Spaces:
Sleeping
Sleeping
#%% | |
import plotly.express as px | |
import numpy as np | |
import pandas as pd | |
import streamlit as st | |
import tensorflow as tf | |
from keras.preprocessing import image | |
#docker build -t streamlit | |
# docker compose up | |
image_file_prev = "" | |
model = tf.keras.models.load_model("cnnBoneFracRec.h5") | |
st.markdown("## Bone Fracture Recognition with TensorFlow") | |
image_file = st.file_uploader("Upload X-Ray Image", type=['png', 'jpg']) | |
if image_file_prev != image_file and image_file: | |
st.image(image_file, caption=None, width=None, use_column_width=None, clamp=False, channels="RGB", output_format="auto") | |
image_file_prev = image_file | |
target_names = ['Non-Fractured', 'Fractured'] | |
temp_img = image.load_img(image_file, target_size=(100, 100)) | |
x = image.img_to_array(temp_img) | |
x = np.expand_dims(x, axis=0) | |
images = np.vstack([x]) | |
prediction = np.argmax(model.predict(images), axis=1) | |
prediction_str = target_names[prediction.item()] | |
if prediction_str: | |
st.markdown(f"##### Prediction : {prediction_str}") | |