File size: 21,314 Bytes
ca1ecab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
from collections import deque
import enum
import time
from typing import Deque, Dict, Iterable, List, Optional, Tuple, Union, Set

from vllm.config import CacheConfig, LoRAConfig, SchedulerConfig
from vllm.core.block_manager import AllocStatus, BlockSpaceManager
from vllm.core.policy import PolicyFactory
from vllm.lora.request import LoRARequest
from vllm.logger import init_logger
from vllm.sequence import (Sequence, SequenceData, SequenceGroup,
                           SequenceGroupMetadata, SequenceStatus)
from vllm.prefix import PrefixPool

logger = init_logger(__name__)


class PreemptionMode(enum.Enum):
    """Preemption modes.

    1. Swapping: Swap out the blocks of the preempted sequences to CPU memory
    and swap them back in when the sequences are resumed.
    2. Recomputation: Discard the blocks of the preempted sequences and
    recompute them when the sequences are resumed, treating the sequences as
    new prompts.
    """
    SWAP = enum.auto()
    RECOMPUTE = enum.auto()


class SchedulerOutputs:

    def __init__(
        self,
        scheduled_seq_groups: Iterable[SequenceGroup],
        prompt_run: bool,
        num_batched_tokens: int,
        blocks_to_swap_in: Dict[int, int],
        blocks_to_swap_out: Dict[int, int],
        blocks_to_copy: Dict[int, List[int]],
        ignored_seq_groups: List[SequenceGroup],
    ) -> None:
        self.scheduled_seq_groups = scheduled_seq_groups
        self.prompt_run = prompt_run
        self.num_batched_tokens = num_batched_tokens
        self.blocks_to_swap_in = blocks_to_swap_in
        self.blocks_to_swap_out = blocks_to_swap_out
        self.blocks_to_copy = blocks_to_copy
        # Swap in and swap out should never happen at the same time.
        assert not (blocks_to_swap_in and blocks_to_swap_out)
        self.ignored_seq_groups = ignored_seq_groups

        self.num_loras = len(self.lora_requests)
        if self.num_loras > 0:
            self._sort_by_lora_ids()

    def is_empty(self) -> bool:
        # NOTE: We do not consider the ignored sequence groups.
        return (not self.scheduled_seq_groups and not self.blocks_to_swap_in
                and not self.blocks_to_swap_out and not self.blocks_to_copy)

    def _sort_by_lora_ids(self) -> bool:
        self.scheduled_seq_groups = sorted(
            self.scheduled_seq_groups,
            key=lambda g: (g.lora_request.lora_int_id
                           if g.lora_request else 0, g.request_id))

    @property
    def lora_requests(self) -> Set[LoRARequest]:
        return {g.lora_request for g in self.scheduled_seq_groups}


class Scheduler:

    def __init__(
        self,
        scheduler_config: SchedulerConfig,
        cache_config: CacheConfig,
        lora_config: Optional[LoRAConfig],
    ) -> None:
        self.scheduler_config = scheduler_config
        self.cache_config = cache_config
        # Note for LoRA scheduling: the current policy is extremely
        # simple and NOT fair. It can lead to starvation of some
        # LoRAs. This should be improved in the future.
        self.lora_config = lora_config

        self.prompt_limit = min(self.scheduler_config.max_model_len,
                                self.scheduler_config.max_num_batched_tokens)

        # Instantiate the scheduling policy.
        self.policy = PolicyFactory.get_policy(policy_name="fcfs")
        # Create the block space manager.
        self.block_manager = BlockSpaceManager(
            block_size=self.cache_config.block_size,
            num_gpu_blocks=self.cache_config.num_gpu_blocks,
            num_cpu_blocks=self.cache_config.num_cpu_blocks,
            sliding_window=self.cache_config.sliding_window)

        # Create the prefix pool to cache the prefixes.
        self.prefix_pool = PrefixPool(self.cache_config.block_size)

        # Sequence groups in the WAITING state.
        self.waiting: Deque[SequenceGroup] = deque()
        # Sequence groups in the RUNNING state.
        self.running: Deque[SequenceGroup] = deque()
        # Sequence groups in the SWAPPED state.
        self.swapped: Deque[SequenceGroup] = deque()

    @property
    def lora_enabled(self) -> bool:
        return bool(self.lora_config)

    def add_seq_group(self, seq_group: SequenceGroup) -> None:
        # Add sequence groups to the waiting queue.
        self.waiting.append(seq_group)

    def abort_seq_group(self, request_id: Union[str, Iterable[str]]) -> None:
        """Aborts a sequence group with the given ID.

        Check if the sequence group with the given ID
            is present in any of the state queue.
        If present, remove the sequence group from the state queue.
            Also, if any of the sequences in the sequence group is not finished,
                free the sequence with status `FINISHED_ABORTED`.
        Otherwise, do nothing.

        Args:
            request_id: The ID(s) of the sequence group to abort.
        """
        if isinstance(request_id, str):
            request_id = (request_id, )
        request_ids = set(request_id)
        for state_queue in [self.waiting, self.running, self.swapped]:
            aborted_groups: List[SequenceGroup] = []
            for seq_group in state_queue:
                if not request_ids:
                    # Using 'break' here may add two extra iterations,
                    # but is acceptable to reduce complexity .
                    break
                if seq_group.request_id in request_ids:
                    # Appending aborted group into pending list.
                    aborted_groups.append(seq_group)
                    request_ids.remove(seq_group.request_id)
            for aborted_group in aborted_groups:
                # Remove the sequence group from the state queue.
                state_queue.remove(aborted_group)
                for seq in aborted_group.get_seqs():
                    if seq.is_finished():
                        continue
                    seq.status = SequenceStatus.FINISHED_ABORTED
                    self.free_seq(seq)

    def has_unfinished_seqs(self) -> bool:
        return self.waiting or self.running or self.swapped

    def get_num_unfinished_seq_groups(self) -> int:
        return len(self.waiting) + len(self.running) + len(self.swapped)

    def _schedule(self) -> SchedulerOutputs:
        # Blocks that need to be swaped or copied before model execution.
        blocks_to_swap_in: Dict[int, int] = {}
        blocks_to_swap_out: Dict[int, int] = {}
        blocks_to_copy: Dict[int, List[int]] = {}

        # Fix the current time.
        now = time.monotonic()

        # Join waiting sequences if possible.
        if not self.swapped:
            ignored_seq_groups: List[SequenceGroup] = []
            scheduled: List[SequenceGroup] = []
            # The total number of sequences on the fly, including the
            # requests in the generation phase.
            num_curr_seqs = sum(seq_group.get_max_num_running_seqs()
                                for seq_group in self.running)
            curr_loras = set(
                seq_group.lora_int_id
                for seq_group in self.running) if self.lora_enabled else None
            seq_lens: List[int] = []

            # Optimization: We do not sort the waiting queue since the preempted
            # sequence groups are added to the front and the new sequence groups
            # are added to the back.
            leftover_waiting_sequences = deque()
            while self.waiting:
                seq_group = self.waiting[0]
                waiting_seqs = seq_group.get_seqs(
                    status=SequenceStatus.WAITING)
                assert len(waiting_seqs) == 1, (
                    "Waiting sequence group should have only one prompt "
                    "sequence.")
                num_prompt_tokens = waiting_seqs[0].get_len()
                if num_prompt_tokens > self.prompt_limit:
                    logger.warning(
                        f"Input prompt ({num_prompt_tokens} tokens) is too long"
                        f" and exceeds limit of {self.prompt_limit}")
                    for seq in waiting_seqs:
                        seq.status = SequenceStatus.FINISHED_IGNORED
                    ignored_seq_groups.append(seq_group)
                    self.waiting.popleft()
                    continue

                # If the sequence group cannot be allocated, stop.
                can_allocate = self.block_manager.can_allocate(seq_group)
                if can_allocate == AllocStatus.LATER:
                    break
                elif can_allocate == AllocStatus.NEVER:
                    logger.warning(
                        f"Input prompt ({num_prompt_tokens} tokens) is too long"
                        f" and exceeds the capacity of block_manager")
                    for seq in waiting_seqs:
                        seq.status = SequenceStatus.FINISHED_IGNORED
                    ignored_seq_groups.append(seq_group)
                    self.waiting.popleft()
                    continue

                lora_int_id = 0
                if self.lora_enabled:
                    lora_int_id = seq_group.lora_int_id
                    if lora_int_id > 0 and lora_int_id not in curr_loras and len(
                            curr_loras) >= self.lora_config.max_loras:
                        # We don't have a space for another LoRA, so
                        # we ignore this request for now.
                        leftover_waiting_sequences.appendleft(seq_group)
                        self.waiting.popleft()
                        continue

                # If the number of batched tokens exceeds the limit, stop.
                new_seq_lens = seq_lens + [num_prompt_tokens]
                num_batched_tokens = len(new_seq_lens) * max(new_seq_lens)
                if (num_batched_tokens >
                        self.scheduler_config.max_num_batched_tokens):
                    break

                # The total number of sequences in the RUNNING state should not
                # exceed the maximum number of sequences.
                num_new_seqs = seq_group.get_max_num_running_seqs()
                if (num_curr_seqs + num_new_seqs >
                        self.scheduler_config.max_num_seqs):
                    break

                num_paddings = num_batched_tokens - sum(new_seq_lens)
                if num_paddings > self.scheduler_config.max_paddings:
                    break
                seq_lens = new_seq_lens

                if lora_int_id > 0:
                    curr_loras.add(lora_int_id)
                self.waiting.popleft()
                self._allocate(seq_group)
                self.running.append(seq_group)
                num_curr_seqs += num_new_seqs
                scheduled.append(seq_group)

            self.waiting.extendleft(leftover_waiting_sequences)

            if scheduled or ignored_seq_groups:
                scheduler_outputs = SchedulerOutputs(
                    scheduled_seq_groups=scheduled,
                    prompt_run=True,
                    num_batched_tokens=len(seq_lens) *
                    max(seq_lens) if seq_lens else 0,
                    blocks_to_swap_in=blocks_to_swap_in,
                    blocks_to_swap_out=blocks_to_swap_out,
                    blocks_to_copy=blocks_to_copy,
                    ignored_seq_groups=ignored_seq_groups,
                )
                return scheduler_outputs

        # NOTE(woosuk): Preemption happens only when there is no available slot
        # to keep all the sequence groups in the RUNNING state.
        # In this case, the policy is responsible for deciding which sequence
        # groups to preempt.
        self.running = self.policy.sort_by_priority(now, self.running)

        # Reserve new token slots for the running sequence groups.
        running: Deque[SequenceGroup] = deque()
        preempted: List[SequenceGroup] = []
        while self.running:
            seq_group = self.running.popleft()
            while not self.block_manager.can_append_slot(seq_group):
                if self.running:
                    # Preempt the lowest-priority sequence groups.
                    victim_seq_group = self.running.pop()
                    self._preempt(victim_seq_group, blocks_to_swap_out)
                    preempted.append(victim_seq_group)
                else:
                    # No other sequence groups can be preempted.
                    # Preempt the current sequence group.
                    self._preempt(seq_group, blocks_to_swap_out)
                    preempted.append(seq_group)
                    break
            else:
                # Append new slots to the sequence group.
                self._append_slot(seq_group, blocks_to_copy)
                running.append(seq_group)
        self.running = running

        # Swap in the sequence groups in the SWAPPED state if possible.
        self.swapped = self.policy.sort_by_priority(now, self.swapped)
        if not preempted:
            num_curr_seqs = sum(seq_group.get_max_num_running_seqs()
                                for seq_group in self.running)
            curr_loras = set(
                seq_group.lora_int_id
                for seq_group in self.running) if self.lora_enabled else None

            leftover_swapped = deque()

            while self.swapped:
                seq_group = self.swapped[0]
                lora_int_id = 0
                if self.lora_enabled:
                    lora_int_id = seq_group.lora_int_id
                    if lora_int_id > 0 and lora_int_id not in curr_loras and len(
                            curr_loras) >= self.lora_config.max_loras:
                        # We don't have a space for another LoRA, so
                        # we ignore this request for now.
                        leftover_swapped.appendleft(seq_group)
                        self.swapped.popleft()
                        continue

                # If the sequence group cannot be swapped in, stop.
                if not self.block_manager.can_swap_in(seq_group):
                    break

                # The total number of sequences in the RUNNING state should not
                # exceed the maximum number of sequences.
                num_new_seqs = seq_group.get_max_num_running_seqs()
                if (num_curr_seqs + num_new_seqs >
                        self.scheduler_config.max_num_seqs):
                    break

                if lora_int_id > 0:
                    curr_loras.add(lora_int_id)
                self.swapped.popleft()
                self._swap_in(seq_group, blocks_to_swap_in)
                self._append_slot(seq_group, blocks_to_copy)
                num_curr_seqs += num_new_seqs
                self.running.append(seq_group)

            self.swapped.extendleft(leftover_swapped)

        # Each sequence in the generation phase only takes one token slot.
        # Therefore, the number of batched tokens is equal to the number of
        # sequences in the RUNNING state.
        num_batched_tokens = sum(
            seq_group.num_seqs(status=SequenceStatus.RUNNING)
            for seq_group in self.running)

        scheduler_outputs = SchedulerOutputs(
            scheduled_seq_groups=self.running,
            prompt_run=False,
            num_batched_tokens=num_batched_tokens,
            blocks_to_swap_in=blocks_to_swap_in,
            blocks_to_swap_out=blocks_to_swap_out,
            blocks_to_copy=blocks_to_copy,
            ignored_seq_groups=[],
        )
        return scheduler_outputs

    def schedule(self) -> Tuple[List[SequenceGroupMetadata], SchedulerOutputs]:
        # Schedule sequence groups.
        # This function call changes the internal states of the scheduler
        # such as self.running, self.swapped, and self.waiting.
        scheduler_outputs = self._schedule()

        # Create input data structures.
        seq_group_metadata_list: List[SequenceGroupMetadata] = []
        for seq_group in scheduler_outputs.scheduled_seq_groups:
            seq_data: Dict[int, SequenceData] = {}
            block_tables: Dict[int, List[int]] = {}
            for seq in seq_group.get_seqs(status=SequenceStatus.RUNNING):
                seq_id = seq.seq_id
                seq_data[seq_id] = seq.data
                block_tables[seq_id] = self.block_manager.get_block_table(seq)

            seq_group_metadata = SequenceGroupMetadata(
                request_id=seq_group.request_id,
                is_prompt=scheduler_outputs.prompt_run,
                seq_data=seq_data,
                sampling_params=seq_group.sampling_params,
                block_tables=block_tables,
                lora_request=seq_group.lora_request,
                prefix=seq_group.prefix,
            )
            seq_group_metadata_list.append(seq_group_metadata)
        return seq_group_metadata_list, scheduler_outputs

    def fork_seq(self, parent_seq: Sequence, child_seq: Sequence) -> None:
        self.block_manager.fork(parent_seq, child_seq)

    def free_seq(self, seq: Sequence) -> None:
        self.block_manager.free(seq)

    def free_finished_seq_groups(self) -> None:
        self.running = deque(seq_group for seq_group in self.running
                             if not seq_group.is_finished())

    def _allocate(self, seq_group: SequenceGroup) -> None:
        self.block_manager.allocate(seq_group)
        for seq in seq_group.get_seqs(status=SequenceStatus.WAITING):
            seq.status = SequenceStatus.RUNNING

    def _append_slot(
        self,
        seq_group: SequenceGroup,
        blocks_to_copy: Dict[int, List[int]],
    ) -> None:
        for seq in seq_group.get_seqs(status=SequenceStatus.RUNNING):
            ret = self.block_manager.append_slot(seq)
            if ret is not None:
                src_block, dst_block = ret
                if src_block in blocks_to_copy:
                    blocks_to_copy[src_block].append(dst_block)
                else:
                    blocks_to_copy[src_block] = [dst_block]

    def _preempt(
        self,
        seq_group: SequenceGroup,
        blocks_to_swap_out: Dict[int, int],
        preemption_mode: Optional[PreemptionMode] = None,
    ) -> None:
        # If preemption mode is not specified, we determine the mode as follows:
        # We use recomputation by default since it incurs lower overhead than
        # swapping. However, when the sequence group has multiple sequences
        # (e.g., beam search), recomputation is not currently supported. In
        # such a case, we use swapping instead.
        # FIXME(woosuk): This makes our scheduling policy a bit bizarre.
        # As swapped sequences are prioritized over waiting sequences,
        # sequence groups with multiple sequences are implicitly prioritized
        # over sequence groups with a single sequence.
        # TODO(woosuk): Support recomputation for sequence groups with multiple
        # sequences. This may require a more sophisticated CUDA kernel.
        if preemption_mode is None:
            if seq_group.get_max_num_running_seqs() == 1:
                preemption_mode = PreemptionMode.RECOMPUTE
            else:
                preemption_mode = PreemptionMode.SWAP
        if preemption_mode == PreemptionMode.RECOMPUTE:
            self._preempt_by_recompute(seq_group)
        elif preemption_mode == PreemptionMode.SWAP:
            self._preempt_by_swap(seq_group, blocks_to_swap_out)
        else:
            raise AssertionError("Invalid preemption mode.")

    def _preempt_by_recompute(
        self,
        seq_group: SequenceGroup,
    ) -> None:
        seqs = seq_group.get_seqs(status=SequenceStatus.RUNNING)
        assert len(seqs) == 1
        for seq in seqs:
            seq.status = SequenceStatus.WAITING
            self.block_manager.free(seq)
        # NOTE: For FCFS, we insert the preempted sequence group to the front
        # of the waiting queue.
        self.waiting.appendleft(seq_group)

    def _preempt_by_swap(
        self,
        seq_group: SequenceGroup,
        blocks_to_swap_out: Dict[int, int],
    ) -> None:
        self._swap_out(seq_group, blocks_to_swap_out)
        self.swapped.append(seq_group)

    def _swap_in(
        self,
        seq_group: SequenceGroup,
        blocks_to_swap_in: Dict[int, int],
    ) -> None:
        mapping = self.block_manager.swap_in(seq_group)
        blocks_to_swap_in.update(mapping)
        for seq in seq_group.get_seqs(status=SequenceStatus.SWAPPED):
            seq.status = SequenceStatus.RUNNING

    def _swap_out(
        self,
        seq_group: SequenceGroup,
        blocks_to_swap_out: Dict[int, int],
    ) -> None:
        if not self.block_manager.can_swap_out(seq_group):
            # FIXME(woosuk): Abort the sequence group instead of aborting the
            # entire engine.
            raise RuntimeError(
                "Aborted due to the lack of CPU swap space. Please increase "
                "the swap space to avoid this error.")
        mapping = self.block_manager.swap_out(seq_group)
        blocks_to_swap_out.update(mapping)
        for seq in seq_group.get_seqs(status=SequenceStatus.RUNNING):
            seq.status = SequenceStatus.SWAPPED