Spaces:
Runtime error
Runtime error
from openai import OpenAI | |
import base64 | |
import requests | |
import re | |
from diffusers import DiffusionPipeline | |
import torch | |
from PIL import Image | |
import os | |
import argparse | |
# Function to encode the image | |
def encode_image(image_path): | |
with open(image_path, "rb") as image_file: | |
return base64.b64encode(image_file.read()).decode('utf-8') | |
# Function to retrieve openai api key | |
def get_openai_key(key_path): | |
with open(key_path) as f: | |
key = f.read().strip() | |
print("Reading OpenAI API key from: ", key_path) | |
return key | |
# Function to obtain GPT4V response | |
def vision_gpt(prompt, image_url, api_key): | |
client = OpenAI(api_key=api_key) | |
response = client.chat.completions.create( | |
model="gpt-4-vision-preview", | |
messages=[ | |
{ | |
"role": "user", | |
"content": [ | |
{"type": "text", | |
"text": prompt}, | |
{ | |
"type": "image_url", | |
"image_url": { | |
"url": f"data:image/jpeg;base64,{image_url}", }, | |
}, | |
], | |
} | |
], | |
max_tokens=600, | |
) | |
return response.choices[0].message.content | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser(description="extract differentiating attributes of the gt object class from the mistaken object class, generate synthatic images of the gt class highlighting such attributes") | |
parser.add_argument('-i', "--input_path", type=str, metavar='', required=True, help="path to input image") | |
parser.add_argument('-o', "--output_path", type=str, metavar='', required=True, help="path to output folder") | |
parser.add_argument('-k', "--api_key_path", type=str, metavar='', required=True, help="path to file containing openai api key") | |
parser.add_argument('-m', "--mistaken_class", type=str, metavar='', required=True, help="model wrongly predicted this class") | |
parser.add_argument('-g', "--ground_truth_class", type=str, metavar='', required=True, help="the ground truth class of the image") | |
parser.add_argument('-n', "--num_generations", type=int, metavar='', required=False, default=5, help="number of generations") | |
args = parser.parse_args() | |
gt, ms = args.ground_truth_class, args.mistaken_class | |
oai_key = get_openai_key(args.api_key_path) | |
if os.path.exists(args.output_path): | |
pass | |
else: | |
os.mkdir(args.output_path) | |
base64_image = encode_image(args.input_path) | |
prompt = """ | |
List key features of the {} itself in this image that make it distinct from a {}? Then, write a very short and | |
concise visual midjourney prompt of the {} that includes the above features of {} (prompt should start | |
with '4K SLR photo,') and put it inside square brackets []. Do no mention {} in your prompt, also do not mention | |
non-essential background scenes like "calm waters, mountains" and sub-components like "paddle of canoe" in the prompt. | |
""".format(gt, ms, gt, gt, ms, ms) | |
# prompt = """ | |
# List features of the {} in this image that make it distinct from a {}? Then, write a very short and | |
# concise non-artistic visual diffusion prompt of a {} that includes the above features of {} (starting | |
# with 'photo,') and put it inside square brackets []. Do no mention {} in | |
# your prompt, ignore unrelated background scenes, non-essential sub-components, objects, and people. | |
# """.format(gt, ms, gt, gt, ms, ms) | |
print("--------------gpt prompt--------------: \n", prompt, "\n\n") | |
response = vision_gpt(prompt, base64_image, oai_key) | |
print("--------------GPT response--------------: \n", response, "\n\n") | |
stable_diffusion_prompt = re.search(r'\[(.*?)\]', response).group(1) | |
print("--------------stable_diffusion_prompt-------------- \n", stable_diffusion_prompt, "\n\n") | |
SD_pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-0.9", torch_dtype=torch.float16, use_safetensors=True, variant="fp16") | |
SD_pipe.to("cuda") | |
RF_pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-0.9", torch_dtype=torch.float16, use_safetensors=True, variant="fp16") | |
RF_pipe.to("cuda") | |
for i in range(args.num_generations): | |
generated_images = SD_pipe(prompt=stable_diffusion_prompt, num_inference_steps=75).images | |
refined_image = RF_pipe(prompt=stable_diffusion_prompt, image=generated_images).images[0] | |
# refined_image = RF_pipe(prompt=stable_diffusion_prompt, image=refined_image).images[0] | |
# refined_image = RF_pipe(prompt=stable_diffusion_prompt, image=refined_image).images[0] | |
refined_image.save(args.output_path + "{}.png".format(i), 'PNG') |