File size: 3,283 Bytes
a103d54
 
 
 
 
 
 
 
551980e
a103d54
551980e
 
a103d54
 
3522874
a103d54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
80dc021
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
from openai import OpenAI
import base64
import requests
import re

from diffusers import DiffusionPipeline
import torch
from PIL import Image

import os
from huggingface_hub import login
login(token=os.environ.get("HF_token"))

# Modfiy this to change the number of generations
NUM_GEN = 3

def encode_image(image_path):
  with open(image_path, "rb") as image_file:
    return base64.b64encode(image_file.read()).decode('utf-8')

def vision_gpt(prompt, image_url, api_key):
    client = OpenAI(api_key=api_key)
    response = client.chat.completions.create(
        model="gpt-4-vision-preview",
        messages=[
            {
              "role": "user",
              "content": [
                  {"type": "text",
                   "text": prompt},
                  {
                      "type": "image_url",
                      "image_url": {
                          "url": f"data:image/jpeg;base64,{image_url}", },
                  },
              ],
            }
        ],
        max_tokens=600,
    )
    return response.choices[0].message.content


def generate_images(oai_key, input_path, mistaken_class, ground_truth_class):
    
    output_path = "out/"
    num_generations = 2
    print("--------------input_path--------------: \n", input_path, "\n\n")
    base64_image = encode_image(input_path)
    
    prompt = """
    List key features of the {} itself in this image that make it distinct from a {}? Then, write a very short and 
    concise visual midjourney prompt of the {} that includes the above features of {} (prompt should start 
    with '4K SLR photo,') and put it inside square brackets []. Do no mention {} in your prompt, also do not mention
    non-essential background scenes like "calm waters, mountains" and sub-components like "paddle of canoe" in the prompt.
    """.format(ground_truth_class, mistaken_class, ground_truth_class, ground_truth_class, mistaken_class, mistaken_class)
    
    
    print("--------------gpt prompt--------------: \n", prompt, "\n\n")
    response = vision_gpt(prompt, base64_image, oai_key)
    print("--------------GPT response--------------: \n", response, "\n\n")
    stable_diffusion_prompt =  re.search(r'\[(.*?)\]', response).group(1)
    print("--------------stable_diffusion_prompt-------------- \n", stable_diffusion_prompt, "\n\n")
    
    
    SD_pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-0.9", torch_dtype=torch.float16, use_safetensors=True, variant="fp16")
    RF_pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-0.9", torch_dtype=torch.float16, use_safetensors=True, variant="fp16")
    
    SD_pipe.to("cuda")
    RF_pipe.to("cuda")
    
    out_images = []
    for i in range(NUM_GEN):
        generated_images = SD_pipe(prompt=stable_diffusion_prompt, num_inference_steps=75).images
        refined_image = RF_pipe(prompt=stable_diffusion_prompt, image=generated_images).images[0]
        refined_image = RF_pipe(prompt=stable_diffusion_prompt, image=refined_image).images[0]
        refined_image = RF_pipe(prompt=stable_diffusion_prompt, image=refined_image).images[0]
        # refined_image.save(output_path + "{}.png".format(i), 'PNG')
        out_images.append(refined_image)

    return tuple(out_images)