Spaces:
Sleeping
Sleeping
Commit
·
bf4853f
1
Parent(s):
6d1ea5f
lora dropdown
Browse files- app.py +34 -33
- requirements.txt +6 -2
app.py
CHANGED
@@ -9,24 +9,36 @@ from huggingface_hub import hf_hub_download
|
|
9 |
import os
|
10 |
|
11 |
dtype = torch.bfloat16
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
MAX_SEED = np.iinfo(np.int32).max
|
15 |
MAX_IMAGE_SIZE = 2048
|
16 |
|
|
|
17 |
# Initialize the pipeline globally
|
18 |
pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16).to(device)
|
19 |
|
20 |
|
21 |
@spaces.GPU(duration=300)
|
22 |
-
def infer(prompt,
|
23 |
num_inference_steps=28, progress=gr.Progress(track_tqdm=True)):
|
24 |
global pipe
|
25 |
|
26 |
-
# Load
|
27 |
-
if
|
|
|
28 |
try:
|
29 |
-
|
|
|
30 |
except Exception as e:
|
31 |
return None, seed, f"Failed to load LoRA model: {str(e)}"
|
32 |
|
@@ -45,7 +57,7 @@ def infer(prompt, lora_model, seed=42, randomize_seed=False, width=1024, height=
|
|
45 |
).images[0]
|
46 |
|
47 |
# Unload LoRA weights after generation
|
48 |
-
if
|
49 |
pipe.unload_lora_weights()
|
50 |
|
51 |
return image, seed, "Image generated successfully."
|
@@ -53,12 +65,6 @@ def infer(prompt, lora_model, seed=42, randomize_seed=False, width=1024, height=
|
|
53 |
return None, seed, f"Error during image generation: {str(e)}"
|
54 |
|
55 |
|
56 |
-
examples = [
|
57 |
-
["a tiny astronaut hatching from an egg on the moon", ""],
|
58 |
-
["a cat holding a sign that says hello world", ""],
|
59 |
-
["an anime illustration of a wiener schnitzel", ""],
|
60 |
-
]
|
61 |
-
|
62 |
css = """
|
63 |
#col-container {
|
64 |
margin: 0 auto;
|
@@ -68,11 +74,6 @@ css = """
|
|
68 |
|
69 |
with gr.Blocks(css=css) as demo:
|
70 |
with gr.Column(elem_id="col-container"):
|
71 |
-
gr.Markdown(f"""# FLUX.1 [dev] with LoRA Support
|
72 |
-
12B param rectified flow transformer guidance-distilled from [FLUX.1 [pro]](https://blackforestlabs.ai/)
|
73 |
-
[[non-commercial license](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md)] [[blog](https://blackforestlabs.ai/announcing-black-forest-labs/)] [[model](https://huggingface.co/black-forest-labs/FLUX.1-dev)]
|
74 |
-
""")
|
75 |
-
|
76 |
with gr.Row():
|
77 |
prompt = gr.Text(
|
78 |
label="Prompt",
|
@@ -83,13 +84,17 @@ with gr.Blocks(css=css) as demo:
|
|
83 |
)
|
84 |
run_button = gr.Button("Run", scale=0)
|
85 |
|
86 |
-
lora_model = gr.Text(
|
87 |
-
|
88 |
-
|
89 |
-
)
|
|
|
|
|
|
|
|
|
|
|
90 |
|
91 |
result = gr.Image(label="Result", show_label=False)
|
92 |
-
output_message = gr.Textbox(label="Output Message")
|
93 |
|
94 |
with gr.Accordion("Advanced Settings", open=False):
|
95 |
seed = gr.Slider(
|
@@ -106,18 +111,19 @@ with gr.Blocks(css=css) as demo:
|
|
106 |
minimum=256,
|
107 |
maximum=MAX_IMAGE_SIZE,
|
108 |
step=32,
|
109 |
-
value=
|
110 |
)
|
111 |
height = gr.Slider(
|
112 |
label="Height",
|
113 |
minimum=256,
|
114 |
maximum=MAX_IMAGE_SIZE,
|
115 |
step=32,
|
116 |
-
value=
|
117 |
)
|
118 |
with gr.Row():
|
119 |
guidance_scale = gr.Slider(
|
120 |
label="Guidance Scale",
|
|
|
121 |
minimum=1,
|
122 |
maximum=15,
|
123 |
step=0.1,
|
@@ -125,24 +131,19 @@ with gr.Blocks(css=css) as demo:
|
|
125 |
)
|
126 |
num_inference_steps = gr.Slider(
|
127 |
label="Number of inference steps",
|
|
|
128 |
minimum=1,
|
129 |
maximum=50,
|
130 |
step=1,
|
131 |
value=28,
|
132 |
)
|
133 |
|
134 |
-
gr.
|
135 |
-
|
136 |
-
fn=infer,
|
137 |
-
inputs=[prompt, lora_model],
|
138 |
-
outputs=[result, seed, output_message],
|
139 |
-
cache_examples="lazy"
|
140 |
-
)
|
141 |
-
|
142 |
gr.on(
|
143 |
triggers=[run_button.click, prompt.submit],
|
144 |
fn=infer,
|
145 |
-
inputs=[prompt,
|
146 |
outputs=[result, seed, output_message]
|
147 |
)
|
148 |
|
|
|
9 |
import os
|
10 |
|
11 |
dtype = torch.bfloat16
|
12 |
+
|
13 |
+
if torch.cuda.is_available():
|
14 |
+
device = "cuda"
|
15 |
+
elif torch.backends.mps.is_available():
|
16 |
+
if not torch.backends.mps.is_built():
|
17 |
+
print("MPS not available because the current PyTorch install was not "
|
18 |
+
"built with MPS enabled.")
|
19 |
+
device = "mps"
|
20 |
+
else:
|
21 |
+
device = "cpu"
|
22 |
|
23 |
MAX_SEED = np.iinfo(np.int32).max
|
24 |
MAX_IMAGE_SIZE = 2048
|
25 |
|
26 |
+
print(f"Device is: {device}")
|
27 |
# Initialize the pipeline globally
|
28 |
pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16).to(device)
|
29 |
|
30 |
|
31 |
@spaces.GPU(duration=300)
|
32 |
+
def infer(prompt, lora_models, seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=5.0,
|
33 |
num_inference_steps=28, progress=gr.Progress(track_tqdm=True)):
|
34 |
global pipe
|
35 |
|
36 |
+
# Load LoRAs if specified
|
37 |
+
if lora_models:
|
38 |
+
print(f"Loading Loras: {lora_models}")
|
39 |
try:
|
40 |
+
for lora_model in lora_models:
|
41 |
+
pipe.load_lora_weights(lora_model)
|
42 |
except Exception as e:
|
43 |
return None, seed, f"Failed to load LoRA model: {str(e)}"
|
44 |
|
|
|
57 |
).images[0]
|
58 |
|
59 |
# Unload LoRA weights after generation
|
60 |
+
if lora_models:
|
61 |
pipe.unload_lora_weights()
|
62 |
|
63 |
return image, seed, "Image generated successfully."
|
|
|
65 |
return None, seed, f"Error during image generation: {str(e)}"
|
66 |
|
67 |
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
css = """
|
69 |
#col-container {
|
70 |
margin: 0 auto;
|
|
|
74 |
|
75 |
with gr.Blocks(css=css) as demo:
|
76 |
with gr.Column(elem_id="col-container"):
|
|
|
|
|
|
|
|
|
|
|
77 |
with gr.Row():
|
78 |
prompt = gr.Text(
|
79 |
label="Prompt",
|
|
|
84 |
)
|
85 |
run_button = gr.Button("Run", scale=0)
|
86 |
|
87 |
+
# lora_model = gr.Text(
|
88 |
+
# label="LoRA Model ID (optional)",
|
89 |
+
# placeholder="Enter Hugging Face LoRA model ID",
|
90 |
+
# )
|
91 |
+
lora_models = gr.Dropdown([
|
92 |
+
("jerry", "bryanbrunetti/jerryfluxlora"),
|
93 |
+
("sebastian", "bryanbrunetti/sebastianfluxlora"),
|
94 |
+
("sadie", "bryanbrunetti/sadiefluxlora")
|
95 |
+
], multiselect=True, info="load lora (optional) use the name in the prompt", label="Choose People")
|
96 |
|
97 |
result = gr.Image(label="Result", show_label=False)
|
|
|
98 |
|
99 |
with gr.Accordion("Advanced Settings", open=False):
|
100 |
seed = gr.Slider(
|
|
|
111 |
minimum=256,
|
112 |
maximum=MAX_IMAGE_SIZE,
|
113 |
step=32,
|
114 |
+
value=512,
|
115 |
)
|
116 |
height = gr.Slider(
|
117 |
label="Height",
|
118 |
minimum=256,
|
119 |
maximum=MAX_IMAGE_SIZE,
|
120 |
step=32,
|
121 |
+
value=512,
|
122 |
)
|
123 |
with gr.Row():
|
124 |
guidance_scale = gr.Slider(
|
125 |
label="Guidance Scale",
|
126 |
+
info="How close to follow prompt",
|
127 |
minimum=1,
|
128 |
maximum=15,
|
129 |
step=0.1,
|
|
|
131 |
)
|
132 |
num_inference_steps = gr.Slider(
|
133 |
label="Number of inference steps",
|
134 |
+
info="higher = more details",
|
135 |
minimum=1,
|
136 |
maximum=50,
|
137 |
step=1,
|
138 |
value=28,
|
139 |
)
|
140 |
|
141 |
+
output_message = gr.Textbox(label="Output Message")
|
142 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
143 |
gr.on(
|
144 |
triggers=[run_button.click, prompt.submit],
|
145 |
fn=infer,
|
146 |
+
inputs=[prompt, lora_models, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
|
147 |
outputs=[result, seed, output_message]
|
148 |
)
|
149 |
|
requirements.txt
CHANGED
@@ -1,7 +1,11 @@
|
|
1 |
accelerate
|
2 |
torch
|
3 |
transformers==4.42.4
|
4 |
-
xformers
|
5 |
sentencepiece
|
6 |
peft
|
7 |
-
diffusers
|
|
|
|
|
|
|
|
|
|
|
|
1 |
accelerate
|
2 |
torch
|
3 |
transformers==4.42.4
|
|
|
4 |
sentencepiece
|
5 |
peft
|
6 |
+
diffusers~=0.30.0
|
7 |
+
gradio~=4.42.0
|
8 |
+
spaces~=0.29.3
|
9 |
+
protobuf
|
10 |
+
numpy~=1.26.4
|
11 |
+
huggingface_hub~=0.24.6
|