File size: 7,192 Bytes
ca1ecab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
import os
from typing import List, Optional, Tuple

import pytest
import torch
from transformers import AutoModelForCausalLM

from vllm import LLM, SamplingParams
from vllm.transformers_utils.tokenizer import get_tokenizer

_TEST_DIR = os.path.dirname(__file__)
_TEST_PROMPTS = [os.path.join(_TEST_DIR, "prompts", "example.txt")]
_LONG_PROMPTS = [os.path.join(_TEST_DIR, "prompts", "summary.txt")]


def _read_prompts(filename: str) -> str:
    prompts = []
    with open(filename, "r") as f:
        prompt = f.readline()
        prompts.append(prompt)
    return prompts


@pytest.fixture
def example_prompts() -> List[str]:
    prompts = []
    for filename in _TEST_PROMPTS:
        prompts += _read_prompts(filename)
    return prompts


@pytest.fixture
def example_long_prompts() -> List[str]:
    prompts = []
    for filename in _LONG_PROMPTS:
        prompts += _read_prompts(filename)
    return prompts


_STR_DTYPE_TO_TORCH_DTYPE = {
    "half": torch.half,
    "bfloat16": torch.bfloat16,
    "float": torch.float,
}


class HfRunner:

    def __init__(
        self,
        model_name: str,
        tokenizer_name: Optional[str] = None,
        dtype: str = "half",
    ) -> None:
        assert dtype in _STR_DTYPE_TO_TORCH_DTYPE
        torch_dtype = _STR_DTYPE_TO_TORCH_DTYPE[dtype]
        self.model = AutoModelForCausalLM.from_pretrained(
            model_name,
            torch_dtype=torch_dtype,
            trust_remote_code=True,
        ).cuda()
        if tokenizer_name is None:
            tokenizer_name = model_name
        self.tokenizer = get_tokenizer(tokenizer_name, trust_remote_code=True)

    def generate(
        self,
        prompts: List[str],
        **kwargs,
    ) -> List[Tuple[List[int], str]]:
        outputs: List[Tuple[List[int], str]] = []
        for prompt in prompts:
            input_ids = self.tokenizer(prompt, return_tensors="pt").input_ids
            output_ids = self.model.generate(
                input_ids.cuda(),
                use_cache=True,
                **kwargs,
            )
            output_str = self.tokenizer.batch_decode(
                output_ids,
                skip_special_tokens=True,
                clean_up_tokenization_spaces=False,
            )
            output_ids = output_ids.cpu().tolist()
            outputs.append((output_ids, output_str))
        return outputs

    def generate_greedy(
        self,
        prompts: List[str],
        max_tokens: int,
    ) -> List[Tuple[List[int], str]]:
        outputs = self.generate(prompts,
                                do_sample=False,
                                max_new_tokens=max_tokens)
        for i in range(len(outputs)):
            output_ids, output_str = outputs[i]
            outputs[i] = (output_ids[0], output_str[0])
        return outputs

    def generate_beam_search(
        self,
        prompts: List[str],
        beam_width: int,
        max_tokens: int,
    ) -> List[Tuple[List[int], str]]:
        outputs = self.generate(prompts,
                                do_sample=False,
                                max_new_tokens=max_tokens,
                                num_beams=beam_width,
                                num_return_sequences=beam_width)
        for i in range(len(outputs)):
            output_ids, output_str = outputs[i]
            for j in range(len(output_ids)):
                output_ids[j] = [
                    x for x in output_ids[j]
                    if x != self.tokenizer.pad_token_id
                ]
            outputs[i] = (output_ids, output_str)
        return outputs

    def generate_greedy_logprobs(
        self,
        prompts: List[str],
        max_tokens: int,
    ) -> List[List[torch.Tensor]]:
        all_logprobs = []
        for prompt in prompts:
            input_ids = self.tokenizer(prompt, return_tensors="pt").input_ids
            output = self.model.generate(
                input_ids.cuda(),
                use_cache=True,
                do_sample=False,
                max_new_tokens=max_tokens,
                output_hidden_states=True,
                return_dict_in_generate=True,
            )
            seq_logprobs = []
            for hidden_states in output.hidden_states:
                last_hidden_states = hidden_states[-1][0]
                logits = torch.matmul(
                    last_hidden_states,
                    self.model.get_output_embeddings().weight.t(),
                )
                if self.model.get_output_embeddings().bias is not None:
                    logits += self.model.get_output_embeddings(
                    ).bias.unsqueeze(0)
                logprobs = torch.nn.functional.log_softmax(logits,
                                                           dim=-1,
                                                           dtype=torch.float32)
                seq_logprobs.append(logprobs)
            all_logprobs.append(seq_logprobs)
        return all_logprobs


@pytest.fixture
def hf_runner():
    return HfRunner


class VllmRunner:

    def __init__(
        self,
        model_name: str,
        tokenizer_name: Optional[str] = None,
        dtype: str = "half",
    ) -> None:
        self.model = LLM(
            model=model_name,
            tokenizer=tokenizer_name,
            trust_remote_code=True,
            dtype=dtype,
            swap_space=0,
        )

    def generate(
        self,
        prompts: List[str],
        sampling_params: SamplingParams,
    ) -> List[Tuple[List[int], str]]:
        req_outputs = self.model.generate(prompts,
                                          sampling_params=sampling_params)
        outputs = []
        for req_output in req_outputs:
            prompt_str = req_output.prompt
            prompt_ids = req_output.prompt_token_ids
            req_sample_output_ids = []
            req_sample_output_strs = []
            for sample in req_output.outputs:
                output_str = sample.text
                output_ids = sample.token_ids
                req_sample_output_ids.append(prompt_ids + output_ids)
                req_sample_output_strs.append(prompt_str + output_str)
            outputs.append((req_sample_output_ids, req_sample_output_strs))
        return outputs

    def generate_greedy(
        self,
        prompts: List[str],
        max_tokens: int,
    ) -> List[Tuple[List[int], str]]:
        greedy_params = SamplingParams(temperature=0.0, max_tokens=max_tokens)
        outputs = self.generate(prompts, greedy_params)
        return [(output_ids[0], output_str[0])
                for output_ids, output_str in outputs]

    def generate_beam_search(
        self,
        prompts: List[str],
        beam_width: int,
        max_tokens: int,
    ) -> List[Tuple[List[int], str]]:
        beam_search_params = SamplingParams(n=beam_width,
                                            use_beam_search=True,
                                            temperature=0.0,
                                            max_tokens=max_tokens)
        outputs = self.generate(prompts, beam_search_params)
        return outputs


@pytest.fixture
def vllm_runner():
    return VllmRunner