Spaces:
Runtime error
Runtime error
Commit
·
17ca582
1
Parent(s):
360853f
Update app.py
Browse files
app.py
CHANGED
@@ -1,5 +1,6 @@
|
|
1 |
import streamlit as st
|
2 |
import pandas as pd
|
|
|
3 |
import re
|
4 |
|
5 |
def summarize_function(notes):
|
@@ -10,7 +11,7 @@ def summarize_function(notes):
|
|
10 |
st.write('Summary: ')
|
11 |
return gen_text
|
12 |
|
13 |
-
st.markdown("<h1 style='text-align: center; color: #489DDB;'>GPT Clinical Notes Summarizer
|
14 |
st.markdown("<h6 style='text-align: center; color: #489DDB;'>by Bryan Mildort</h1>", unsafe_allow_html=True)
|
15 |
|
16 |
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
@@ -21,17 +22,15 @@ from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
|
21 |
# device_map = infer_auto_device_map(model, dtype="float16")
|
22 |
# st.write(device_map)
|
23 |
|
24 |
-
@st.cache(allow_output_mutation=True)
|
25 |
def load_model():
|
26 |
model = AutoModelForCausalLM.from_pretrained("bryanmildort/gpt_neo_notes", low_cpu_mem_usage=True)
|
27 |
# model = model.to(device)
|
28 |
tokenizer = AutoTokenizer.from_pretrained("bryanmildort/gpt_neo_notes")
|
29 |
-
return pipeline("text-generation", model=model, tokenizer=tokenizer)
|
30 |
-
|
31 |
-
|
32 |
pipe = load_model()
|
33 |
|
34 |
-
|
35 |
notes_df = pd.read_csv('notes_small.csv')
|
36 |
examples_tuple = ()
|
37 |
for i in range(len(notes_df)):
|
@@ -47,3 +46,10 @@ if st.button('Summarize'):
|
|
47 |
parsed_input = re.sub(r'\n+', '\n',parsed_input)
|
48 |
final_input = f"""[Notes]:\n{parsed_input}\n[Summary]:\n"""
|
49 |
st.write(summarize_function(final_input))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
import pandas as pd
|
3 |
+
from PIL import Image
|
4 |
import re
|
5 |
|
6 |
def summarize_function(notes):
|
|
|
11 |
st.write('Summary: ')
|
12 |
return gen_text
|
13 |
|
14 |
+
st.markdown("<h1 style='text-align: center; color: #489DDB;'>GPT Clinical Notes Summarizer</h1>", unsafe_allow_html=True)
|
15 |
st.markdown("<h6 style='text-align: center; color: #489DDB;'>by Bryan Mildort</h1>", unsafe_allow_html=True)
|
16 |
|
17 |
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
|
|
22 |
# device_map = infer_auto_device_map(model, dtype="float16")
|
23 |
# st.write(device_map)
|
24 |
|
25 |
+
# @st.cache(allow_output_mutation=True)
|
26 |
def load_model():
|
27 |
model = AutoModelForCausalLM.from_pretrained("bryanmildort/gpt_neo_notes", low_cpu_mem_usage=True)
|
28 |
# model = model.to(device)
|
29 |
tokenizer = AutoTokenizer.from_pretrained("bryanmildort/gpt_neo_notes")
|
30 |
+
return pipeline("text-generation", model=model, tokenizer=tokenizer)
|
31 |
+
|
|
|
32 |
pipe = load_model()
|
33 |
|
|
|
34 |
notes_df = pd.read_csv('notes_small.csv')
|
35 |
examples_tuple = ()
|
36 |
for i in range(len(notes_df)):
|
|
|
46 |
parsed_input = re.sub(r'\n+', '\n',parsed_input)
|
47 |
final_input = f"""[Notes]:\n{parsed_input}\n[Summary]:\n"""
|
48 |
st.write(summarize_function(final_input))
|
49 |
+
|
50 |
+
st.sidebar.markdown("<h1 style='text-align: center; color: #489DDB;'>GPT Clinical Notes Summarizer 0.1v</h1>", unsafe_allow_html=True)
|
51 |
+
st.sidebar.markdown("<h6 style='text-align: center; color: #489DDB;'>The model for this application was created with generous support of the Google TPU Research Cloud (TPU). This demo is for investigative research purposes only. The model is assumed to have several limiations and biases, so please oversee responses with human moderation. It is not intended for production ready enterprises and is displayed to illustrate the capabilities of Large Language Models for healthcare research.</h1>", unsafe_allow_html=True)
|
52 |
+
tower = Image.open('howard_social.png')
|
53 |
+
seal = Image.open('Howard_University_seal.svg.png')
|
54 |
+
st.sidebar.image(tower)
|
55 |
+
st.sidebar.image(seal)
|