File size: 7,859 Bytes
ca1ecab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
import os
import subprocess
import time

import sys
import pytest
import requests
import ray  # using Ray for overall ease of process management, parallel requests, and debugging.
import openai  # use the official client for correctness check

MAX_SERVER_START_WAIT_S = 600  # wait for server to start for 60 seconds
MODEL_NAME = "HuggingFaceH4/zephyr-7b-beta"  # any model with a chat template should work here

pytestmark = pytest.mark.asyncio


@ray.remote(num_gpus=1)
class ServerRunner:

    def __init__(self, args):
        env = os.environ.copy()
        env["PYTHONUNBUFFERED"] = "1"
        self.proc = subprocess.Popen(
            ["python3", "-m", "vllm.entrypoints.openai.api_server"] + args,
            env=env,
            stdout=sys.stdout,
            stderr=sys.stderr,
        )
        self._wait_for_server()

    def ready(self):
        return True

    def _wait_for_server(self):
        # run health check
        start = time.time()
        while True:
            try:
                if requests.get(
                        "http://localhost:8000/health").status_code == 200:
                    break
            except Exception as err:
                if self.proc.poll() is not None:
                    raise RuntimeError("Server exited unexpectedly.") from err

                time.sleep(0.5)
                if time.time() - start > MAX_SERVER_START_WAIT_S:
                    raise RuntimeError(
                        "Server failed to start in time.") from err

    def __del__(self):
        if hasattr(self, "proc"):
            self.proc.terminate()


@pytest.fixture(scope="session")
def server():
    ray.init()
    server_runner = ServerRunner.remote([
        "--model",
        MODEL_NAME,
        "--dtype",
        "bfloat16",  # use half precision for speed and memory savings in CI environment
        "--max-model-len",
        "8192",
        "--enforce-eager",
    ])
    ray.get(server_runner.ready.remote())
    yield server_runner
    ray.shutdown()


@pytest.fixture(scope="session")
def client():
    client = openai.AsyncOpenAI(
        base_url="http://localhost:8000/v1",
        api_key="token-abc123",
    )
    yield client


async def test_single_completion(server, client: openai.AsyncOpenAI):
    completion = await client.completions.create(model=MODEL_NAME,
                                                 prompt="Hello, my name is",
                                                 max_tokens=5,
                                                 temperature=0.0)

    assert completion.id is not None
    assert completion.choices is not None and len(completion.choices) == 1
    assert completion.choices[0].text is not None and len(
        completion.choices[0].text) >= 5
    assert completion.choices[0].finish_reason == "length"
    assert completion.usage == openai.types.CompletionUsage(
        completion_tokens=5, prompt_tokens=6, total_tokens=11)

    # test using token IDs
    completion = await client.completions.create(
        model=MODEL_NAME,
        prompt=[0, 0, 0, 0, 0],
        max_tokens=5,
        temperature=0.0,
    )
    assert completion.choices[0].text is not None and len(
        completion.choices[0].text) >= 5


async def test_single_chat_session(server, client: openai.AsyncOpenAI):
    messages = [{
        "role": "system",
        "content": "you are a helpful assistant"
    }, {
        "role": "user",
        "content": "what is 1+1?"
    }]

    # test single completion
    chat_completion = await client.chat.completions.create(
        model=MODEL_NAME,
        messages=messages,
        max_tokens=10,
    )
    assert chat_completion.id is not None
    assert chat_completion.choices is not None and len(
        chat_completion.choices) == 1
    assert chat_completion.choices[0].message is not None
    message = chat_completion.choices[0].message
    assert message.content is not None and len(message.content) >= 10
    assert message.role == "assistant"
    messages.append({"role": "assistant", "content": message.content})

    # test multi-turn dialogue
    messages.append({"role": "user", "content": "express your result in json"})
    chat_completion = await client.chat.completions.create(
        model=MODEL_NAME,
        messages=messages,
        max_tokens=10,
    )
    message = chat_completion.choices[0].message
    assert message.content is not None and len(message.content) >= 0


async def test_completion_streaming(server, client: openai.AsyncOpenAI):
    prompt = "What is an LLM?"

    single_completion = await client.completions.create(
        model=MODEL_NAME,
        prompt=prompt,
        max_tokens=5,
        temperature=0.0,
    )
    single_output = single_completion.choices[0].text
    single_usage = single_completion.usage

    stream = await client.completions.create(
        model=MODEL_NAME,
        prompt=prompt,
        max_tokens=5,
        temperature=0.0,
        stream=True,
    )
    chunks = []
    async for chunk in stream:
        chunks.append(chunk.choices[0].text)
    assert chunk.choices[0].finish_reason == "length"
    assert chunk.usage == single_usage
    assert "".join(chunks) == single_output


async def test_chat_streaming(server, client: openai.AsyncOpenAI):
    messages = [{
        "role": "system",
        "content": "you are a helpful assistant"
    }, {
        "role": "user",
        "content": "what is 1+1?"
    }]

    # test single completion
    chat_completion = await client.chat.completions.create(
        model=MODEL_NAME,
        messages=messages,
        max_tokens=10,
        temperature=0.0,
    )
    output = chat_completion.choices[0].message.content
    stop_reason = chat_completion.choices[0].finish_reason

    # test streaming
    stream = await client.chat.completions.create(
        model=MODEL_NAME,
        messages=messages,
        max_tokens=10,
        temperature=0.0,
        stream=True,
    )
    chunks = []
    async for chunk in stream:
        delta = chunk.choices[0].delta
        if delta.role:
            assert delta.role == "assistant"
        if delta.content:
            chunks.append(delta.content)
    assert chunk.choices[0].finish_reason == stop_reason
    assert "".join(chunks) == output


async def test_batch_completions(server, client: openai.AsyncOpenAI):
    # test simple list
    batch = await client.completions.create(
        model=MODEL_NAME,
        prompt=["Hello, my name is", "Hello, my name is"],
        max_tokens=5,
        temperature=0.0,
    )
    assert len(batch.choices) == 2
    assert batch.choices[0].text == batch.choices[1].text

    # test n = 2
    batch = await client.completions.create(
        model=MODEL_NAME,
        prompt=["Hello, my name is", "Hello, my name is"],
        n=2,
        max_tokens=5,
        temperature=0.0,
        extra_body=dict(
            # NOTE: this has to be true for n > 1 in vLLM, but not necessary for official client.
            use_beam_search=True),
    )
    assert len(batch.choices) == 4
    assert batch.choices[0].text != batch.choices[
        1].text, "beam search should be different"
    assert batch.choices[0].text == batch.choices[
        2].text, "two copies of the same prompt should be the same"
    assert batch.choices[1].text == batch.choices[
        3].text, "two copies of the same prompt should be the same"

    # test streaming
    batch = await client.completions.create(
        model=MODEL_NAME,
        prompt=["Hello, my name is", "Hello, my name is"],
        max_tokens=5,
        temperature=0.0,
        stream=True,
    )
    texts = [""] * 2
    async for chunk in batch:
        assert len(chunk.choices) == 1
        choice = chunk.choices[0]
        texts[choice.index] += choice.text
    assert texts[0] == texts[1]


if __name__ == "__main__":
    pytest.main([__file__])