Spaces:
Sleeping
Sleeping
File size: 24,172 Bytes
ca1ecab |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 |
import asyncio
import time
from functools import partial
from typing import (Any, Dict, Iterable, List, Optional, Set, Tuple, Type,
Union, AsyncIterator)
from vllm.lora.request import LoRARequest
from vllm.config import ModelConfig
from vllm.engine.arg_utils import AsyncEngineArgs
from vllm.engine.llm_engine import LLMEngine
from vllm.engine.ray_utils import initialize_cluster, ray
from vllm.logger import init_logger
from vllm.outputs import RequestOutput
from vllm.sampling_params import SamplingParams
logger = init_logger(__name__)
class AsyncEngineDeadError(RuntimeError):
pass
def _raise_exception_on_finish(task: asyncio.Task,
request_tracker: "RequestTracker") -> None:
msg = ("Task finished unexpectedly. This should never happen! "
"Please open an issue on Github.")
try:
try:
task.result()
except asyncio.CancelledError:
return
except Exception as exc:
raise AsyncEngineDeadError(
msg + " See stack trace above for the actual cause.") from exc
raise AsyncEngineDeadError(msg)
except Exception as exc:
request_tracker.propagate_exception(exc)
raise exc
class AsyncStream:
"""A stream of RequestOutputs for a request that can be
iterated over asynchronously."""
def __init__(self, request_id: str) -> None:
self.request_id = request_id
self._queue = asyncio.Queue()
self._finished = False
def put(self, item: RequestOutput) -> None:
if self._finished:
return
self._queue.put_nowait(item)
def finish(self) -> None:
self._queue.put_nowait(StopAsyncIteration())
self._finished = True
@property
def finished(self) -> bool:
return self._finished
def __aiter__(self):
return self
async def __anext__(self) -> RequestOutput:
result = await self._queue.get()
if isinstance(result, Exception):
raise result
return result
class RequestTracker:
"""Synchronous abstraction for tracking requests."""
def __init__(self) -> None:
self._request_streams: Dict[str, AsyncStream] = {}
self._finished_requests: asyncio.Queue[str] = asyncio.Queue()
self._new_requests: asyncio.Queue[Tuple[AsyncStream,
dict]] = asyncio.Queue()
self.new_requests_event = None
def __contains__(self, item):
return item in self._request_streams
def init_event(self):
self.new_requests_event = asyncio.Event()
def propagate_exception(self,
exc: Exception,
request_id: Optional[str] = None) -> None:
"""Propagate an exception to request streams
(all if request_id is None)."""
if request_id is not None:
self._request_streams[request_id].put(exc)
else:
for stream in self._request_streams.values():
stream.put(exc)
def process_request_output(self,
request_output: RequestOutput,
*,
verbose: bool = False) -> None:
"""Process a request output from the engine."""
request_id = request_output.request_id
self._request_streams[request_id].put(request_output)
if request_output.finished:
if verbose:
logger.info(f"Finished request {request_id}.")
self.abort_request(request_id)
def add_request(self, request_id: str,
**engine_add_request_kwargs) -> AsyncStream:
"""Add a request to be sent to the engine on the next background
loop iteration."""
if request_id in self._request_streams:
raise KeyError(f"Request {request_id} already exists.")
stream = AsyncStream(request_id)
self._new_requests.put_nowait((stream, {
"request_id": request_id,
**engine_add_request_kwargs
}))
self.new_requests_event.set()
return stream
def abort_request(self, request_id: str, *, verbose: bool = False) -> None:
"""Abort a request during next background loop iteration."""
if verbose:
logger.info(f"Aborted request {request_id}.")
self._finished_requests.put_nowait(request_id)
if request_id not in self._request_streams or self._request_streams[
request_id].finished:
# The request has already finished or been aborted.
return
self._request_streams[request_id].finish()
def get_new_and_finished_requests(self) -> Tuple[List[Dict], Set[str]]:
"""Get the new requests and finished requests to be
sent to the engine."""
new_requests: List[Dict] = []
finished_requests: Set[str] = set()
while not self._finished_requests.empty():
request_id = self._finished_requests.get_nowait()
finished_requests.add(request_id)
self._request_streams.pop(request_id, None)
while not self._new_requests.empty():
stream, new_request = self._new_requests.get_nowait()
if stream.request_id in finished_requests:
# The request has already been aborted.
stream.finish()
continue
self._request_streams[stream.request_id] = stream
new_requests.append(new_request)
self.new_requests_event.clear()
return new_requests, finished_requests
async def wait_for_new_requests(self):
await self.new_requests_event.wait()
class _AsyncLLMEngine(LLMEngine):
"""Extension of LLMEngine to add async methods."""
async def step_async(self) -> List[RequestOutput]:
"""Performs one decoding iteration and returns newly generated results.
The workers are ran asynchronously if possible.
This function performs one decoding iteration of the engine. It first
schedules the sequences to be executed in the next iteration and the
token blocks to be swapped in/out/copy. Then, it executes the model
and updates the scheduler with the model outputs. Finally, it decodes
the sequences and returns the newly generated results.
"""
seq_group_metadata_list, scheduler_outputs = self.scheduler.schedule()
if not scheduler_outputs.is_empty():
# Execute the model.
all_outputs = await self._run_workers_async(
"execute_model",
driver_kwargs={
"seq_group_metadata_list": seq_group_metadata_list,
"blocks_to_swap_in": scheduler_outputs.blocks_to_swap_in,
"blocks_to_swap_out": scheduler_outputs.blocks_to_swap_out,
"blocks_to_copy": scheduler_outputs.blocks_to_copy,
})
# Only the driver worker returns the sampling results.
output = all_outputs[0]
else:
output = []
return self._process_model_outputs(output, scheduler_outputs)
async def encode_request_async(
self,
request_id: str, # pylint: disable=unused-argument
prompt: Optional[str],
prompt_token_ids: Optional[List[int]] = None,
lora_request: Optional[LoRARequest] = None,
):
if prompt_token_ids is None:
assert prompt is not None
prompt_token_ids = await self.tokenizer.encode_async(
request_id=request_id,
prompt=prompt,
lora_request=lora_request)
return prompt_token_ids
async def add_request_async(
self,
request_id: str,
prompt: Optional[str],
sampling_params: SamplingParams,
prompt_token_ids: Optional[List[int]] = None,
arrival_time: Optional[float] = None,
lora_request: Optional[LoRARequest] = None,
prefix_pos: Optional[int] = None,
) -> None:
if lora_request is not None and not self.lora_config:
raise ValueError(f"Got lora_request {lora_request} but LoRA is "
"not enabled!")
if arrival_time is None:
arrival_time = time.time()
prompt_token_ids = await self.encode_request_async(
request_id=request_id,
prompt=prompt,
prompt_token_ids=prompt_token_ids,
lora_request=lora_request)
return self.add_request(
request_id,
prompt=prompt,
prompt_token_ids=prompt_token_ids,
sampling_params=sampling_params,
arrival_time=arrival_time,
lora_request=lora_request,
prefix_pos=prefix_pos,
)
async def _run_workers_async(
self,
method: str,
*args,
driver_args: Optional[List[Any]] = None,
driver_kwargs: Optional[Dict[str, Any]] = None,
**kwargs,
) -> Any:
"""Runs the given method on all workers."""
coros = []
if driver_args is None:
driver_args = args
if driver_kwargs is None:
driver_kwargs = kwargs
# Run the driver worker asynchronously.
driver_executor = getattr(self.driver_worker, method)
coros.append(asyncio.get_event_loop().run_in_executor(
None, partial(driver_executor, *driver_args, **driver_kwargs)))
# Run the ray workers asynchronously.
for worker in self.workers:
coros.append(worker.execute_method.remote(method, *args, **kwargs))
all_outputs = await asyncio.gather(*coros)
return all_outputs
class AsyncLLMEngine:
"""An asynchronous wrapper for LLMEngine.
This class is used to wrap the LLMEngine class to make it asynchronous. It
uses asyncio to create a background loop that keeps processing incoming
requests. The LLMEngine is kicked by the generate method when there
are requests in the waiting queue. The generate method yields the outputs
from the LLMEngine to the caller.
NOTE: For the comprehensive list of arguments, see `LLMEngine`.
Args:
worker_use_ray: Whether to use Ray for model workers. Required for
distributed execution. Should be the same as
`parallel_config.worker_use_ray`.
engine_use_ray: Whether to make LLMEngine a Ray actor. If so, the
async frontend will be executed in a separate process as the
model workers.
log_requests: Whether to log the requests.
start_engine_loop: If True, the background task to run the engine
will be automatically started in the generate call.
*args: Arguments for LLMEngine.
*kwargs: Arguments for LLMEngine.
"""
_engine_class: Type[_AsyncLLMEngine] = _AsyncLLMEngine
def __init__(self,
worker_use_ray: bool,
engine_use_ray: bool,
*args,
log_requests: bool = True,
max_log_len: Optional[int] = None,
start_engine_loop: bool = True,
**kwargs) -> None:
self.worker_use_ray = worker_use_ray
self.engine_use_ray = engine_use_ray
self.log_requests = log_requests
self.max_log_len = max_log_len
self.engine = self._init_engine(*args, **kwargs)
self.background_loop = None
# We need to keep a reference to unshielded
# task as well to prevent it from being garbage
# collected
self._background_loop_unshielded = None
self.start_engine_loop = start_engine_loop
self._request_tracker = RequestTracker()
@property
def is_running(self) -> bool:
return (self.background_loop is not None
and not self.background_loop.done())
def start_background_loop(self) -> None:
"""Start the background loop."""
if self.is_running:
raise RuntimeError("Background loop is already running.")
self._request_tracker.init_event()
self._background_loop_unshielded = asyncio.get_event_loop(
).create_task(self.run_engine_loop())
self._background_loop_unshielded.add_done_callback(
partial(_raise_exception_on_finish,
request_tracker=self._request_tracker))
self.background_loop = asyncio.shield(self._background_loop_unshielded)
def _init_engine(self, *args,
**kwargs) -> Union[_AsyncLLMEngine, "ray.ObjectRef"]:
if not self.engine_use_ray:
engine_class = self._engine_class
elif self.worker_use_ray:
engine_class = ray.remote(num_cpus=0)(self._engine_class).remote
else:
# FIXME(woosuk): This is a bit hacky. Be careful when changing the
# order of the arguments.
cache_config = args[1]
parallel_config = args[2]
if parallel_config.tensor_parallel_size == 1:
num_gpus = cache_config.gpu_memory_utilization
else:
num_gpus = 1
engine_class = ray.remote(num_gpus=num_gpus)(
self._engine_class).remote
return engine_class(*args, **kwargs)
async def engine_step(self) -> bool:
"""Kick the engine to process the waiting requests.
Returns True if there are in-progress requests."""
new_requests, finished_requests = (
self._request_tracker.get_new_and_finished_requests())
for new_request in new_requests:
# Add the request into the vLLM engine's waiting queue.
# TODO: Maybe add add_request_batch to reduce Ray overhead
if self.engine_use_ray:
await self.engine.add_request.remote(**new_request)
else:
await self.engine.add_request_async(**new_request)
if finished_requests:
await self._engine_abort(finished_requests)
if self.engine_use_ray:
request_outputs = await self.engine.step.remote()
else:
request_outputs = await self.engine.step_async()
# Put the outputs into the corresponding streams.
for request_output in request_outputs:
self._request_tracker.process_request_output(
request_output, verbose=self.log_requests)
return len(request_outputs) > 0
async def _engine_abort(self, request_ids: Iterable[str]):
if self.engine_use_ray:
await self.engine.abort_request.remote(request_ids)
else:
self.engine.abort_request(request_ids)
async def run_engine_loop(self):
# Initialize the RequestTracker here so it uses the right event loop.
has_requests_in_progress = False
while True:
if not has_requests_in_progress:
await self._request_tracker.wait_for_new_requests()
has_requests_in_progress = await self.engine_step()
await asyncio.sleep(0)
async def add_request(
self,
request_id: str,
prompt: Optional[str],
sampling_params: SamplingParams,
prompt_token_ids: Optional[List[int]] = None,
arrival_time: Optional[float] = None,
lora_request: Optional[LoRARequest] = None,
prefix_pos: Optional[int] = None,
) -> AsyncStream:
if self.log_requests:
shortened_prompt = prompt
shortened_token_ids = prompt_token_ids
if self.max_log_len is not None:
if shortened_prompt is not None:
shortened_prompt = shortened_prompt[:self.max_log_len]
if shortened_token_ids is not None:
shortened_token_ids = shortened_token_ids[:self.
max_log_len]
logger.info(f"Received request {request_id}: "
f"prompt: {shortened_prompt!r}, "
f"prefix_pos: {prefix_pos},"
f"sampling params: {sampling_params}, "
f"prompt token ids: {shortened_token_ids}, "
f"lora_request: {lora_request}.")
if not self.is_running:
if self.start_engine_loop:
self.start_background_loop()
else:
raise AsyncEngineDeadError(
"Background loop is not running. If it was running, "
"inspect the output to find the stacktrace of the "
"error that caused the background loop to stop "
"(AsyncEngineDeadError).")
if arrival_time is None:
arrival_time = time.time()
prompt_token_ids = await self.engine.encode_request_async(
request_id=request_id,
prompt=prompt,
prompt_token_ids=prompt_token_ids,
lora_request=lora_request)
stream = self._request_tracker.add_request(
request_id,
prompt=prompt,
sampling_params=sampling_params,
prompt_token_ids=prompt_token_ids,
arrival_time=arrival_time,
lora_request=lora_request,
prefix_pos=prefix_pos)
return stream
async def generate(
self,
prompt: Optional[str],
sampling_params: SamplingParams,
request_id: str,
prompt_token_ids: Optional[List[int]] = None,
lora_request: Optional[LoRARequest] = None,
prefix_pos: Optional[int] = None,
) -> AsyncIterator[RequestOutput]:
"""Generate outputs for a request.
Generate outputs for a request. This method is a coroutine. It adds the
request into the waiting queue of the LLMEngine and streams the outputs
from the LLMEngine to the caller.
Args:
prompt: The prompt string. Can be None if prompt_token_ids is
provided.
sampling_params: The sampling parameters of the request.
request_id: The unique id of the request.
prompt_token_ids: The token IDs of the prompt. If None, we
use the tokenizer to convert the prompts to token IDs.
lora_request: LoRA request to use for generation, if any.
prefix_pos: If not None, we use the given position as the prefix
position for each prompt. We will cache the prefix's KV
cache and reuse it for the next request with the same prefix.
This is an experimental feature, and may be replaced with
automatic prefix caching in the future.
Yields:
The output `RequestOutput` objects from the LLMEngine for the
request.
Details:
- If the engine is not running, start the background loop,
which iteratively invokes
:meth:`~vllm.engine.async_llm_engine.AsyncLLMEngine.engine_step`
to process the waiting requests.
- Add the request to the engine's `RequestTracker`.
On the next background loop, this request will be sent to
the underlying engine.
Also, a corresponding `AsyncStream` will be created.
- Wait for the request outputs from `AsyncStream` and yield them.
Example:
>>> # Please refer to entrypoints/api_server.py for
>>> # the complete example.
>>>
>>> # initialize the engine and the example input
>>> engine = AsyncLLMEngine.from_engine_args(engine_args)
>>> example_input = {
>>> "prompt": "What is LLM?",
>>> "stream": False, # assume the non-streaming case
>>> "temperature": 0.0,
>>> "request_id": 0,
>>> }
>>>
>>> # start the generation
>>> results_generator = engine.generate(
>>> example_input["prompt"],
>>> SamplingParams(temperature=example_input["temperature"]),
>>> example_input["request_id"])
>>>
>>> # get the results
>>> final_output = None
>>> async for request_output in results_generator:
>>> if await request.is_disconnected():
>>> # Abort the request if the client disconnects.
>>> await engine.abort(request_id)
>>> # Return or raise an error
>>> ...
>>> final_output = request_output
>>>
>>> # Process and return the final output
>>> ...
"""
# Preprocess the request.
# This should not be used for logging, as it is monotonic time.
arrival_time = time.monotonic()
try:
stream = await self.add_request(
request_id,
prompt,
sampling_params,
prompt_token_ids=prompt_token_ids,
arrival_time=arrival_time,
lora_request=lora_request,
prefix_pos=prefix_pos,
)
async for request_output in stream:
yield request_output
except (Exception, asyncio.CancelledError) as e:
# If there is an exception or coroutine is cancelled, abort the
# request.
self._abort(request_id)
raise e
async def abort(self, request_id: str) -> None:
"""Abort a request.
Abort a submitted request. If the request is finished or not found,
this method will be a no-op.
Args:
request_id: The unique id of the request.
"""
if not self.is_running:
raise AsyncEngineDeadError(
"Background loop is not running. If it was running, "
"inspect the output to find the stacktrace of the "
"error that caused the background loop to stop "
"(AsyncEngineDeadError).")
return self._abort(request_id)
def _abort(self, request_id: str) -> None:
"""Abort a request.
Abort a submitted request. If the request is finished or not found,
this method will be a no-op.
Args:
request_id: The unique id of the request.
"""
self._request_tracker.abort_request(request_id,
verbose=self.log_requests)
async def get_model_config(self) -> ModelConfig:
"""Get the model configuration of the vLLM engine."""
if self.engine_use_ray:
return await self.engine.get_model_config.remote()
else:
return self.engine.get_model_config()
@classmethod
def from_engine_args(cls,
engine_args: AsyncEngineArgs,
start_engine_loop: bool = True) -> "AsyncLLMEngine":
"""Creates an async LLM engine from the engine arguments."""
# Create the engine configs.
engine_configs = engine_args.create_engine_configs()
parallel_config = engine_configs[2]
# Initialize the cluster.
placement_group = initialize_cluster(parallel_config,
engine_args.engine_use_ray)
# Create the async LLM engine.
engine = cls(parallel_config.worker_use_ray,
engine_args.engine_use_ray,
*engine_configs,
placement_group,
log_requests=not engine_args.disable_log_requests,
log_stats=not engine_args.disable_log_stats,
max_log_len=engine_args.max_log_len,
start_engine_loop=start_engine_loop)
return engine
async def do_log_stats(self) -> None:
if self.engine_use_ray:
await self.engine.do_log_stats.remote()
else:
self.engine.do_log_stats()
|