File size: 8,279 Bytes
9fa9058
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
import gradio as gr
import json
import os

# root directory of image files
# each action should be saved under subdirectories
# input filename
image_root = "forward_dynamics_qa_pairs_v5_w_newline"
# output filename
output_file = "v5_forward_dynamics_user_choices.json"

# # input filename
# image_root = "/Users/bryan/Desktop/wkdir/VLM/src/human-annotation-interface/inverse_dynamics_qa_pairs_v5_w_newline"
# # output filename
# output_file = "/Users/bryan/Desktop/wkdir/VLM/src/human-annotation-interface/v5_inverse_dynamics_user_choices.json"


if not os.path.exists(output_file):
    with open(output_file, 'w') as f:
        json.dump({}, f)

def load_action_images():
    action_images = {}
    for action in os.listdir(image_root):
        action_dir = os.path.join(image_root, action)
        if os.path.isdir(action_dir):
            images = [f for f in os.listdir(action_dir) if f.endswith('.jpg')]
            images.sort()  # Ensure files are sorted in ascending order
            action_images[action] = images
    return action_images

def load_user_choices():
    with open(output_file, 'r') as f:
        return json.load(f)

def save_user_choice(action, image_name, choice, ground_truth):
    image_name_no_ext = os.path.splitext(image_name)[0]  # remove ".jpg" ext
    user_choices = load_user_choices()
    is_correct = (choice == ground_truth)
    
    # save result
    if action not in user_choices:
        user_choices[action] = {}
    user_choices[action][image_name_no_ext] = {
        "choice": choice,
        "ground_truth": ground_truth,
        "is_correct": is_correct
    }
    with open(output_file, 'w') as f:
        json.dump(user_choices, f, indent=2)

def get_content_at_index(action, index):
    if action not in action_images or index < 0 or index >= len(action_images[action]):
        return None, None, "No more images", "", False, False

    # image
    image_name = action_images[action][index]
    image_path = os.path.join(image_root, action, image_name)

    # text prompt
    text_prompt_path = image_path.replace(".jpg", ".txt")
    text_prompt = (
        open(text_prompt_path, 'r').read().strip()
        if os.path.exists(text_prompt_path)
        else "No text prompt available"
    )

    # Apply font size styling to text_prompt
    text_prompt = f"<div style='font-size: 1.25em;'>{text_prompt}</div>"

    # ground truth
    ground_truth_path = image_path.replace(".jpg", "_answer.txt")
    ground_truth = (
        open(ground_truth_path, 'r').read().strip()
        if os.path.exists(ground_truth_path)
        else "No ground truth available"
    )

    # button states
    enable_prev = index > 0
    enable_next = index < len(action_images[action]) - 1

    return image_path, image_name, text_prompt, ground_truth, enable_prev, enable_next


# navigate among questions
def navigate(action, index, direction):
    # update index
    new_index = max(0, min(index + direction, len(action_images[action]) - 1))
    # retrieve context
    image_path, _, text_prompt, ground_truth, enable_prev, enable_next = get_content_at_index(action, new_index)
    
    # Apply font size styling to text_prompt
    styled_text_prompt = f"<div style='font-size: 1.25em;'>{text_prompt}</div>"
    
    return (
        image_path,
        styled_text_prompt,
        ground_truth,
        gr.update(value=""),
        gr.update(interactive=enable_prev),
        gr.update(interactive=enable_next),
        new_index
    )


# Handle user choice submission
def submit_choice(action, index, choice, ground_truth):
    if action not in action_images or index < 0 or index >= len(action_images[action]):
        return "Invalid demo or keyframe index."

    image_name = action_images[action][index]
    save_user_choice(action, image_name, choice, ground_truth)  # Save user choice

    if choice == ground_truth:
        color = "green"
    else:
        color = "red"
    return f'<div style="font-size: 1.25em; color:{color}">Ground Truth: {ground_truth}</div>'



def change_action(action):
    if action not in action_images:
        return None, "No images available", "No text prompt available", "", gr.update(interactive=False), gr.update(interactive=False), action, 0

    # Get the first image of the new action
    image_path, image_name, text_prompt, ground_truth, enable_prev, enable_next = get_content_at_index(action, 0)

    # Apply font size styling to text_prompt
    styled_text_prompt = f"<div style='font-size: 1.25em;'>{text_prompt}</div>"

    # Reset states
    enable_prev = gr.update(interactive=False)  # Disable "Previous" as we're at the start
    enable_next = gr.update(interactive=enable_next)  # Enable "Next" if there are more images

    return image_path, styled_text_prompt, ground_truth, gr.update(value=""), enable_prev, enable_next, action, 0

# initialize data
action_images = load_action_images()

def initialize_app():
    if not action_images:
        return None, None, "No actions available", "", gr.update(interactive=False), gr.update(interactive=False), "", 0

    first_action = list(action_images.keys())[0]
    image_path, image_name, text_prompt, ground_truth, enable_prev, enable_next = get_content_at_index(first_action, 0)

    # Force the Previous button to be disabled during initialization
    enable_prev = gr.update(interactive=False)

    return image_path, image_name, text_prompt, ground_truth, enable_prev, gr.update(interactive=enable_next), first_action, 0

first_image, first_image_name, first_text_prompt, first_ground_truth, enable_prev, enable_next, first_action, first_index = initialize_app()

# Gradio interface
with gr.Blocks() as app:
    gr.Markdown("# VLM Embodied Benchmark Human Annotation Interface")

    # states: action, index, ground truth
    current_action = gr.State(value=first_action)
    current_index = gr.State(value=first_index)
    current_ground_truth = gr.State(value=first_ground_truth)

    # UI components
    action_dropdown = gr.Dropdown(choices=list(action_images.keys()), value=first_action, label="Select Demo to Annotate")
    # image = gr.Image(value=first_image, interactive=False, width=500)
    image = gr.Image(value=first_image, interactive=False, width=1500)
    text_prompt = gr.Markdown(value=f"<div style='font-size: 1.25em;'>{first_text_prompt}</div>")
    with gr.Row(): # nav buttons
        prev_button = gr.Button("Previous", interactive=False)  # Explicitly disabled during initialization
        next_button = gr.Button("Next", interactive=enable_next["interactive"])
    with gr.Row(): # choice buttons
        a_button = gr.Button("A")
        b_button = gr.Button("B")
        c_button = gr.Button("C")
        d_button = gr.Button("D")
    ground_truth_display = gr.Markdown(value="")

    # change action dropdown
    action_dropdown.change(
        fn=change_action,
        inputs=[action_dropdown],
        outputs=[image, text_prompt, current_ground_truth, ground_truth_display, prev_button, next_button, current_action, current_index]
    )
    
    # click on navigation buttons
    nav_input = [current_action, current_index]
    nav_output = [image, text_prompt, current_ground_truth, ground_truth_display, prev_button, next_button, current_index]
    prev_button.click(
        fn=lambda action, index: navigate(action, index, -1),
        inputs=nav_input, outputs=nav_output
    )
    next_button.click(
        fn=lambda action, index: navigate(action, index, 1),
        inputs=[current_action, current_index],
        outputs=nav_output
    )

    # click on choice buttons
    input_param = [current_action, current_index, current_ground_truth]
    output_param= [ground_truth_display]
    a_button.click(
        fn=lambda action, index, gt: submit_choice(action, index, "A", gt),
        inputs=input_param, outputs=output_param)
    b_button.click(
        fn=lambda action, index, gt: submit_choice(action, index, "B", gt),
        inputs=input_param, outputs=output_param)
    c_button.click(
        fn=lambda action, index, gt: submit_choice(action, index, "C", gt),
        inputs=input_param, outputs=output_param)
    d_button.click(
        fn=lambda  action, index, gt: submit_choice(action, index, "D", gt),
        inputs=input_param, outputs=output_param)

app.launch(share=True)