hathawayj commited on
Commit
59a2d05
·
1 Parent(s): 865f273

first push

Browse files
Dockerfile ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ FROM python:3.9-slim
2
+ EXPOSE 8501
3
+ WORKDIR /app
4
+ RUN apt-get update && apt-get install -y \
5
+ build-essential \
6
+ software-properties-common \
7
+ git \
8
+ && rm -rf /var/lib/apt/lists/*
9
+ COPY . /app
10
+ RUN pip3 install -r requirements.txt
11
+ ENTRYPOINT ["streamlit", "run", "streamlit.py", "--server.port=8501", "--server.address=0.0.0.0"]
Metadata_Country_API_Download_DS2_en_csv_v2_5657328.csv ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ "Country Code","Region","IncomeGroup","SpecialNotes","TableName",
2
+ "COD","Sub-Saharan Africa","Low income","The World Bank systematically assesses the appropriateness of official exchange rates as conversion factors. In this country, multiple or dual exchange rate activity exists and must be accounted for appropriately in underlying statistics. An alternative estimate (“alternative conversion factor” - PA.NUS.ATLS) is thus calculated as a weighted average of the different exchange rates in use in the country. Doing so better reflects economic reality and leads to more accurate cross-country comparisons and country classifications by income level. For this country, this applies to the period 1999-2004. Alternative conversion factors are used in the Atlas methodology and elsewhere in World Development Indicators as single-year conversion factors.","Congo, Dem. Rep.",
3
+ "GHA","Sub-Saharan Africa","Lower middle income","The World Bank systematically assesses the appropriateness of official exchange rates as conversion factors. In this country, multiple or dual exchange rate activity exists and must be accounted for appropriately in underlying statistics. An alternative estimate (“alternative conversion factor” - PA.NUS.ATLS) is thus calculated as a weighted average of the different exchange rates in use in the country. Doing so better reflects economic reality and leads to more accurate cross-country comparisons and country classifications by income level. For this country, this applies to the period 1974-1987. Alternative conversion factors are used in the Atlas methodology and elsewhere in World Development Indicators as single-year conversion factors.","Ghana",
4
+ "KEN","Sub-Saharan Africa","Lower middle income","Fiscal year end: June 30; reporting period for national accounts data: CY.","Kenya",
5
+ "NGA","Sub-Saharan Africa","Lower middle income","The World Bank systematically assesses the appropriateness of official exchange rates as conversion factors. In this country, multiple or dual exchange rate activity exists and must be accounted for appropriately in underlying statistics. An alternative estimate (“alternative conversion factor” - PA.NUS.ATLS) is thus calculated as a weighted average of the different exchange rates in use in the country. Doing so better reflects economic reality and leads to more accurate cross-country comparisons and country classifications by income level. For this country, this applies to 1970-2020. Alternative conversion factors are used in the Atlas methodology and elsewhere in World Development Indicators as single-year conversion factors.","Nigeria",
6
+ "ZAF","Sub-Saharan Africa","Upper middle income","Fiscal year end: March 31; reporting period for national accounts data: CY.","South Africa",
7
+ "ZWE","Sub-Saharan Africa","Lower middle income","National Accounts data are reported in Zimbabwean Dollar (ZWL). Before 2017, one ZWL is set to be equal to one USD.
8
+
9
+ The World Bank systematically assesses the appropriateness of official exchange rates as conversion factors. In this country, multiple or dual exchange rate activity exists and must be accounted for appropriately in underlying statistics. An alternative estimate (“alternative conversion factor” - PA.NUS.ATLS) is thus calculated as a weighted average of the different exchange rates in use in the country. Doing so better reflects economic reality and leads to more accurate cross-country comparisons and country classifications by income level. For this country, this applies to the period 2017-2022. Alternative conversion factors are used in the Atlas methodology and elsewhere in World Development Indicators as single-year conversion factors.","Zimbabwe",
Metadata_Indicator_API_Download_DS2_en_csv_v2_5657328.csv ADDED
The diff for this file is too large to render. See raw diff
 
README.md CHANGED
@@ -1,11 +1,107 @@
1
  ---
2
- title: Docker Streamlit
3
- emoji: 👁
4
- colorFrom: purple
5
- colorTo: indigo
6
  sdk: docker
7
  pinned: false
8
  license: apache-2.0
 
9
  ---
10
 
11
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ title: Streamlit Docker
3
+ emoji: 🐨
4
+ colorFrom: indigo
5
+ colorTo: red
6
  sdk: docker
7
  pinned: false
8
  license: apache-2.0
9
+ app_port: 8501
10
  ---
11
 
12
+
13
+ ## Introduction to Data Science with Python
14
+
15
+ ## Overview
16
+
17
+ Location: Accra, Ghana When: July 31 and August 1, 2023
18
+
19
+ This material focuses on [Polars](https://pola-rs.github.io/polars-book/user-guide/), [Parquet files](https://parquet.apache.org/docs/), [Plotly Express](https://plotly.com/python/plotly-express/), and [Streamlit](https://streamlit.io/) to introduce the data science process.
20
+
21
+ ## Installing the tools
22
+
23
+ We will need [Visual Studio Code](https://code.visualstudio.com/download) and [Python](https://www.python.org/downloads/) installed for this short course. Each tool has additional packages/extensions that we will need to install as well.
24
+
25
+
26
+ ### Visual Studio Code Extensions
27
+
28
+ You can use [Managing Extensions in Visual Studio Code](https://code.visualstudio.com/docs/editor/extension-marketplace) to learn about how to install extensions. We will use [Python - Visual Studio Marketplace](https://marketplace.visualstudio.com/items?itemName=ms-python.python) extension heavily. [Managing Extensions in Visual Studio Code](https://code.visualstudio.com/docs/editor/extension-marketplace) provides more background on extensions if needed.
29
+
30
+ #### VS Code Interactive Python Window
31
+
32
+ An open-source project called [Jupyter](http://jupyter-notebook.readthedocs.io/en/latest/) is the standard method for interactive Python use for data science or scientific computing. However, there are [some issues](https://towardsdatascience.com/5-reasons-why-jupyter-notebooks-suck-4dc201e27086) with its use in a development environment. VS Code provides a way for us to have the best of Python and Jupyter Notebooks with their [Python Interactive Window](https://code.visualstudio.com/docs/python/jupyter-support-py).
33
+
34
+ VS Code is fairly intelligent in responding to your needs. If you open a `.py` file it should ask pop up a window asking you if you would like prepare your Python experience. You will need to install the [jupyter python package](https://jupyter.readthedocs.io/en/latest/install.html). If VS Code doesn't install it it, you can use `pip` or `pip3` for the interactive Python window to work.
35
+
36
+ Using the VS Code functionality, you will work with a standard `.py` file instead of the `.ipynb` extension typically used with jupyter notebooks. The Python extension in VS Code will recognize `# %%` as a cell or chunk of python code and add notebook options to ‘Run Cell’ as well as other actions. You can see the code example bellow with the image of the view in VS Code as an example. [Microsoft’s documentation](https://code.visualstudio.com/docs/python/jupyter-support-py) goes into more detail (https://code.visualstudio.com/docs/python/jupyter-support-py).
37
+
38
+ To make the interactive window use more functional you can `ctrl + ,` or `cmd + ,` on a mac to open the settings. From there you can search **‘Send Selection to Interactive Window’** and make sure the box is checked. Now you will be able to use `shift + return` to send a selected chunk of code or an entire cell.
39
+
40
+ ```python
41
+ # %%
42
+ msg = "Hello World"
43
+ print(msg)
44
+
45
+ # %%
46
+ msg = "Hello again"
47
+ print(msg)
48
+ ```
49
+
50
+ ![img](img/vscode-code-cells-01.png)
51
+
52
+ ### Python Packages
53
+
54
+ #### `pip` overview
55
+
56
+ *The standard command* - `pip install polars[all] plotly streamlit` is executed in your Terminal, Command Window, or by using the `New Terminal` under `Terminal` in VS Code. If you are using a Mac you most likely will use `pip3 install polars[all] plotly streamlit`. In your interactive Python environment in VS Code (Jupyter server) you can run `!pip install polars[all] plotly streamlit` as explained [here](https://jakevdp.github.io/blog/2017/12/05/installing-python-packages-from-jupyter/#How-to-use-Pip-from-the-Jupyter-Notebook). Finally, you could use the following Python code snippet.
57
+
58
+ The two commands that can be used in the interactive python window in VS Code to install packages.
59
+
60
+ ```python
61
+ !pip install polars[all] plotly streamlit
62
+ ```
63
+
64
+ or
65
+
66
+ ```python
67
+ import sys
68
+ !{sys.executable} -m pip install polars[all] plotly streamlit
69
+ ```
70
+
71
+ #### `pip` commands
72
+
73
+ - `pip install polars[all] plotly streamlit` should install all needed packages.
74
+
75
+ You could install them individually using the following commands.
76
+
77
+ - `pip install polars[all]` for [Polars](https://pola-rs.github.io/polars-book/user-guide/installation/)
78
+ - `pip install streamlit` for [Streamlit](https://docs.streamlit.io/library/get-started/main-concepts)
79
+ - `pip install plotly` for [plotly in Python](https://plotly.com/python/getting-started/)
80
+
81
+ ## Repo Navigation
82
+
83
+ ### `guides` folder
84
+
85
+ The `guides` folder will allow us to explore these packages if the internet connection is down during our course.
86
+
87
+ - PDF Files: The pdf files should have most of the commands we will need during the course. The `polars_website.pdf` is a full pdf build of their website guide as of July 2023.
88
+ - `streamlit_md` folder: This folder has the markdown files used to build their website guide. It is a little harder to navigate.
89
+ - `polars_site` folder: This folder has the fully built website for the polars package as of July 2023. From your OS file explorer open the `index.html` file to see the full site.
90
+
91
+ ### `data` folder
92
+
93
+ This folder has the data we will be using for the short course. Read more about [the data folder](https://file+.vscode-resource.vscode-cdn.net/Users/hathawayj/git/hathawayj/ghana_datascience/data/readme.md).
94
+
95
+ ### Scripts folder
96
+
97
+ The scripts folder has the starting scripts for each of the activities we will complete during the short course.
98
+
99
+ ### Markdown links
100
+
101
+ - [plotly.md](https://file+.vscode-resource.vscode-cdn.net/Users/hathawayj/git/hathawayj/ghana_datascience/plotly.md): links to the primary functions we will use as we create charts with Plotly Express
102
+ - [polars.md](https://file+.vscode-resource.vscode-cdn.net/Users/hathawayj/git/hathawayj/ghana_datascience/polars.md): links to the key methods we will leverage for data import and munging.
103
+ - [streamlit.md](https://file+.vscode-resource.vscode-cdn.net/Users/hathawayj/git/hathawayj/ghana_datascience/streamlit.md): links to the dashboard functions and concepts we will use with Streamlit
104
+
105
+ ## Slides
106
+
107
+ The [HTML Slides](https://hathawayj.github.io/ghana_datascience/) and [pdf slides](https://github.com/hathawayj/ghana_datascience/blob/slides/slides.pdf)
docker-compose.yml ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ version: '3.9'
2
+ services:
3
+ streamlit:
4
+ build:
5
+ dockerfile: Dockerfile
6
+ context: .
7
+ container_name: streamlit-example
8
+ cpus: 2
9
+ mem_limit: 2048m
10
+ ports:
11
+ - "8501:8501"
12
+ volumes:
13
+ - ".:/app:rw"
remark_slides.md ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # GitHub Pages Slideshow with [Remark](https://github.com/gnab/remark)
2
+
3
+ This template is made from [Remark](https://github.com/gnab/remark), an open source tool to help create and display slideshows from markdown. For questions, see [Remark's documentation](https://github.com/gnab/remark). I have added a Github action to convert the slides to a pdf in the `slides` branch.
4
+
5
+ The most important things to know are:
6
+ - Enable GitHub Pages from `master` for the slides to work
7
+ - Once enabled, the slides will be visible at `https://USERNAME.github.io/REPOSITORY-NAME/#1`, like https://brianamarie.github.io/slideshow-on-pages/#1
8
+ - Edit the `index.html` file to edit the slides
9
+ - Slides are separated by `----`
10
+ - Presenter notes after `???` within one slide
11
+ - Toggle presenter notes during presentation with `P`
12
+ - Read the full guide to [remark markdown](https://github.com/gnab/remark/wiki)
13
+ - Press `C` to clone a display; then press `P` to switch to presenter mode. Open help menu with `h`
14
+
15
+ Fork this repository to get started!
requirements.txt ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ altair
2
+ polars
3
+ pandas
4
+ streamlit
5
+ scikit-learn
6
+ numpy
7
+ plotly
8
+ lets-plot
scripts_build/01_read.py ADDED
@@ -0,0 +1,49 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # %%
2
+ import polars as pl
3
+ # Notice that the world health leaves missing as blanks in the csv. We need to explain that blanks aren't strings but missing values.
4
+
5
+ dat = pl.read_csv("../data/API_Download_DS2_en_csv_v2_5657328.csv", skip_rows=4, null_values = "")
6
+ # We don't like the World Banks wide format. Let's clean it upt to long format.
7
+ dat_long = dat.melt(id_vars=["Country Name", "Country Code", "Indicator Name", "Indicator Code"])
8
+ # no we need to fix the year column and give it a better name.
9
+ # we could have fixed the name as an argument in `.melt()` as well.
10
+ # https://docs.pola.rs/user-guide/expressions/casting/#overflow
11
+ dat_long = dat_long\
12
+ .with_columns(
13
+ pl.col("variable").cast(pl.Int64, strict=False).alias("variable"),
14
+ pl.col("value").cast(pl.Float32, strict=False).alias("value"))\
15
+ .rename({"variable":"year"})\
16
+ .filter(pl.col("value").is_not_null())
17
+
18
+
19
+ # %%
20
+ # Can we split out the information in the indicator Code
21
+ indicator_columns = dat_long\
22
+ .select(
23
+ pl.col("Indicator Code"),
24
+ pl.col("Indicator Code")\
25
+ # split string: example VC.IDP.TOCV into list object ["VC", "IDP", "TOCV"]
26
+ .str.split_exact(".", 6).alias("split")).unnest("split")\
27
+ .unique()
28
+
29
+
30
+ # What should we call these columns?
31
+ # https://datahelpdesk.worldbank.org/knowledgebase/articles/201175-how-does-the-world-bank-code-its-indicators
32
+ new_names = {"field_0":"topic", "field_1":"general_subj", "field_2":"specific_subj",
33
+ "field_3":"ext_1", "field_4":"ext_2", "field_5":"ext_3", "field_6":"ext_4"}
34
+ indicator_columns = indicator_columns.rename(new_names)
35
+
36
+ # %%
37
+ # now we need to finalize our munge and write our data
38
+ dat_final = dat_long.join(indicator_columns, how="left", on="Indicator Code")
39
+ # Now I want to reorder the columns
40
+ names = dat_final.columns
41
+ new_order = [1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 3, 0]
42
+ name_order = [names[i] for i in new_order]
43
+ dat_final = dat_final.select(name_order)
44
+
45
+ # %%
46
+ # write data
47
+ dat_final.write_parquet("../data/dat_munged.parquet")
48
+
49
+
scripts_build/02_explore.py ADDED
@@ -0,0 +1,82 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # %%
2
+ import polars as pl
3
+ import plotly.express as px
4
+ import plotly.io as pio
5
+ pio.templates.default = "simple_white"
6
+
7
+ from lets_plot import *
8
+ LetsPlot.setup_html()
9
+ # ["plotly", "plotly_white", "plotly_dark", "ggplot2", "seaborn", "simple_white", "none"]
10
+
11
+ dat = pl.read_parquet("../data/dat_munged.parquet")
12
+ info = pl.read_csv("../data/Metadata_Indicator_API_Download_DS2_en_csv_v2_5657328.csv").rename({"INDICATOR_CODE":"Indicator Code", "INDICATOR_NAME":"Indicator Name"})
13
+
14
+ # %%
15
+ dat_vars = dat\
16
+ .group_by("Indicator Name", "Indicator Code", "Country Code").len()\
17
+ .pivot(values="len", index=["Indicator Name", "Indicator Code"], columns="Country Code", aggregate_function="first")\
18
+ .with_columns((pl.col("COD").fill_null(0) + pl.col("GHA").fill_null(0) +
19
+ pl.col("KEN").fill_null(0) + pl.col("NGA").fill_null(0) +
20
+ pl.col("ZAF").fill_null(0) + pl.col("ZWE").fill_null(0)).alias("total"))\
21
+ .sort(pl.col("total"), descending=True)\
22
+ .filter(pl.col("total") > 25)
23
+
24
+ dat_vars.write_parquet("../data/dat_vars.parquet")
25
+
26
+ # %%
27
+ ggplot(
28
+ dat.filter(pl.col("Indicator Code").is_in(["NY.GDP.PCAP.PP.KD"])),
29
+ aes(x="year", y="value", color="Country Code")) +\
30
+ geom_line() +\
31
+ geom_point(size=1.2)
32
+
33
+ # %%
34
+ # Access to fuels
35
+ # Access to internet
36
+ # GDP
37
+
38
+ drop_country = ["ZAF"]
39
+ indicator_code = "NY.GDP.PCAP.PP.KD"
40
+ title_text = dat_vars\
41
+ .filter(pl.col("Indicator Code") == indicator_code)\
42
+ .select("Indicator Name")\
43
+ .to_series()[0]
44
+ subtitle_text = info\
45
+ .filter(pl.col("Indicator Code") == indicator_code)\
46
+ .select("SOURCE_NOTE")\
47
+ .to_series()[0]
48
+ subtitle_text = subtitle_text[1:100] + "..."
49
+ chart_title = title_text + "<br><sup>" + subtitle_text + "</sup>"
50
+ y_axis_title = chart_title[chart_title.find("(")+1:chart_title.find(")")]
51
+ chart_dat = dat\
52
+ .filter(
53
+ (pl.col("Indicator Code").is_in([indicator_code])) &
54
+ (~pl.col("Country Code").is_in(drop_country)))
55
+
56
+ chart_plotly = px.line(chart_dat,
57
+ x="year", y="value", color="Country Code", markers=True,
58
+ labels = {"year":"Year", "value":y_axis_title},
59
+ title = chart_title)
60
+
61
+ chart_lp = ggplot(chart_dat, aes(x="year", y="value", color="Country Code")) +\
62
+ geom_point(shape=21, size=1.25, tooltips="none") +\
63
+ geom_line(tooltips=layer_tooltips()\
64
+ .format('value', '{.0f}')) +\
65
+ labs(
66
+ x="Year", y=y_axis_title,
67
+ title=title_text,
68
+ subtitle=subtitle_text) +\
69
+ scale_x_continuous(format='.0f') +\
70
+ theme(legend_position="bottom")
71
+ chart_lp
72
+
73
+ # %%
74
+ # https://2001-2009.state.gov/r/pa/ho/time/pcw/98678.htm#:~:text=Apartheid%2C%20the%20Afrikaans%20name%20given,a%20democratic%20government%20in%201994.
75
+ # What happened in South Africa in the 1990s?
76
+ # What happened in Nigeria in early 2000?
77
+ # What happened in Ghana in 2010s?
78
+ # sp.add_annotation(
79
+ # x=1994, y=4100,
80
+ # text="Democratic Government",
81
+ # showarrow=True,
82
+ # yshift=10)
scripts_build/03_holoviews.py ADDED
@@ -0,0 +1,54 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # %%
2
+ import polars as pl
3
+ import holoviews as hv
4
+ import panel as pn
5
+ from holoviews import opts
6
+ hv.extension('bokeh')
7
+ dat = pl.read_parquet("../data/dat_munged.parquet")
8
+ info = pl.read_csv("../data/Metadata_Indicator_API_Download_DS2_en_csv_v2_5657328.csv").rename({"INDICATOR_CODE":"Indicator Code", "INDICATOR_NAME":"Indicator Name"})
9
+
10
+ dat_vars = dat\
11
+ .group_by("Indicator Name", "Indicator Code", "Country Code").len()\
12
+ .pivot(values="len", index=["Indicator Name", "Indicator Code"], columns="Country Code", aggregate_function="first")\
13
+ .with_columns((pl.col("COD").fill_null(0) + pl.col("GHA").fill_null(0) +
14
+ pl.col("KEN").fill_null(0) + pl.col("NGA").fill_null(0) +
15
+ pl.col("ZAF").fill_null(0) + pl.col("ZWE").fill_null(0)).alias("total"))\
16
+ .sort(pl.col("total"), descending=True)\
17
+ .filter(pl.col("total") > 25)
18
+
19
+ # %%
20
+ hv.Scatter(dat.filter(pl.col("Indicator Code").is_in(["NY.GDP.PCAP.PP.KD"])).to_pandas(), "year", "value")\
21
+ .opts(width=500)
22
+
23
+ # %%
24
+ def select_row(row=0):
25
+ return dat.slice(row, 1)
26
+
27
+ app = pn.interact(select_row, row=(0, dat.select(pl.len()).item()))
28
+ print(app)
29
+ # %%
30
+ pn.Column("## Choose a row", pn.Row(app[0], app[1]))
31
+ # %%
32
+ color_picker = pn.widgets.ColorPicker()
33
+ color_picker
34
+ # %%
35
+ html = pn.pane.HTML('', width=200, height=200, styles={'background-color': color_picker.value})
36
+ color_picker.link(html, value="background-color")# %%
37
+ html
38
+
39
+ # %%
40
+ x = pn.widgets.IntSlider(name='x', start=0, end=100)
41
+ background = pn.widgets.ColorPicker(name='Background', value='lightgray')
42
+
43
+ def square(x):
44
+ return f'{x} squared is {x**2}'
45
+
46
+ def styles(background):
47
+ return {'background-color': background, 'padding': '0 10px'}
48
+
49
+ pn.Column(
50
+ x,
51
+ background,
52
+ pn.pane.Markdown(pn.bind(square, x), styles=pn.bind(styles, background))
53
+ )
54
+ # %%
streamlit.py ADDED
@@ -0,0 +1,82 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # %%
2
+ # packages
3
+ import streamlit as st
4
+ import polars as pl
5
+ import plotly.express as px
6
+ import plotly.io as pio
7
+ pio.templates.default = "simple_white"
8
+ # %%
9
+ # Data
10
+ dat = pl.read_parquet("data/dat_munged.parquet")
11
+ info = pl.read_csv("data/Metadata_Indicator_API_Download_DS2_en_csv_v2_5657328.csv").rename({"INDICATOR_CODE":"Indicator Code", "INDICATOR_NAME":"Indicator Name"})
12
+ dat_vars = pl.read_parquet("data/dat_vars.parquet")
13
+
14
+ # %%
15
+ # Example Chart
16
+ # drop_country = ["ZAF"]
17
+ # indicator_code = "NY.GDP.PCAP.PP.KD"
18
+ list_name = dat_vars.select("Indicator Name").to_series().to_list()
19
+ list_code = dat_vars.select("Indicator Code").to_series().to_list()
20
+ list_country_code = ["ZAF", "ZWE", "KEN", "NGA", "GHA", "COD"]
21
+ list_country_name = ["South Africa", "Zimbabwe", "Kenya", "Nigeria", "Ghana", "Congo, Dem. Rep."]
22
+
23
+
24
+ drop_country = st.sidebar.multiselect("Remove Country (Country Code)", list_country_code)
25
+
26
+ checked_var = st.sidebar.checkbox("Use Variable Name")
27
+
28
+
29
+ if checked_var:
30
+ indicator_name = st.sidebar.selectbox("Select your variable", list_name)
31
+ indicator_code = dat_vars.filter(pl.col("Indicator Name") == indicator_name).select("Indicator Code").to_series()[0]
32
+ else:
33
+ indicator_code = st.sidebar.selectbox("Select your variable", list_code)
34
+ indicator_name = dat_vars.filter(pl.col("Indicator Code") == indicator_code).select("Indicator Name").to_series()[0]
35
+
36
+ title_text = indicator_name
37
+ subtitle_text = info.filter(pl.col("Indicator Code") == indicator_code).select("SOURCE_NOTE").to_series()[0]
38
+
39
+ y_axis_title = indicator_name[indicator_name.find("(")+1:indicator_name.find(")")]
40
+
41
+ use_dat = dat.filter((pl.col("Indicator Code").is_in([str(indicator_code)])) & (~pl.col("Country Code").is_in(drop_country)) & (pl.col("value").is_not_null()))
42
+
43
+ sp = px.line(use_dat.to_pandas(),
44
+ x="year", y="value", color="Country Name", markers=True,
45
+ labels = {"year":"Year", "value":y_axis_title},
46
+ title = title_text)
47
+
48
+ st.markdown("## Country performance over time")
49
+
50
+ st.markdown("__" + title_text + "__")
51
+
52
+ st.markdown(subtitle_text)
53
+
54
+ st.markdown("### Chart")
55
+ st.markdown("_Use the expand arrows visible when you hover over the upper right corner of the chart to see it in full screen._")
56
+
57
+ sp
58
+
59
+ st.markdown("### Table: " + title_text)
60
+
61
+ display_dat = use_dat.select("Country Code", "Indicator Name", "year", "value")
62
+
63
+ st.dataframe(
64
+ display_dat\
65
+ .pivot(index="year", on="Country Code", values="value", aggregate_function="first")\
66
+ .sort(pl.col("year"),descending=True), hide_index=True,
67
+ use_container_width=True,
68
+ column_config={
69
+ "value": y_axis_title,
70
+ "year": st.column_config.NumberColumn(
71
+ "Year",
72
+ help="Year of data",
73
+ format="%.0f"
74
+ )})
75
+
76
+
77
+ def convert_df(df):
78
+ return df.write_csv().encode('utf-8')
79
+
80
+ csv = convert_df(display_dat)
81
+
82
+ st.download_button("Download Data", data = csv, file_name = "data.csv", mime="text/csv")