File size: 24,172 Bytes
ca1ecab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
import asyncio
import time
from functools import partial
from typing import (Any, Dict, Iterable, List, Optional, Set, Tuple, Type,
                    Union, AsyncIterator)

from vllm.lora.request import LoRARequest
from vllm.config import ModelConfig
from vllm.engine.arg_utils import AsyncEngineArgs
from vllm.engine.llm_engine import LLMEngine
from vllm.engine.ray_utils import initialize_cluster, ray
from vllm.logger import init_logger
from vllm.outputs import RequestOutput
from vllm.sampling_params import SamplingParams

logger = init_logger(__name__)


class AsyncEngineDeadError(RuntimeError):
    pass


def _raise_exception_on_finish(task: asyncio.Task,
                               request_tracker: "RequestTracker") -> None:
    msg = ("Task finished unexpectedly. This should never happen! "
           "Please open an issue on Github.")
    try:
        try:
            task.result()
        except asyncio.CancelledError:
            return
        except Exception as exc:
            raise AsyncEngineDeadError(
                msg + " See stack trace above for the actual cause.") from exc
        raise AsyncEngineDeadError(msg)
    except Exception as exc:
        request_tracker.propagate_exception(exc)
        raise exc


class AsyncStream:
    """A stream of RequestOutputs for a request that can be
    iterated over asynchronously."""

    def __init__(self, request_id: str) -> None:
        self.request_id = request_id
        self._queue = asyncio.Queue()
        self._finished = False

    def put(self, item: RequestOutput) -> None:
        if self._finished:
            return
        self._queue.put_nowait(item)

    def finish(self) -> None:
        self._queue.put_nowait(StopAsyncIteration())
        self._finished = True

    @property
    def finished(self) -> bool:
        return self._finished

    def __aiter__(self):
        return self

    async def __anext__(self) -> RequestOutput:
        result = await self._queue.get()
        if isinstance(result, Exception):
            raise result
        return result


class RequestTracker:
    """Synchronous abstraction for tracking requests."""

    def __init__(self) -> None:
        self._request_streams: Dict[str, AsyncStream] = {}
        self._finished_requests: asyncio.Queue[str] = asyncio.Queue()
        self._new_requests: asyncio.Queue[Tuple[AsyncStream,
                                                dict]] = asyncio.Queue()
        self.new_requests_event = None

    def __contains__(self, item):
        return item in self._request_streams

    def init_event(self):
        self.new_requests_event = asyncio.Event()

    def propagate_exception(self,
                            exc: Exception,
                            request_id: Optional[str] = None) -> None:
        """Propagate an exception to request streams
        (all if request_id is None)."""
        if request_id is not None:
            self._request_streams[request_id].put(exc)
        else:
            for stream in self._request_streams.values():
                stream.put(exc)

    def process_request_output(self,
                               request_output: RequestOutput,
                               *,
                               verbose: bool = False) -> None:
        """Process a request output from the engine."""
        request_id = request_output.request_id

        self._request_streams[request_id].put(request_output)
        if request_output.finished:
            if verbose:
                logger.info(f"Finished request {request_id}.")
            self.abort_request(request_id)

    def add_request(self, request_id: str,
                    **engine_add_request_kwargs) -> AsyncStream:
        """Add a request to be sent to the engine on the next background
        loop iteration."""
        if request_id in self._request_streams:
            raise KeyError(f"Request {request_id} already exists.")

        stream = AsyncStream(request_id)
        self._new_requests.put_nowait((stream, {
            "request_id": request_id,
            **engine_add_request_kwargs
        }))

        self.new_requests_event.set()

        return stream

    def abort_request(self, request_id: str, *, verbose: bool = False) -> None:
        """Abort a request during next background loop iteration."""
        if verbose:
            logger.info(f"Aborted request {request_id}.")

        self._finished_requests.put_nowait(request_id)

        if request_id not in self._request_streams or self._request_streams[
                request_id].finished:
            # The request has already finished or been aborted.
            return

        self._request_streams[request_id].finish()

    def get_new_and_finished_requests(self) -> Tuple[List[Dict], Set[str]]:
        """Get the new requests and finished requests to be
        sent to the engine."""
        new_requests: List[Dict] = []
        finished_requests: Set[str] = set()

        while not self._finished_requests.empty():
            request_id = self._finished_requests.get_nowait()
            finished_requests.add(request_id)
            self._request_streams.pop(request_id, None)

        while not self._new_requests.empty():
            stream, new_request = self._new_requests.get_nowait()
            if stream.request_id in finished_requests:
                # The request has already been aborted.
                stream.finish()
                continue
            self._request_streams[stream.request_id] = stream
            new_requests.append(new_request)

        self.new_requests_event.clear()

        return new_requests, finished_requests

    async def wait_for_new_requests(self):
        await self.new_requests_event.wait()


class _AsyncLLMEngine(LLMEngine):
    """Extension of LLMEngine to add async methods."""

    async def step_async(self) -> List[RequestOutput]:
        """Performs one decoding iteration and returns newly generated results.
        The workers are ran asynchronously if possible.

        This function performs one decoding iteration of the engine. It first
        schedules the sequences to be executed in the next iteration and the
        token blocks to be swapped in/out/copy. Then, it executes the model
        and updates the scheduler with the model outputs. Finally, it decodes
        the sequences and returns the newly generated results.
        """
        seq_group_metadata_list, scheduler_outputs = self.scheduler.schedule()

        if not scheduler_outputs.is_empty():
            # Execute the model.
            all_outputs = await self._run_workers_async(
                "execute_model",
                driver_kwargs={
                    "seq_group_metadata_list": seq_group_metadata_list,
                    "blocks_to_swap_in": scheduler_outputs.blocks_to_swap_in,
                    "blocks_to_swap_out": scheduler_outputs.blocks_to_swap_out,
                    "blocks_to_copy": scheduler_outputs.blocks_to_copy,
                })

            # Only the driver worker returns the sampling results.
            output = all_outputs[0]
        else:
            output = []

        return self._process_model_outputs(output, scheduler_outputs)

    async def encode_request_async(
        self,
        request_id: str,  # pylint: disable=unused-argument
        prompt: Optional[str],
        prompt_token_ids: Optional[List[int]] = None,
        lora_request: Optional[LoRARequest] = None,
    ):
        if prompt_token_ids is None:
            assert prompt is not None
            prompt_token_ids = await self.tokenizer.encode_async(
                request_id=request_id,
                prompt=prompt,
                lora_request=lora_request)
        return prompt_token_ids

    async def add_request_async(
        self,
        request_id: str,
        prompt: Optional[str],
        sampling_params: SamplingParams,
        prompt_token_ids: Optional[List[int]] = None,
        arrival_time: Optional[float] = None,
        lora_request: Optional[LoRARequest] = None,
        prefix_pos: Optional[int] = None,
    ) -> None:
        if lora_request is not None and not self.lora_config:
            raise ValueError(f"Got lora_request {lora_request} but LoRA is "
                             "not enabled!")
        if arrival_time is None:
            arrival_time = time.time()
        prompt_token_ids = await self.encode_request_async(
            request_id=request_id,
            prompt=prompt,
            prompt_token_ids=prompt_token_ids,
            lora_request=lora_request)

        return self.add_request(
            request_id,
            prompt=prompt,
            prompt_token_ids=prompt_token_ids,
            sampling_params=sampling_params,
            arrival_time=arrival_time,
            lora_request=lora_request,
            prefix_pos=prefix_pos,
        )

    async def _run_workers_async(
        self,
        method: str,
        *args,
        driver_args: Optional[List[Any]] = None,
        driver_kwargs: Optional[Dict[str, Any]] = None,
        **kwargs,
    ) -> Any:
        """Runs the given method on all workers."""
        coros = []

        if driver_args is None:
            driver_args = args
        if driver_kwargs is None:
            driver_kwargs = kwargs

        # Run the driver worker asynchronously.
        driver_executor = getattr(self.driver_worker, method)
        coros.append(asyncio.get_event_loop().run_in_executor(
            None, partial(driver_executor, *driver_args, **driver_kwargs)))

        # Run the ray workers asynchronously.
        for worker in self.workers:
            coros.append(worker.execute_method.remote(method, *args, **kwargs))

        all_outputs = await asyncio.gather(*coros)
        return all_outputs


class AsyncLLMEngine:
    """An asynchronous wrapper for LLMEngine.

    This class is used to wrap the LLMEngine class to make it asynchronous. It
    uses asyncio to create a background loop that keeps processing incoming
    requests. The LLMEngine is kicked by the generate method when there
    are requests in the waiting queue. The generate method yields the outputs
    from the LLMEngine to the caller.

    NOTE: For the comprehensive list of arguments, see `LLMEngine`.

    Args:
        worker_use_ray: Whether to use Ray for model workers. Required for
            distributed execution. Should be the same as
            `parallel_config.worker_use_ray`.
        engine_use_ray: Whether to make LLMEngine a Ray actor. If so, the
            async frontend will be executed in a separate process as the
            model workers.
        log_requests: Whether to log the requests.
        start_engine_loop: If True, the background task to run the engine
            will be automatically started in the generate call.
        *args: Arguments for LLMEngine.
        *kwargs: Arguments for LLMEngine.
    """

    _engine_class: Type[_AsyncLLMEngine] = _AsyncLLMEngine

    def __init__(self,
                 worker_use_ray: bool,
                 engine_use_ray: bool,
                 *args,
                 log_requests: bool = True,
                 max_log_len: Optional[int] = None,
                 start_engine_loop: bool = True,
                 **kwargs) -> None:
        self.worker_use_ray = worker_use_ray
        self.engine_use_ray = engine_use_ray
        self.log_requests = log_requests
        self.max_log_len = max_log_len
        self.engine = self._init_engine(*args, **kwargs)

        self.background_loop = None
        # We need to keep a reference to unshielded
        # task as well to prevent it from being garbage
        # collected
        self._background_loop_unshielded = None
        self.start_engine_loop = start_engine_loop
        self._request_tracker = RequestTracker()

    @property
    def is_running(self) -> bool:
        return (self.background_loop is not None
                and not self.background_loop.done())

    def start_background_loop(self) -> None:
        """Start the background loop."""
        if self.is_running:
            raise RuntimeError("Background loop is already running.")
        self._request_tracker.init_event()

        self._background_loop_unshielded = asyncio.get_event_loop(
        ).create_task(self.run_engine_loop())
        self._background_loop_unshielded.add_done_callback(
            partial(_raise_exception_on_finish,
                    request_tracker=self._request_tracker))
        self.background_loop = asyncio.shield(self._background_loop_unshielded)

    def _init_engine(self, *args,
                     **kwargs) -> Union[_AsyncLLMEngine, "ray.ObjectRef"]:
        if not self.engine_use_ray:
            engine_class = self._engine_class
        elif self.worker_use_ray:
            engine_class = ray.remote(num_cpus=0)(self._engine_class).remote
        else:
            # FIXME(woosuk): This is a bit hacky. Be careful when changing the
            # order of the arguments.
            cache_config = args[1]
            parallel_config = args[2]
            if parallel_config.tensor_parallel_size == 1:
                num_gpus = cache_config.gpu_memory_utilization
            else:
                num_gpus = 1
            engine_class = ray.remote(num_gpus=num_gpus)(
                self._engine_class).remote
        return engine_class(*args, **kwargs)

    async def engine_step(self) -> bool:
        """Kick the engine to process the waiting requests.

        Returns True if there are in-progress requests."""

        new_requests, finished_requests = (
            self._request_tracker.get_new_and_finished_requests())

        for new_request in new_requests:
            # Add the request into the vLLM engine's waiting queue.
            # TODO: Maybe add add_request_batch to reduce Ray overhead
            if self.engine_use_ray:
                await self.engine.add_request.remote(**new_request)
            else:
                await self.engine.add_request_async(**new_request)

        if finished_requests:
            await self._engine_abort(finished_requests)

        if self.engine_use_ray:
            request_outputs = await self.engine.step.remote()
        else:
            request_outputs = await self.engine.step_async()

        # Put the outputs into the corresponding streams.
        for request_output in request_outputs:
            self._request_tracker.process_request_output(
                request_output, verbose=self.log_requests)

        return len(request_outputs) > 0

    async def _engine_abort(self, request_ids: Iterable[str]):
        if self.engine_use_ray:
            await self.engine.abort_request.remote(request_ids)
        else:
            self.engine.abort_request(request_ids)

    async def run_engine_loop(self):
        # Initialize the RequestTracker here so it uses the right event loop.
        has_requests_in_progress = False
        while True:
            if not has_requests_in_progress:
                await self._request_tracker.wait_for_new_requests()
            has_requests_in_progress = await self.engine_step()
            await asyncio.sleep(0)

    async def add_request(
        self,
        request_id: str,
        prompt: Optional[str],
        sampling_params: SamplingParams,
        prompt_token_ids: Optional[List[int]] = None,
        arrival_time: Optional[float] = None,
        lora_request: Optional[LoRARequest] = None,
        prefix_pos: Optional[int] = None,
    ) -> AsyncStream:
        if self.log_requests:
            shortened_prompt = prompt
            shortened_token_ids = prompt_token_ids
            if self.max_log_len is not None:
                if shortened_prompt is not None:
                    shortened_prompt = shortened_prompt[:self.max_log_len]
                if shortened_token_ids is not None:
                    shortened_token_ids = shortened_token_ids[:self.
                                                              max_log_len]
            logger.info(f"Received request {request_id}: "
                        f"prompt: {shortened_prompt!r}, "
                        f"prefix_pos: {prefix_pos},"
                        f"sampling params: {sampling_params}, "
                        f"prompt token ids: {shortened_token_ids}, "
                        f"lora_request: {lora_request}.")

        if not self.is_running:
            if self.start_engine_loop:
                self.start_background_loop()
            else:
                raise AsyncEngineDeadError(
                    "Background loop is not running. If it was running, "
                    "inspect the output to find the stacktrace of the "
                    "error that caused the background loop to stop "
                    "(AsyncEngineDeadError).")

        if arrival_time is None:
            arrival_time = time.time()
        prompt_token_ids = await self.engine.encode_request_async(
            request_id=request_id,
            prompt=prompt,
            prompt_token_ids=prompt_token_ids,
            lora_request=lora_request)

        stream = self._request_tracker.add_request(
            request_id,
            prompt=prompt,
            sampling_params=sampling_params,
            prompt_token_ids=prompt_token_ids,
            arrival_time=arrival_time,
            lora_request=lora_request,
            prefix_pos=prefix_pos)

        return stream

    async def generate(
        self,
        prompt: Optional[str],
        sampling_params: SamplingParams,
        request_id: str,
        prompt_token_ids: Optional[List[int]] = None,
        lora_request: Optional[LoRARequest] = None,
        prefix_pos: Optional[int] = None,
    ) -> AsyncIterator[RequestOutput]:
        """Generate outputs for a request.

        Generate outputs for a request. This method is a coroutine. It adds the
        request into the waiting queue of the LLMEngine and streams the outputs
        from the LLMEngine to the caller.

        Args:
            prompt: The prompt string. Can be None if prompt_token_ids is
                provided.
            sampling_params: The sampling parameters of the request.
            request_id: The unique id of the request.
            prompt_token_ids: The token IDs of the prompt. If None, we
                use the tokenizer to convert the prompts to token IDs.
            lora_request: LoRA request to use for generation, if any.
            prefix_pos: If not None, we use the given position as the prefix
                position for each prompt. We will cache the prefix's KV
                cache and reuse it for the next request with the same prefix.
                This is an experimental feature, and may be replaced with
                automatic prefix caching in the future.

        Yields:
            The output `RequestOutput` objects from the LLMEngine for the
            request.

        Details:
            - If the engine is not running, start the background loop,
              which iteratively invokes
              :meth:`~vllm.engine.async_llm_engine.AsyncLLMEngine.engine_step`
              to process the waiting requests.
            - Add the request to the engine's `RequestTracker`.
              On the next background loop, this request will be sent to
              the underlying engine.
              Also, a corresponding `AsyncStream` will be created.
            - Wait for the request outputs from `AsyncStream` and yield them.

        Example:
            >>> # Please refer to entrypoints/api_server.py for
            >>> # the complete example.
            >>>
            >>> # initialize the engine and the example input
            >>> engine = AsyncLLMEngine.from_engine_args(engine_args)
            >>> example_input = {
            >>>     "prompt": "What is LLM?",
            >>>     "stream": False, # assume the non-streaming case
            >>>     "temperature": 0.0,
            >>>     "request_id": 0,
            >>> }
            >>>
            >>> # start the generation
            >>> results_generator = engine.generate(
            >>>    example_input["prompt"],
            >>>    SamplingParams(temperature=example_input["temperature"]),
            >>>    example_input["request_id"])
            >>>
            >>> # get the results
            >>> final_output = None
            >>> async for request_output in results_generator:
            >>>     if await request.is_disconnected():
            >>>         # Abort the request if the client disconnects.
            >>>         await engine.abort(request_id)
            >>>         # Return or raise an error
            >>>         ...
            >>>     final_output = request_output
            >>>
            >>> # Process and return the final output
            >>> ...
        """
        # Preprocess the request.
        # This should not be used for logging, as it is monotonic time.
        arrival_time = time.monotonic()

        try:
            stream = await self.add_request(
                request_id,
                prompt,
                sampling_params,
                prompt_token_ids=prompt_token_ids,
                arrival_time=arrival_time,
                lora_request=lora_request,
                prefix_pos=prefix_pos,
            )

            async for request_output in stream:
                yield request_output
        except (Exception, asyncio.CancelledError) as e:
            # If there is an exception or coroutine is cancelled, abort the
            # request.
            self._abort(request_id)
            raise e

    async def abort(self, request_id: str) -> None:
        """Abort a request.

        Abort a submitted request. If the request is finished or not found,
        this method will be a no-op.

        Args:
            request_id: The unique id of the request.
        """
        if not self.is_running:
            raise AsyncEngineDeadError(
                "Background loop is not running. If it was running, "
                "inspect the output to find the stacktrace of the "
                "error that caused the background loop to stop "
                "(AsyncEngineDeadError).")

        return self._abort(request_id)

    def _abort(self, request_id: str) -> None:
        """Abort a request.

        Abort a submitted request. If the request is finished or not found,
        this method will be a no-op.

        Args:
            request_id: The unique id of the request.
        """
        self._request_tracker.abort_request(request_id,
                                            verbose=self.log_requests)

    async def get_model_config(self) -> ModelConfig:
        """Get the model configuration of the vLLM engine."""
        if self.engine_use_ray:
            return await self.engine.get_model_config.remote()
        else:
            return self.engine.get_model_config()

    @classmethod
    def from_engine_args(cls,
                         engine_args: AsyncEngineArgs,
                         start_engine_loop: bool = True) -> "AsyncLLMEngine":
        """Creates an async LLM engine from the engine arguments."""
        # Create the engine configs.
        engine_configs = engine_args.create_engine_configs()
        parallel_config = engine_configs[2]
        # Initialize the cluster.
        placement_group = initialize_cluster(parallel_config,
                                             engine_args.engine_use_ray)
        # Create the async LLM engine.
        engine = cls(parallel_config.worker_use_ray,
                     engine_args.engine_use_ray,
                     *engine_configs,
                     placement_group,
                     log_requests=not engine_args.disable_log_requests,
                     log_stats=not engine_args.disable_log_stats,
                     max_log_len=engine_args.max_log_len,
                     start_engine_loop=start_engine_loop)
        return engine

    async def do_log_stats(self) -> None:
        if self.engine_use_ray:
            await self.engine.do_log_stats.remote()
        else:
            self.engine.do_log_stats()