Spaces:
Sleeping
Sleeping
File size: 9,388 Bytes
ca1ecab |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 |
"""Benchmark online serving throughput.
On the server side, run one of the following commands:
(vLLM backend)
python -m vllm.entrypoints.api_server \
--model <your_model> --swap-space 16 \
--disable-log-requests
(TGI backend)
./launch_hf_server.sh <your_model>
On the client side, run:
python benchmarks/benchmark_serving.py \
--backend <backend> \
--tokenizer <your_model> --dataset <target_dataset> \
--request-rate <request_rate>
"""
import argparse
import asyncio
import json
import random
import time
from typing import AsyncGenerator, List, Tuple
import aiohttp
import numpy as np
from tqdm.asyncio import tqdm
from transformers import PreTrainedTokenizerBase
from vllm.transformers_utils.tokenizer import get_tokenizer
# (prompt len, output len, latency)
REQUEST_LATENCY: List[Tuple[int, int, float]] = []
def sample_requests(
dataset_path: str,
num_requests: int,
tokenizer: PreTrainedTokenizerBase,
) -> List[Tuple[str, int, int]]:
# Load the dataset.
with open(dataset_path) as f:
dataset = json.load(f)
# Filter out the conversations with less than 2 turns.
dataset = [data for data in dataset if len(data["conversations"]) >= 2]
# Only keep the first two turns of each conversation.
dataset = [(data["conversations"][0]["value"],
data["conversations"][1]["value"]) for data in dataset]
# Tokenize the prompts and completions.
prompts = [prompt for prompt, _ in dataset]
prompt_token_ids = tokenizer(prompts).input_ids
completions = [completion for _, completion in dataset]
completion_token_ids = tokenizer(completions).input_ids
tokenized_dataset = []
for i in range(len(dataset)):
output_len = len(completion_token_ids[i])
tokenized_dataset.append((prompts[i], prompt_token_ids[i], output_len))
# Filter out too long sequences.
filtered_dataset: List[Tuple[str, int, int]] = []
for prompt, prompt_token_ids, output_len in tokenized_dataset:
prompt_len = len(prompt_token_ids)
if prompt_len < 4 or output_len < 4:
# Prune too short sequences.
# This is because TGI causes errors when the input or output length
# is too short.
continue
if prompt_len > 1024 or prompt_len + output_len > 2048:
# Prune too long sequences.
continue
filtered_dataset.append((prompt, prompt_len, output_len))
# Sample the requests.
sampled_requests = random.sample(filtered_dataset, num_requests)
return sampled_requests
async def get_request(
input_requests: List[Tuple[str, int, int]],
request_rate: float,
) -> AsyncGenerator[Tuple[str, int, int], None]:
input_requests = iter(input_requests)
for request in input_requests:
yield request
if request_rate == float("inf"):
# If the request rate is infinity, then we don't need to wait.
continue
# Sample the request interval from the exponential distribution.
interval = np.random.exponential(1.0 / request_rate)
# The next request will be sent after the interval.
await asyncio.sleep(interval)
async def send_request(backend: str, model: str, api_url: str, prompt: str,
prompt_len: int, output_len: int, best_of: int,
use_beam_search: bool, pbar: tqdm) -> None:
request_start_time = time.perf_counter()
headers = {"User-Agent": "Benchmark Client"}
if backend == "vllm":
pload = {
"prompt": prompt,
"n": 1,
"best_of": best_of,
"use_beam_search": use_beam_search,
"temperature": 0.0 if use_beam_search else 1.0,
"top_p": 1.0,
"max_tokens": output_len,
"ignore_eos": True,
"stream": False,
}
if model is not None:
pload["model"] = model
elif backend == "tgi":
assert not use_beam_search
params = {
"best_of": best_of,
"max_new_tokens": output_len,
"do_sample": True,
}
pload = {
"inputs": prompt,
"parameters": params,
}
else:
raise ValueError(f"Unknown backend: {backend}")
timeout = aiohttp.ClientTimeout(total=3 * 3600)
async with aiohttp.ClientSession(timeout=timeout) as session:
while True:
async with session.post(api_url, headers=headers,
json=pload) as response:
chunks = []
async for chunk, _ in response.content.iter_chunks():
chunks.append(chunk)
output = b"".join(chunks).decode("utf-8")
output = json.loads(output)
# Re-send the request if it failed.
if "error" not in output:
break
request_end_time = time.perf_counter()
request_latency = request_end_time - request_start_time
REQUEST_LATENCY.append((prompt_len, output_len, request_latency))
pbar.update(1)
async def benchmark(
backend: str,
model: str,
api_url: str,
input_requests: List[Tuple[str, int, int]],
best_of: int,
use_beam_search: bool,
request_rate: float,
) -> None:
tasks: List[asyncio.Task] = []
pbar = tqdm(total=len(input_requests))
async for request in get_request(input_requests, request_rate):
prompt, prompt_len, output_len = request
task = asyncio.create_task(
send_request(backend, model, api_url, prompt, prompt_len,
output_len, best_of, use_beam_search, pbar))
tasks.append(task)
await asyncio.gather(*tasks)
pbar.close()
def main(args: argparse.Namespace):
print(args)
random.seed(args.seed)
np.random.seed(args.seed)
api_url = f"{args.protocol}://{args.host}:{args.port}{args.endpoint}"
tokenizer = get_tokenizer(args.tokenizer,
trust_remote_code=args.trust_remote_code)
input_requests = sample_requests(args.dataset, args.num_prompts, tokenizer)
benchmark_start_time = time.perf_counter()
asyncio.run(
benchmark(args.backend, args.model, api_url, input_requests,
args.best_of, args.use_beam_search, args.request_rate))
benchmark_end_time = time.perf_counter()
benchmark_time = benchmark_end_time - benchmark_start_time
print(f"Total time: {benchmark_time:.2f} s")
print(f"Throughput: {args.num_prompts / benchmark_time:.2f} requests/s")
# Compute the latency statistics.
avg_latency = np.mean([latency for _, _, latency in REQUEST_LATENCY])
print(f"Average latency: {avg_latency:.2f} s")
avg_per_token_latency = np.mean([
latency / (prompt_len + output_len)
for prompt_len, output_len, latency in REQUEST_LATENCY
])
print(f"Average latency per token: {avg_per_token_latency:.2f} s")
avg_per_output_token_latency = np.mean(
[latency / output_len for _, output_len, latency in REQUEST_LATENCY])
print("Average latency per output token: "
f"{avg_per_output_token_latency:.2f} s")
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="Benchmark the online serving throughput.")
parser.add_argument("--backend",
type=str,
default="vllm",
choices=["vllm", "tgi"])
parser.add_argument("--protocol",
type=str,
default="http",
choices=["http", "https"])
parser.add_argument("--host", type=str, default="localhost")
parser.add_argument("--port", type=int, default=8000)
parser.add_argument("--endpoint", type=str, default="/generate")
parser.add_argument("--model", type=str, default=None)
parser.add_argument("--dataset",
type=str,
required=True,
help="Path to the dataset.")
parser.add_argument("--tokenizer",
type=str,
required=True,
help="Name or path of the tokenizer.")
parser.add_argument("--best-of",
type=int,
default=1,
help="Generates `best_of` sequences per prompt and "
"returns the best one.")
parser.add_argument("--use-beam-search", action="store_true")
parser.add_argument("--num-prompts",
type=int,
default=1000,
help="Number of prompts to process.")
parser.add_argument("--request-rate",
type=float,
default=float("inf"),
help="Number of requests per second. If this is inf, "
"then all the requests are sent at time 0. "
"Otherwise, we use Poisson process to synthesize "
"the request arrival times.")
parser.add_argument("--seed", type=int, default=0)
parser.add_argument('--trust-remote-code',
action='store_true',
help='trust remote code from huggingface')
args = parser.parse_args()
main(args)
|