infer(prompt, lora_models, seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=5.0, | |
num_inference_steps=28, progress=gr.Progress(track_tqdm=True)): | |
global pipe | |
# Load LoRAs if specified | |
if lora_models: | |
try: | |
for lora_model in lora_models: | |
print(f"loading LoRA: {lora_model}") | |
pipe.load_lora_weights(lora_weights[lora_model]["path"]) | |
except Exception as e: | |
return None, seed, f"Failed to load LoRA model: {str(e)}" | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
generator = torch.Generator().manual_seed(seed) | |
try: | |
image = pipe( | |
prompt=prompt, | |
width=width, | |
height=height, | |
num_inference_steps=num_inference_steps, | |
generator=generator, | |
guidance_scale=guidance_scale | |
).images[0] | |
# Unload LoRA weights after generation | |
if lora_models: | |
pipe.unload_lora_weights() | |
return image, seed, "Image generated successfully." | |
except Exception as e: | |
return None, seed, f"Error during image generation: {str(e)}" | |
css = """ | |
#col-container { | |
margin: 0 auto; | |
max-width: 520px; | |
} | |
""" | |
with gr.Blocks(css=css) as demo: | |
with gr.Column(elem_id="col-container"): | |
with gr.Row(): | |
prompt = gr.Text( | |
label="Prompt", | |
show_label=False, | |
max_lines=1, | |
placeholder="Enter your prompt", | |
container=False, | |
) | |
run_button = gr.Button("Run", scale=0) | |
# lora_model = gr.Text( | |
# label="LoRA Model ID (optional)", | |
# placeholder="Enter Hugging Face LoRA model ID", | |
# ) | |
lora_models = gr.Dropdown(list(lora_weights.keys()), multiselect=True, | |
info="Load LoRA (optional) use the name in the prompt", label="Choose LoRAs") | |
result = gr.Image(label="Result", show_label=False) | |
with gr.Accordion("Advanced Settings", open=False): | |
seed = gr.Slider( | |
label="Seed", | |
minimum=0, | |
maximum=MAX_SEED, | |
step=1, | |
value=0, | |
) | |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
with gr.Row(): | |
width = gr.Slider( | |
label="Width", | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=512, | |
) | |
height = gr.Slider( | |
label="Height", | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=512, | |
) | |
with gr.Row(): | |
guidance_scale = gr.Slider( | |
label="Guidance Scale", | |
info="How close to follow prompt", | |
minimum=1, | |
maximum=15, | |
step=0.1, | |
value=3.5, | |
) | |
num_inference_steps = gr.Slider( | |
label="Number of inference steps", | |
info="higher = more details", | |
minimum=1, | |
maximum=50, | |
step=1, | |
value=28, | |
) | |
output_message = gr.Textbox(label="Output Message") | |
gr.on( | |
triggers=[run_button.click, prompt.submit], | |
fn=infer, | |
inputs=[prompt, lora_models, seed, randomize_seed, width, height, guidance_scale, num_inference_steps], | |
outputs=[result, seed, output_message] | |
) | |
demo.launch() | |