Spaces:
Runtime error
Runtime error
from openai import OpenAI | |
import base64 | |
import requests | |
import re | |
from diffusers import DiffusionPipeline | |
import torch | |
from PIL import Image | |
import os | |
import argparse | |
import gradio as gr | |
def encode_image(image_path): | |
with open(image_path, "rb") as image_file: | |
return base64.b64encode(image_file.read()).decode('utf-8') | |
def vision_gpt(prompt, image_url, api_key): | |
client = OpenAI(api_key=api_key) | |
response = client.chat.completions.create( | |
model="gpt-4-vision-preview", | |
messages=[ | |
{ | |
"role": "user", | |
"content": [ | |
{"type": "text", | |
"text": prompt}, | |
{ | |
"type": "image_url", | |
"image_url": { | |
"url": f"data:image/jpeg;base64,{image_url}", }, | |
}, | |
], | |
} | |
], | |
max_tokens=600, | |
) | |
return response.choices[0].message.content | |
def generate_images(oai_key, input_path, mistaken_class, ground_truth_class, num_generations): | |
output_path = "out/" | |
base64_image = encode_image(input_path) | |
prompt = """ | |
List key features of the {} itself in this image that make it distinct from a {}? Then, write a very short and | |
concise visual midjourney prompt of the {} that includes the above features of {} (prompt should start | |
with '4K SLR photo,') and put it inside square brackets []. Do no mention {} in your prompt, also do not mention | |
non-essential background scenes like "calm waters, mountains" and sub-components like "paddle of canoe" in the prompt. | |
""".format(ground_truth_class, mistaken_class, ground_truth_class, ground_truth_class, mistaken_class, mistaken_class) | |
print("--------------gpt prompt--------------: \n", prompt, "\n\n") | |
response = vision_gpt(prompt, base64_image, oai_key) | |
print("--------------GPT response--------------: \n", response, "\n\n") | |
stable_diffusion_prompt = re.search(r'\[(.*?)\]', response).group(1) | |
print("--------------stable_diffusion_prompt-------------- \n", stable_diffusion_prompt, "\n\n") | |
SD_pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-0.9", torch_dtype=torch.float16, use_safetensors=True, variant="fp16") | |
SD_pipe.to("cuda") | |
RF_pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-0.9", torch_dtype=torch.float16, use_safetensors=True, variant="fp16") | |
RF_pipe.to("cuda") | |
for i in range(num_generations): | |
generated_images = SD_pipe(prompt=stable_diffusion_prompt, num_inference_steps=75).images | |
refined_image = RF_pipe(prompt=stable_diffusion_prompt, image=generated_images).images[0] | |
refined_image = RF_pipe(prompt=stable_diffusion_prompt, image=refined_image).images[0] | |
refined_image = RF_pipe(prompt=stable_diffusion_prompt, image=refined_image).images[0] | |
refined_image.save(output_path + "{}.png".format(i), 'PNG') | |
return [output_path + "{}.png".format(i) for i in range(num_generations)] | |
iface = gr.Interface( | |
fn=generate_images, | |
inputs=[ | |
gr.Textbox(label="OpenAI API Key"), | |
gr.Image(label="Input Image"), | |
gr.Textbox(label="Mistaken Class"), | |
gr.Textbox(label="Ground Truth Class"), | |
gr.Number(label="Number of Generations") | |
], | |
outputs=[ | |
gr.Image(label="Output Image") | |
], | |
title="Image Generation and Refinement", | |
description="Generates and refines images based on input classes and parameters." | |
) | |
if __name__ == "__main__": | |
iface.launch() |