Spaces:
Sleeping
Sleeping
File size: 5,420 Bytes
ca1ecab |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 |
import asyncio
from http import HTTPStatus
from typing import Dict, List, Optional, Union
from vllm.logger import init_logger
from vllm.transformers_utils.tokenizer import get_tokenizer
from vllm.engine.async_llm_engine import AsyncLLMEngine
from vllm.entrypoints.openai.protocol import (CompletionRequest,
ChatCompletionRequest,
ErrorResponse, LogProbs,
ModelCard, ModelList,
ModelPermission)
logger = init_logger(__name__)
class OpenAIServing:
def __init__(self, engine: AsyncLLMEngine, served_model: str):
self.engine = engine
self.served_model = served_model
self.max_model_len = 0
self.tokenizer = None
try:
event_loop = asyncio.get_running_loop()
except RuntimeError:
event_loop = None
if event_loop is not None and event_loop.is_running(
): # If the current is instanced by Ray Serve, there is already a running event loop
event_loop.create_task(self._post_init())
else: # When using single vLLM without engine_use_ray
asyncio.run(self._post_init())
async def _post_init(self):
engine_model_config = await self.engine.get_model_config()
self.max_model_len = engine_model_config.max_model_len
# A separate tokenizer to map token IDs to strings.
self.tokenizer = get_tokenizer(
engine_model_config.tokenizer,
tokenizer_mode=engine_model_config.tokenizer_mode,
trust_remote_code=engine_model_config.trust_remote_code)
async def show_available_models(self) -> ModelList:
"""Show available models. Right now we only have one model."""
model_cards = [
ModelCard(id=self.served_model,
root=self.served_model,
permission=[ModelPermission()])
]
return ModelList(data=model_cards)
def _create_logprobs(
self,
token_ids: List[int],
top_logprobs: Optional[List[Optional[Dict[int, float]]]] = None,
num_output_top_logprobs: Optional[int] = None,
initial_text_offset: int = 0,
) -> LogProbs:
"""Create OpenAI-style logprobs."""
logprobs = LogProbs()
last_token_len = 0
if num_output_top_logprobs:
logprobs.top_logprobs = []
for i, token_id in enumerate(token_ids):
step_top_logprobs = top_logprobs[i]
if step_top_logprobs is not None:
token_logprob = step_top_logprobs[token_id]
else:
token_logprob = None
token = self.tokenizer.convert_ids_to_tokens(token_id)
logprobs.tokens.append(token)
logprobs.token_logprobs.append(token_logprob)
if len(logprobs.text_offset) == 0:
logprobs.text_offset.append(initial_text_offset)
else:
logprobs.text_offset.append(logprobs.text_offset[-1] +
last_token_len)
last_token_len = len(token)
if num_output_top_logprobs:
logprobs.top_logprobs.append({
self.tokenizer.convert_ids_to_tokens(i): p
for i, p in step_top_logprobs.items()
} if step_top_logprobs else None)
return logprobs
def create_error_response(
self,
message: str,
err_type: str = "BadRequestError",
status_code: HTTPStatus = HTTPStatus.BAD_REQUEST) -> ErrorResponse:
return ErrorResponse(message=message,
type=err_type,
code=status_code.value)
async def _check_model(self, request) -> Optional[ErrorResponse]:
if request.model == self.served_model:
return
return self.create_error_response(
message=f"The model `{request.model}` does not exist.",
err_type="NotFoundError",
status_code=HTTPStatus.NOT_FOUND)
def _validate_prompt_and_tokenize(
self,
request: Union[ChatCompletionRequest, CompletionRequest],
prompt: Optional[str] = None,
prompt_ids: Optional[List[int]] = None) -> List[int]:
if not (prompt or prompt_ids):
raise ValueError("Either prompt or prompt_ids should be provided.")
if (prompt and prompt_ids):
raise ValueError(
"Only one of prompt or prompt_ids should be provided.")
input_ids = prompt_ids if prompt_ids is not None else self.tokenizer(
prompt).input_ids
token_num = len(input_ids)
if request.max_tokens is None:
request.max_tokens = self.max_model_len - token_num
if token_num + request.max_tokens > self.max_model_len:
raise ValueError(
f"This model's maximum context length is {self.max_model_len} tokens. "
f"However, you requested {request.max_tokens + token_num} tokens "
f"({token_num} in the messages, "
f"{request.max_tokens} in the completion). "
f"Please reduce the length of the messages or completion.", )
else:
return input_ids
|