bryanbrunetti commited on
Commit
663e209
·
1 Parent(s): 0c9b862

update lora

Browse files
Files changed (2) hide show
  1. app.py +74 -71
  2. requirements.txt +5 -4
app.py CHANGED
@@ -1,70 +1,79 @@
1
  import gradio as gr
2
  import numpy as np
3
  import random
4
- from diffusers import DiffusionPipeline
5
  import torch
 
 
 
 
6
 
 
7
  device = "cuda" if torch.cuda.is_available() else "cpu"
8
 
9
- if torch.cuda.is_available():
10
- torch.cuda.max_memory_allocated(device=device)
11
- pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16", use_safetensors=True)
12
- pipe.enable_xformers_memory_efficient_attention()
13
- pipe = pipe.to(device)
14
- else:
15
- pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", use_safetensors=True)
16
- pipe = pipe.to(device)
17
-
18
  MAX_SEED = np.iinfo(np.int32).max
19
- MAX_IMAGE_SIZE = 1024
 
 
 
20
 
21
- def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps):
22
 
 
 
 
 
 
 
 
 
 
 
 
 
23
  if randomize_seed:
24
  seed = random.randint(0, MAX_SEED)
25
-
26
  generator = torch.Generator().manual_seed(seed)
27
 
28
- image = pipe(
29
- prompt = prompt,
30
- negative_prompt = negative_prompt,
31
- guidance_scale = guidance_scale,
32
- num_inference_steps = num_inference_steps,
33
- width = width,
34
- height = height,
35
- generator = generator
36
- ).images[0]
37
-
38
- return image
 
 
 
 
 
 
 
39
 
40
  examples = [
41
- "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
42
- "An astronaut riding a green horse",
43
- "A delicious ceviche cheesecake slice",
44
  ]
45
 
46
- css="""
47
  #col-container {
48
  margin: 0 auto;
49
  max-width: 520px;
50
  }
51
  """
52
 
53
- if torch.cuda.is_available():
54
- power_device = "GPU"
55
- else:
56
- power_device = "CPU"
57
-
58
  with gr.Blocks(css=css) as demo:
59
-
60
  with gr.Column(elem_id="col-container"):
61
- gr.Markdown(f"""
62
- # Text-to-Image Gradio Template
63
- Currently running on {power_device}.
64
  """)
65
 
66
  with gr.Row():
67
-
68
  prompt = gr.Text(
69
  label="Prompt",
70
  show_label=False,
@@ -72,20 +81,17 @@ with gr.Blocks(css=css) as demo:
72
  placeholder="Enter your prompt",
73
  container=False,
74
  )
75
-
76
  run_button = gr.Button("Run", scale=0)
77
 
 
 
 
 
 
78
  result = gr.Image(label="Result", show_label=False)
79
-
 
80
  with gr.Accordion("Advanced Settings", open=False):
81
-
82
- negative_prompt = gr.Text(
83
- label="Negative prompt",
84
- max_lines=1,
85
- placeholder="Enter a negative prompt",
86
- visible=False,
87
- )
88
-
89
  seed = gr.Slider(
90
  label="Seed",
91
  minimum=0,
@@ -93,54 +99,51 @@ with gr.Blocks(css=css) as demo:
93
  step=1,
94
  value=0,
95
  )
96
-
97
  randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
98
-
99
  with gr.Row():
100
-
101
  width = gr.Slider(
102
  label="Width",
103
  minimum=256,
104
  maximum=MAX_IMAGE_SIZE,
105
  step=32,
106
- value=512,
107
  )
108
-
109
  height = gr.Slider(
110
  label="Height",
111
  minimum=256,
112
  maximum=MAX_IMAGE_SIZE,
113
  step=32,
114
- value=512,
115
  )
116
-
117
  with gr.Row():
118
-
119
  guidance_scale = gr.Slider(
120
- label="Guidance scale",
121
- minimum=0.0,
122
- maximum=10.0,
123
  step=0.1,
124
- value=0.0,
125
  )
126
-
127
  num_inference_steps = gr.Slider(
128
  label="Number of inference steps",
129
  minimum=1,
130
- maximum=12,
131
  step=1,
132
- value=2,
133
  )
134
 
135
  gr.Examples(
136
- examples = examples,
137
- inputs = [prompt]
 
 
 
138
  )
139
-
140
- run_button.click(
141
- fn = infer,
142
- inputs = [prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
143
- outputs = [result]
 
144
  )
145
 
146
- demo.queue().launch()
 
1
  import gradio as gr
2
  import numpy as np
3
  import random
4
+ import spaces
5
  import torch
6
+ from diffusers import DiffusionPipeline, FlowMatchEulerDiscreteScheduler
7
+ from transformers import CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5TokenizerFast
8
+ from huggingface_hub import hf_hub_download
9
+ import os
10
 
11
+ dtype = torch.bfloat16
12
  device = "cuda" if torch.cuda.is_available() else "cpu"
13
 
 
 
 
 
 
 
 
 
 
14
  MAX_SEED = np.iinfo(np.int32).max
15
+ MAX_IMAGE_SIZE = 2048
16
+
17
+ # Initialize the pipeline globally
18
+ pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16).to(device)
19
 
 
20
 
21
+ @spaces.GPU(duration=300)
22
+ def infer(prompt, lora_model, seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=5.0,
23
+ num_inference_steps=28, progress=gr.Progress(track_tqdm=True)):
24
+ global pipe
25
+
26
+ # Load LoRA if specified
27
+ if lora_model:
28
+ try:
29
+ pipe.load_lora_weights(lora_model)
30
+ except Exception as e:
31
+ return None, seed, f"Failed to load LoRA model: {str(e)}"
32
+
33
  if randomize_seed:
34
  seed = random.randint(0, MAX_SEED)
 
35
  generator = torch.Generator().manual_seed(seed)
36
 
37
+ try:
38
+ image = pipe(
39
+ prompt=prompt,
40
+ width=width,
41
+ height=height,
42
+ num_inference_steps=num_inference_steps,
43
+ generator=generator,
44
+ guidance_scale=guidance_scale
45
+ ).images[0]
46
+
47
+ # Unload LoRA weights after generation
48
+ if lora_model:
49
+ pipe.unload_lora_weights()
50
+
51
+ return image, seed, "Image generated successfully."
52
+ except Exception as e:
53
+ return None, seed, f"Error during image generation: {str(e)}"
54
+
55
 
56
  examples = [
57
+ ["a tiny astronaut hatching from an egg on the moon", ""],
58
+ ["a cat holding a sign that says hello world", ""],
59
+ ["an anime illustration of a wiener schnitzel", ""],
60
  ]
61
 
62
+ css = """
63
  #col-container {
64
  margin: 0 auto;
65
  max-width: 520px;
66
  }
67
  """
68
 
 
 
 
 
 
69
  with gr.Blocks(css=css) as demo:
 
70
  with gr.Column(elem_id="col-container"):
71
+ gr.Markdown(f"""# FLUX.1 [dev] with LoRA Support
72
+ 12B param rectified flow transformer guidance-distilled from [FLUX.1 [pro]](https://blackforestlabs.ai/)
73
+ [[non-commercial license](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md)] [[blog](https://blackforestlabs.ai/announcing-black-forest-labs/)] [[model](https://huggingface.co/black-forest-labs/FLUX.1-dev)]
74
  """)
75
 
76
  with gr.Row():
 
77
  prompt = gr.Text(
78
  label="Prompt",
79
  show_label=False,
 
81
  placeholder="Enter your prompt",
82
  container=False,
83
  )
 
84
  run_button = gr.Button("Run", scale=0)
85
 
86
+ lora_model = gr.Text(
87
+ label="LoRA Model ID (optional)",
88
+ placeholder="Enter Hugging Face LoRA model ID",
89
+ )
90
+
91
  result = gr.Image(label="Result", show_label=False)
92
+ output_message = gr.Textbox(label="Output Message")
93
+
94
  with gr.Accordion("Advanced Settings", open=False):
 
 
 
 
 
 
 
 
95
  seed = gr.Slider(
96
  label="Seed",
97
  minimum=0,
 
99
  step=1,
100
  value=0,
101
  )
 
102
  randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
 
103
  with gr.Row():
 
104
  width = gr.Slider(
105
  label="Width",
106
  minimum=256,
107
  maximum=MAX_IMAGE_SIZE,
108
  step=32,
109
+ value=1024,
110
  )
 
111
  height = gr.Slider(
112
  label="Height",
113
  minimum=256,
114
  maximum=MAX_IMAGE_SIZE,
115
  step=32,
116
+ value=1024,
117
  )
 
118
  with gr.Row():
 
119
  guidance_scale = gr.Slider(
120
+ label="Guidance Scale",
121
+ minimum=1,
122
+ maximum=15,
123
  step=0.1,
124
+ value=3.5,
125
  )
 
126
  num_inference_steps = gr.Slider(
127
  label="Number of inference steps",
128
  minimum=1,
129
+ maximum=50,
130
  step=1,
131
+ value=28,
132
  )
133
 
134
  gr.Examples(
135
+ examples=examples,
136
+ fn=infer,
137
+ inputs=[prompt, lora_model],
138
+ outputs=[result, seed, output_message],
139
+ cache_examples="lazy"
140
  )
141
+
142
+ gr.on(
143
+ triggers=[run_button.click, prompt.submit],
144
+ fn=infer,
145
+ inputs=[prompt, lora_model, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
146
+ outputs=[result, seed, output_message]
147
  )
148
 
149
+ demo.launch()
requirements.txt CHANGED
@@ -1,6 +1,7 @@
1
  accelerate
2
- diffusers
3
- invisible_watermark
4
  torch
5
- transformers
6
- xformers
 
 
 
1
  accelerate
2
+ git+https://github.com/huggingface/diffusers@lora-support-flux
 
3
  torch
4
+ transformers==4.42.4
5
+ xformers
6
+ sentencepiece
7
+ peft