Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,98 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from openai import OpenAI
|
2 |
+
import base64
|
3 |
+
import requests
|
4 |
+
import re
|
5 |
+
|
6 |
+
from diffusers import DiffusionPipeline
|
7 |
+
import torch
|
8 |
+
from PIL import Image
|
9 |
+
import os
|
10 |
+
import argparse
|
11 |
+
|
12 |
+
import gradio as gr
|
13 |
+
|
14 |
+
from huggingface_hub import HfFolder
|
15 |
+
from transformers import AutoModel
|
16 |
+
|
17 |
+
HfFolder.save_token('your_hf_api_token_here')
|
18 |
+
|
19 |
+
def encode_image(image_path):
|
20 |
+
with open(image_path, "rb") as image_file:
|
21 |
+
return base64.b64encode(image_file.read()).decode('utf-8')
|
22 |
+
|
23 |
+
def vision_gpt(prompt, image_url, api_key):
|
24 |
+
client = OpenAI(api_key=api_key)
|
25 |
+
response = client.chat.completions.create(
|
26 |
+
model="gpt-4-vision-preview",
|
27 |
+
messages=[
|
28 |
+
{
|
29 |
+
"role": "user",
|
30 |
+
"content": [
|
31 |
+
{"type": "text",
|
32 |
+
"text": prompt},
|
33 |
+
{
|
34 |
+
"type": "image_url",
|
35 |
+
"image_url": {
|
36 |
+
"url": f"data:image/jpeg;base64,{image_url}", },
|
37 |
+
},
|
38 |
+
],
|
39 |
+
}
|
40 |
+
],
|
41 |
+
max_tokens=600,
|
42 |
+
)
|
43 |
+
return response.choices[0].message.content
|
44 |
+
|
45 |
+
|
46 |
+
def generate_images(oai_key, input_path, mistaken_class, ground_truth_class, num_generations):
|
47 |
+
|
48 |
+
output_path = "out/"
|
49 |
+
base64_image = encode_image(input_path)
|
50 |
+
|
51 |
+
prompt = """
|
52 |
+
List key features of the {} itself in this image that make it distinct from a {}? Then, write a very short and
|
53 |
+
concise visual midjourney prompt of the {} that includes the above features of {} (prompt should start
|
54 |
+
with '4K SLR photo,') and put it inside square brackets []. Do no mention {} in your prompt, also do not mention
|
55 |
+
non-essential background scenes like "calm waters, mountains" and sub-components like "paddle of canoe" in the prompt.
|
56 |
+
""".format(ground_truth_class, mistaken_class, ground_truth_class, ground_truth_class, mistaken_class, mistaken_class)
|
57 |
+
|
58 |
+
|
59 |
+
print("--------------gpt prompt--------------: \n", prompt, "\n\n")
|
60 |
+
response = vision_gpt(prompt, base64_image, oai_key)
|
61 |
+
print("--------------GPT response--------------: \n", response, "\n\n")
|
62 |
+
stable_diffusion_prompt = re.search(r'\[(.*?)\]', response).group(1)
|
63 |
+
print("--------------stable_diffusion_prompt-------------- \n", stable_diffusion_prompt, "\n\n")
|
64 |
+
|
65 |
+
|
66 |
+
SD_pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-0.9", torch_dtype=torch.float16, use_safetensors=True, variant="fp16")
|
67 |
+
SD_pipe.to("cuda")
|
68 |
+
|
69 |
+
RF_pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-0.9", torch_dtype=torch.float16, use_safetensors=True, variant="fp16")
|
70 |
+
RF_pipe.to("cuda")
|
71 |
+
|
72 |
+
for i in range(num_generations):
|
73 |
+
generated_images = SD_pipe(prompt=stable_diffusion_prompt, num_inference_steps=75).images
|
74 |
+
refined_image = RF_pipe(prompt=stable_diffusion_prompt, image=generated_images).images[0]
|
75 |
+
refined_image = RF_pipe(prompt=stable_diffusion_prompt, image=refined_image).images[0]
|
76 |
+
refined_image = RF_pipe(prompt=stable_diffusion_prompt, image=refined_image).images[0]
|
77 |
+
refined_image.save(output_path + "{}.png".format(i), 'PNG')
|
78 |
+
|
79 |
+
return [output_path + "{}.png".format(i) for i in range(num_generations)]
|
80 |
+
|
81 |
+
iface = gr.Interface(
|
82 |
+
fn=generate_images,
|
83 |
+
inputs=[
|
84 |
+
gr.Textbox(label="OpenAI API Key"),
|
85 |
+
gr.Image(label="Input Image"),
|
86 |
+
gr.Textbox(label="Mistaken Class"),
|
87 |
+
gr.Textbox(label="Ground Truth Class"),
|
88 |
+
gr.Number(label="Number of Generations")
|
89 |
+
],
|
90 |
+
outputs=[
|
91 |
+
gr.Image(label="Output Image")
|
92 |
+
],
|
93 |
+
title="Image Generation and Refinement",
|
94 |
+
description="Generates and refines images based on input classes and parameters."
|
95 |
+
)
|
96 |
+
|
97 |
+
if __name__ == "__main__":
|
98 |
+
iface.launch()
|