File size: 35,080 Bytes
ca1ecab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
# pylint: disable=unused-argument
import math
from dataclasses import dataclass
from typing import TYPE_CHECKING, List, Optional, Tuple

import torch
import torch.nn as nn
import torch.nn.functional as F
from transformers import PretrainedConfig

from vllm.config import LoRAConfig
from vllm.lora.punica import add_lora, add_lora_slice, bgmv
from vllm.model_executor.layers.sampler import Sampler
from vllm.model_executor.parallel_utils.communication_op import (
    tensor_model_parallel_all_gather,
    tensor_model_parallel_all_reduce,
    tensor_model_parallel_gather,
)
from vllm.model_executor.layers.linear import (ColumnParallelLinear,
                                               RowParallelLinear,
                                               QKVParallelLinear,
                                               MergedColumnParallelLinear)
from vllm.model_executor.layers.vocab_parallel_embedding import VocabParallelEmbedding, ParallelLMHead
from vllm.model_executor.parallel_utils.parallel_state import (
    get_tensor_model_parallel_rank, get_tensor_model_parallel_world_size)
from vllm.model_executor.parallel_utils.utils import split_tensor_along_last_dim

if TYPE_CHECKING:
    pass


def _apply_lora(
    x: torch.Tensor,
    lora_a_stacked: torch.Tensor,
    lora_b_stacked: torch.Tensor,
    indices: torch.Tensor,
    output: torch.Tensor,
):
    """Applies lora to each input.

    This method applies all loras to each input. It uses the
    indices vector to determine which lora yields the
    correct output. An index of -1 means no lora should be
    applied. This method adds the final lora results to the
    output.

    Input shapes:
        x:               (batch_size, hidden_dim)
        lora_a_stacked:  (num_loras, lora_rank, hidden_dim)
        lora_b_stacked:  (num_loras, output_dim, lora_rank)
        indices:         (batch_size)
        output:          (batch_size, output_dim)
    """
    org_output = output
    x = x.view(-1, x.shape[-1])
    output = output.view(-1, output.shape[-1])
    indices = indices.view(-1)
    add_lora(output, x, lora_a_stacked, lora_b_stacked, indices, 0, 1.0)
    return output.view_as(org_output)


def _apply_lora_packed_nslice(
    x: torch.Tensor,
    lora_a_stacked: Tuple[torch.Tensor, torch.Tensor, torch.Tensor],
    lora_b_stacked: Tuple[torch.Tensor, torch.Tensor, torch.Tensor],
    indices: torch.Tensor,
    output: torch.Tensor,
    output_slices: Tuple[int, ...],
):
    """Applies lora to each input.

    This method applies all loras to each input. It uses the
    indices vector to determine which lora yields the
    correct output. An index of -1 means no lora should be
    applied. This method adds the final lora results to the
    output.

    This method is used for layers that are composed of multiple sublayers
    (slices) packed together.

    Input shapes:
        x:                 (batch_size, hidden_dim)
        lora_a_stacked:    3 element tuple of (num_loras, lora_rank, hidden_dim)
        lora_b_stacked:    3 element tuple of (num_loras, output_dim, lora_rank)
        indices:           (batch_size)
        output:            (batch_size, q_slice_size + 2*kv_slice_size)
        output_slices:     n-1 element tuple of (slice_size...), where n is number of slices
    """
    org_output = output
    x = x.view(-1, x.shape[-1])
    output = output.view(-1, output.shape[-1])
    indices = indices.view(-1)
    offset_left = 0
    for slice_idx in range(len(output_slices)):
        add_lora_slice(output, x, lora_a_stacked[slice_idx],
                       lora_b_stacked[slice_idx], indices, 0, 1.0, offset_left,
                       output_slices[slice_idx])
        offset_left += output_slices[slice_idx]
    return output.view_as(org_output)


@dataclass
class LoRAMapping:
    # Per every token in input_ids:
    index_mapping: Tuple[int, ...]
    # Per sampled token:
    prompt_mapping: Tuple[int, ...]

    def __post_init__(self):
        self.index_mapping = tuple(self.index_mapping)
        self.prompt_mapping = tuple(self.prompt_mapping)


class BaseLayerWithLoRA(nn.Module):

    def create_lora_weights(self, max_loras: int, lora_config: LoRAConfig,
                            model_config: PretrainedConfig) -> None:
        """Initializes lora matrices."""
        ...

    def reset_lora(self, index: int):
        """Resets the lora weights at index back to 0."""
        ...

    def set_lora(
        self,
        index: int,
        lora_a: torch.Tensor,
        lora_b: torch.Tensor,
        embeddings_tensor: Optional[torch.Tensor],
    ):
        """Overwrites lora tensors at index."""
        ...

    def set_mapping(
        self,
        base_indices: torch.Tensor,
        sampler_indices: torch.Tensor,
        sampler_indices_padded: torch.Tensor,
        embeddings_indices: torch.Tensor,
        indices_len: List[int],
    ):
        """Sets the mapping indices."""
        ...


class VocabParallelEmbeddingWithLoRA(BaseLayerWithLoRA):

    def __init__(self, base_layer: VocabParallelEmbedding) -> None:
        super().__init__()
        self.base_layer = base_layer

    def create_lora_weights(
            self,
            max_loras: int,
            lora_config: LoRAConfig,
            model_config: Optional[PretrainedConfig] = None) -> None:

        lora_vocab_start_idx = self.base_layer.org_vocab_size
        weights_idx = None
        if self.base_layer.vocab_end_index > lora_vocab_start_idx:
            # We can start adding lora weights
            weights_idx = max(
                lora_vocab_start_idx - self.base_layer.vocab_start_index, 0)
            self.embeddings_slice = (self.base_layer.vocab_start_index -
                                     self.base_layer.org_vocab_size +
                                     weights_idx,
                                     self.base_layer.vocab_end_index -
                                     self.base_layer.org_vocab_size)
            self.embeddings_weights = self.base_layer.weight.data[weights_idx:]
            self.embeddings_weights.fill_(0)
        else:
            self.embeddings_slice = None
            self.embeddings_weights = None

        self.embeddings_tensors = torch.zeros(
            (
                max_loras,
                lora_config.lora_extra_vocab_size,
                self.base_layer.embedding_dim,
            ),
            dtype=self.base_layer.weight.dtype,
            device=self.base_layer.weight.device,
        )
        self.lora_a_stacked = torch.zeros(
            (
                max_loras,
                self.base_layer.org_vocab_size +
                lora_config.lora_extra_vocab_size,
                lora_config.max_lora_rank,
            ),
            dtype=lora_config.lora_dtype,
            device=self.base_layer.weight.device,
        )
        self.lora_b_stacked = torch.zeros(
            (
                max_loras,
                1,
                self.base_layer.embedding_dim,
                lora_config.max_lora_rank,
            ),
            dtype=lora_config.lora_dtype,
            device=self.base_layer.weight.device,
        )
        self.lora_a_stacked_2d = self.lora_a_stacked.view(
            self.lora_a_stacked.shape[0] * self.lora_a_stacked.shape[1],
            self.lora_a_stacked.shape[2],
        )
        self.indices: Optional[torch.Tensor] = None
        self.indices_len: Optional[List[int]] = None
        self.embeddings_indices = None

    def reset_lora(self, index: int):
        self.lora_a_stacked[index] = 0
        self.lora_b_stacked[index] = 0
        self.embeddings_tensors[index] = 0

    def set_lora(
        self,
        index: int,
        lora_a: torch.Tensor,
        lora_b: torch.Tensor,
        embeddings_tensor: Optional[torch.Tensor],
    ):
        self.reset_lora(index)
        self.lora_a_stacked[index, :lora_a.shape[0], :lora_a.shape[1]].copy_(
            lora_a, non_blocking=True)
        self.lora_b_stacked[index,
                            0, :lora_b.shape[1], :lora_b.shape[0]].copy_(
                                lora_b.T, non_blocking=True)
        if embeddings_tensor is not None:
            self.embeddings_tensors[
                index, :embeddings_tensor.shape[0], :embeddings_tensor.
                shape[1]].copy_(embeddings_tensor, non_blocking=True)
            if self.embeddings_slice is not None:
                # TODO(yard1): Optimize this copy, we don't need to copy
                # everything, just the modified part
                embeddings = self.embeddings_tensors.view(
                    self.embeddings_tensors.shape[0] *
                    self.embeddings_tensors.shape[1],
                    self.embeddings_tensors.shape[2]
                )[self.embeddings_slice[0]:self.embeddings_slice[1]]
                self.embeddings_weights[:embeddings.shape[0]].copy_(embeddings)

    def set_mapping(
        self,
        base_indices: torch.Tensor,
        sampler_indices: torch.Tensor,
        sampler_indices_padded: torch.Tensor,
        embeddings_indices: torch.Tensor,
        indices_len: List[int],
    ):
        self.indices = base_indices
        self.embeddings_indices = embeddings_indices
        self.indices_len = indices_len

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        added_tokens_mask = x > self.base_layer.org_vocab_size - 1
        indices = self.embeddings_indices[1][:self.indices_len[3]].view_as(x)
        full_lora_a_embeddings = F.embedding(
            x + indices,
            self.lora_a_stacked_2d,
        )
        indices = self.embeddings_indices[0][:self.indices_len[3]].view_as(x)
        full_output = self.base_layer.forward(
            x.add_(indices * added_tokens_mask))

        full_output_org = full_output
        if full_output.ndim == 3:
            full_output = full_output.view(
                full_output.shape[0] * full_output.shape[1], -1)
        if full_lora_a_embeddings.ndim == 3:
            full_lora_a_embeddings = full_lora_a_embeddings.view(
                full_lora_a_embeddings.shape[0] *
                full_lora_a_embeddings.shape[1], -1)
        bgmv(full_output, full_lora_a_embeddings, self.lora_b_stacked,
             self.indices[:self.indices_len[0]], 0, 1.0)
        return full_output.view_as(full_output_org)


class ColumnParallelLinearWithLoRA(BaseLayerWithLoRA):

    def __init__(self, base_layer: ColumnParallelLinear) -> None:
        super().__init__()
        self.base_layer = base_layer

    def create_lora_weights(
            self,
            max_loras: int,
            lora_config: LoRAConfig,
            model_config: Optional[PretrainedConfig] = None) -> None:
        self.lora_a_stacked = torch.zeros(
            max_loras,
            1,
            lora_config.max_lora_rank,
            self.base_layer.weight.shape[1],
            dtype=lora_config.lora_dtype,
            device=self.base_layer.weight.device,
        )
        self.lora_b_stacked = torch.zeros(
            max_loras,
            1,
            self.base_layer.weight.shape[0],
            lora_config.max_lora_rank,
            dtype=lora_config.lora_dtype,
            device=self.base_layer.weight.device,
        )

        self.indices: Optional[torch.Tensor] = None
        self.indices_len: Optional[List[int]] = None
        self.output_dim = self.lora_b_stacked.shape[1]

    def reset_lora(self, index: int):
        self.lora_a_stacked[index] = 0
        self.lora_b_stacked[index] = 0

    def set_lora(
        self,
        index: int,
        lora_a: torch.Tensor,
        lora_b: torch.Tensor,
        embeddings_tensor: Optional[torch.Tensor],
    ):
        self.reset_lora(index)

        self.lora_a_stacked[index,
                            0, :lora_a.shape[1], :lora_a.shape[0]].copy_(
                                lora_a.T, non_blocking=True)
        self.lora_b_stacked[index,
                            0, :lora_b.shape[1], :lora_b.shape[0]].copy_(
                                lora_b.T, non_blocking=True)

    def set_mapping(
        self,
        base_indices: torch.Tensor,
        sampler_indices: torch.Tensor,
        sampler_indices_padded: torch.Tensor,
        embeddings_indices: torch.Tensor,
        indices_len: List[int],
    ):
        self.indices = base_indices
        self.indices_len = indices_len

    def apply_weights(self, x: torch.Tensor,
                      bias: Optional[torch.Tensor]) -> torch.Tensor:
        output = self.base_layer.linear_method.apply_weights(
            self.base_layer.linear_weights, x, bias)
        _apply_lora(
            x,
            self.lora_a_stacked,
            self.lora_b_stacked,
            self.indices[:self.indices_len[0]],
            output,
        )
        return output

    def forward(self, input_):
        """Forward of ColumnParallelLinear

        Args:
            input_: Tensor whose last dimension is `input_size`.

        Returns:
            - output
            - bias
        """
        bias = (self.base_layer.bias
                if not self.base_layer.skip_bias_add else None)

        # Matrix multiply.
        output_parallel = self.apply_weights(input_, bias)
        if self.base_layer.gather_output:
            # All-gather across the partitions.
            output = tensor_model_parallel_all_gather(output_parallel)
        else:
            output = output_parallel
        output_bias = (self.base_layer.bias
                       if self.base_layer.skip_bias_add else None)
        return output, output_bias

    @property
    def linear_weights(self):
        return self.base_layer.linear_weights


class MergedColumnParallelLinearWithLoRA(ColumnParallelLinearWithLoRA):
    """ColumnParallelLinear layer that is composed of 2 sublayers (slices)
    packed together (eg. gate_proj + up_proj -> gate_up_proj).

    This means we have 2 LoRAs, each applied to one half of the layer.

    Both slices must have the same size.
    """

    def __init__(self, base_layer: MergedColumnParallelLinear) -> None:
        super().__init__(base_layer)

    def create_lora_weights(
            self,
            max_loras: int,
            lora_config: LoRAConfig,
            model_config: Optional[PretrainedConfig] = None) -> None:
        n_slices = 2
        if not (len(self.base_layer.output_sizes) == n_slices
                and self.base_layer.output_sizes[0]
                == self.base_layer.output_sizes[1]):
            raise ValueError(
                "LoRAColumnParallelLinear2Slice requires 2 slices with "
                "the same size.")
        self.tp_size = get_tensor_model_parallel_world_size()

        self.lora_a_stacked = tuple(
            torch.zeros(
                max_loras,
                1,
                lora_config.max_lora_rank,
                self.base_layer.weight.shape[1],
                dtype=lora_config.lora_dtype,
                device=self.base_layer.weight.device,
            ) for _ in range(n_slices))
        self.lora_b_stacked = tuple(
            torch.zeros(
                max_loras,
                1,
                self.base_layer.weight.shape[0] // 2,
                lora_config.max_lora_rank,
                dtype=lora_config.lora_dtype,
                device=self.base_layer.weight.device,
            ) for _ in range(n_slices))

        self.indices: Optional[torch.Tensor] = None
        self.output_dim = self.lora_b_stacked[0].shape[2]

    def reset_lora(self, index: int):
        self.lora_a_stacked[0][index] = 0
        self.lora_a_stacked[1][index] = 0
        self.lora_b_stacked[0][index] = 0
        self.lora_b_stacked[1][index] = 0

    def set_lora(
        self,
        index: int,
        lora_a: torch.Tensor,
        lora_b: torch.Tensor,
        embeddings_tensor: Optional[torch.Tensor],
    ):
        self.reset_lora(index)

        if self.tp_size > 1:
            tensor_model_parallel_rank = get_tensor_model_parallel_rank()
            shard_size = self.output_dim
            start_idx = tensor_model_parallel_rank * shard_size
            end_idx = (tensor_model_parallel_rank + 1) * shard_size
            lora_b = lora_b[0][:,
                               start_idx:end_idx], lora_b[1][:,
                                                             start_idx:end_idx]

        if lora_a[0] is not None:
            self.lora_a_stacked[0][
                index, 0, :lora_a[0].shape[1], :lora_a[0].shape[0]].copy_(
                    lora_a[0].T, non_blocking=True)
            self.lora_b_stacked[0][
                index, 0, :lora_b[0].shape[1], :lora_b[0].shape[0]].copy_(
                    lora_b[0].T, non_blocking=True)
        if lora_a[1] is not None:
            self.lora_a_stacked[1][
                index, 0, :lora_a[1].shape[1], :lora_a[1].shape[0]].copy_(
                    lora_a[1].T, non_blocking=True)
            self.lora_b_stacked[1][
                index, 0, :lora_b[1].shape[1], :lora_b[1].shape[0]].copy_(
                    lora_b[1].T, non_blocking=True)

    def apply_weights(self, x: torch.Tensor,
                      bias: Optional[torch.Tensor]) -> torch.Tensor:
        output = self.base_layer.linear_method.apply_weights(
            self.base_layer.linear_weights, x, bias)
        _apply_lora_packed_nslice(
            x,
            self.lora_a_stacked,
            self.lora_b_stacked,
            self.indices[:self.indices_len[0]],
            output,
            (self.output_dim, self.output_dim),
        )
        return output


class QKVParallelLinearWithLora(ColumnParallelLinearWithLoRA):
    """ColumnParallelLinear layer that is composed of 3 sublayers (slices)
    packed together in qkv proj fashion
    (q_proj + k_proj + v_proj -> qkv_proj).

    This means we have 3 LoRAs, each applied to one slice of the layer.

    Q slice may have different shape than K and V slices (which both have
    the same shape).
    """

    def __init__(self, base_layer: QKVParallelLinear) -> None:
        super().__init__(base_layer)

    def create_lora_weights(
            self,
            max_loras: int,
            lora_config: LoRAConfig,
            model_config: Optional[PretrainedConfig] = None) -> None:
        self.tp_size = get_tensor_model_parallel_world_size()
        tp_rank = get_tensor_model_parallel_rank()
        self.q_proj_shard_size = (self.base_layer.num_heads *
                                  self.base_layer.head_size)
        self.kv_proj_shard_size = (self.base_layer.num_kv_heads *
                                   self.base_layer.head_size)
        self.q_shard_id = tp_rank
        self.kv_shard_id = tp_rank // self.base_layer.num_kv_head_replicas

        # q, k, v
        self.lora_a_stacked = (
            torch.zeros(
                max_loras,
                1,
                lora_config.max_lora_rank,
                self.base_layer.weight.shape[1],
                dtype=lora_config.lora_dtype,
                device=self.base_layer.weight.device,
            ),
            torch.zeros(
                max_loras,
                1,
                lora_config.max_lora_rank,
                self.base_layer.weight.shape[1],
                dtype=lora_config.lora_dtype,
                device=self.base_layer.weight.device,
            ),
            torch.zeros(
                max_loras,
                1,
                lora_config.max_lora_rank,
                self.base_layer.weight.shape[1],
                dtype=lora_config.lora_dtype,
                device=self.base_layer.weight.device,
            ),
        )
        self.lora_b_stacked = (
            torch.zeros(
                max_loras,
                1,
                self.q_proj_shard_size,
                lora_config.max_lora_rank,
                dtype=lora_config.lora_dtype,
                device=self.base_layer.weight.device,
            ),
            torch.zeros(
                max_loras,
                1,
                self.kv_proj_shard_size,
                lora_config.max_lora_rank,
                dtype=lora_config.lora_dtype,
                device=self.base_layer.weight.device,
            ),
            torch.zeros(
                max_loras,
                1,
                self.kv_proj_shard_size,
                lora_config.max_lora_rank,
                dtype=lora_config.lora_dtype,
                device=self.base_layer.weight.device,
            ),
        )

        self.output_slices = (self.q_proj_shard_size, self.kv_proj_shard_size,
                              self.kv_proj_shard_size)
        self.packed_indices: Optional[torch.Tensor] = None
        self.standard_indices: Optional[torch.Tensor] = None
        self.indices_len: Optional[List[int]] = None

    def reset_lora(self, index: int):
        self.lora_a_stacked[0][index] = 0
        self.lora_b_stacked[0][index] = 0
        self.lora_a_stacked[1][index] = 0
        self.lora_b_stacked[1][index] = 0
        self.lora_a_stacked[2][index] = 0
        self.lora_b_stacked[2][index] = 0

    def set_lora(
        self,
        index: int,
        lora_a: torch.Tensor,
        lora_b: torch.Tensor,
        embeddings_tensor: Optional[torch.Tensor],
    ):
        self.reset_lora(index)

        if self.tp_size > 1:
            if lora_b[0] is not None:
                lora_b_q = lora_b[0][:, self.q_proj_shard_size *
                                     self.q_shard_id:self.q_proj_shard_size *
                                     (self.q_shard_id + 1)]
                self.lora_b_stacked[0][
                    index, 0, :lora_b_q.shape[1], :lora_b_q.shape[0]].copy_(
                        lora_b_q.T, non_blocking=True)
            if lora_b[1] is not None:
                lora_b_k = lora_b[1][:, self.kv_proj_shard_size *
                                     self.kv_shard_id:self.kv_proj_shard_size *
                                     (self.kv_shard_id + 1)]
                self.lora_b_stacked[1][
                    index, 0, :lora_b_k.shape[1], :lora_b_k.shape[0]].copy_(
                        lora_b_k.T, non_blocking=True)
            if lora_b[2] is not None:
                lora_b_v = lora_b[2][:, self.kv_proj_shard_size *
                                     self.kv_shard_id:self.kv_proj_shard_size *
                                     (self.kv_shard_id + 1)]
                self.lora_b_stacked[2][
                    index, 0, :lora_b_v.shape[1], :lora_b_v.shape[0]].copy_(
                        lora_b_v.T, non_blocking=True)
        else:
            if lora_b[0] is not None:
                self.lora_b_stacked[0][
                    index, 0, :lora_b[0].shape[1], :lora_b[0].shape[0]].copy_(
                        lora_b[0].T, non_blocking=True)
            if lora_b[1] is not None:
                self.lora_b_stacked[1][
                    index, 0, :lora_b[1].shape[1], :lora_b[1].shape[0]].copy_(
                        lora_b[1].T, non_blocking=True)
            if lora_b[2] is not None:
                self.lora_b_stacked[2][
                    index, 0, :lora_b[2].shape[1], :lora_b[2].shape[0]].copy_(
                        lora_b[2].T, non_blocking=True)

        if lora_a[0] is not None:
            self.lora_a_stacked[0][
                index, 0, :lora_a[0].shape[1], :lora_a[0].shape[0]].copy_(
                    lora_a[0].T, non_blocking=True)
        if lora_a[1] is not None:
            self.lora_a_stacked[1][
                index, 0, :lora_a[1].shape[1], :lora_a[1].shape[0]].copy_(
                    lora_a[1].T, non_blocking=True)
        if lora_a[2] is not None:
            self.lora_a_stacked[2][
                index, 0, :lora_a[2].shape[1], :lora_a[2].shape[0]].copy_(
                    lora_a[2].T, non_blocking=True)

    def apply_weights(self, x: torch.Tensor,
                      bias: Optional[torch.Tensor]) -> torch.Tensor:
        output = self.base_layer.linear_method.apply_weights(
            self.base_layer.linear_weights, x, bias)
        _apply_lora_packed_nslice(
            x,
            self.lora_a_stacked,
            self.lora_b_stacked,
            self.indices[:self.indices_len[0]],
            output,
            self.output_slices,
        )
        return output


class RowParallelLinearWithLoRA(BaseLayerWithLoRA):

    def __init__(self, base_layer: RowParallelLinear) -> None:
        super().__init__()
        self.base_layer = base_layer

    def create_lora_weights(
            self,
            max_loras: int,
            lora_config: LoRAConfig,
            model_config: Optional[PretrainedConfig] = None) -> None:
        self.lora_a_stacked = torch.zeros(
            (
                max_loras,
                1,
                lora_config.max_lora_rank,
                self.base_layer.weight.shape[1],
            ),
            dtype=lora_config.lora_dtype,
            device=self.base_layer.weight.device,
        )
        self.lora_b_stacked = torch.zeros(
            (
                max_loras,
                1,
                self.base_layer.weight.shape[0],
                lora_config.max_lora_rank,
            ),
            dtype=lora_config.lora_dtype,
            device=self.base_layer.weight.device,
        )
        self.indices: Optional[torch.Tensor] = None
        self.indices_len: Optional[List[int]] = None

    def reset_lora(self, index: int):
        self.lora_a_stacked[index] = 0
        self.lora_b_stacked[index] = 0

    def set_lora(
        self,
        index: int,
        lora_a: torch.Tensor,
        lora_b: torch.Tensor,
        embeddings_tensor: Optional[torch.Tensor],
    ):
        self.reset_lora(index)
        if self.base_layer.tp_size > 1:
            tensor_model_parallel_rank = get_tensor_model_parallel_rank()
            shard_size = self.base_layer.weight.shape[1]
            start_idx = tensor_model_parallel_rank * shard_size
            end_idx = (tensor_model_parallel_rank + 1) * shard_size
            lora_a = lora_a[start_idx:end_idx, :]

        self.lora_a_stacked[index,
                            0, :lora_a.shape[1], :lora_a.shape[0]].copy_(
                                lora_a.T, non_blocking=True)
        self.lora_b_stacked[index,
                            0, :lora_b.shape[1], :lora_b.shape[0]].copy_(
                                lora_b.T, non_blocking=True)

    def set_mapping(
        self,
        base_indices: torch.Tensor,
        sampler_indices: torch.Tensor,
        sampler_indices_padded: torch.Tensor,
        embeddings_indices: torch.Tensor,
        indices_len: List[int],
    ):
        self.indices = base_indices
        self.indices_len = indices_len

    def apply_weights(self, x: torch.Tensor) -> torch.Tensor:
        output = self.base_layer.linear_method.apply_weights(
            self.base_layer.linear_weights, x)
        _apply_lora(
            x,
            self.lora_a_stacked,
            self.lora_b_stacked,
            self.indices[:self.indices_len[0]],
            output,
        )
        return output

    def forward(self, input_):
        """Forward of RowParallelLinear

        Args:
            input_: tensor whose last dimension is `input_size`. If
                    `input_is_parallel` is set, then the last dimension
                    is `input_size // tp_size`.

        Returns:
            - output
            - bias
        """
        # Set up backprop all-reduce.
        if self.base_layer.input_is_parallel:
            input_parallel = input_
        else:
            # TODO: simplify code below
            tp_rank = get_tensor_model_parallel_rank()
            splitted_input = split_tensor_along_last_dim(
                input_, num_partitions=self.base_layer.tp_size)
            input_parallel = splitted_input[tp_rank].contiguous()

        # Matrix multiply.
        output_parallel = self.apply_weights(input_parallel)
        if self.base_layer.reduce_results and self.base_layer.tp_size > 1:
            output_ = tensor_model_parallel_all_reduce(output_parallel)
        else:
            output_ = output_parallel

        if not self.base_layer.skip_bias_add:
            output = (output_ + self.base_layer.bias
                      if self.base_layer.bias is not None else output_)
            output_bias = None
        else:
            output = output_
            output_bias = self.base_layer.bias
        return output, output_bias

    @property
    def weight(self):
        return self.base_layer.weight


class SamplerWithLoRA(BaseLayerWithLoRA):

    def __init__(
        self,
        base_layer: Sampler,
        hidden_size: int,
        dtype: torch.dtype,
        device: torch.device,
    ) -> None:
        super().__init__()
        self.base_layer = base_layer
        self.hidden_size = hidden_size
        self.dtype = dtype
        self.device = device

    @property
    def vocab_size(self):
        return self.base_layer.vocab_size

    @property
    def org_vocab_size(self):
        return self.base_layer.org_vocab_size

    @property
    def include_gpu_probs_tensor(self):
        return self.base_layer.include_gpu_probs_tensor

    def create_lora_weights(
        self,
        max_loras: int,
        lora_config: LoRAConfig,
        model_config: Optional[PretrainedConfig] = None,
    ) -> None:
        # Keep this in sync with csrc/punica/bgmv/bgmv_config.h
        if 32000 < self.base_layer.vocab_size > 33024:
            raise ValueError(
                "When using LoRA, vocab size must be 32000 >= vocab_size <= 33024"
            )
        self.lora_a_stacked = torch.zeros(
            (
                max_loras,
                1,
                lora_config.max_lora_rank,
                self.hidden_size,
            ),
            dtype=lora_config.lora_dtype,
            device=self.device,
        )
        self.lora_b_stacked = torch.zeros(
            (
                max_loras,
                1,
                # Pad for kernel compatibility
                math.ceil(self.base_layer.vocab_size /
                          lora_config.lora_vocab_padding_size) *
                lora_config.lora_vocab_padding_size,
                lora_config.max_lora_rank,
            ),
            dtype=lora_config.lora_dtype,
            device=self.device,
        )
        self.embeddings_tensors = torch.full(
            (max_loras, lora_config.lora_extra_vocab_size, self.hidden_size),
            fill_value=float("-inf"),
            dtype=self.dtype,
            device=self.device,
        )
        self.indices = None
        self.indices_padded = None
        self.indices_len = None

    def reset_lora(self, index: int):
        self.lora_a_stacked[index] = 0
        self.lora_b_stacked[index] = 0
        self.embeddings_tensors[index] = float("-inf")

    def set_lora(
        self,
        index: int,
        lora_a: torch.Tensor,
        lora_b: torch.Tensor,
        embeddings_tensor: Optional[torch.Tensor],
    ):
        self.reset_lora(index)
        self.lora_a_stacked[index,
                            0, :lora_a.shape[1], :lora_a.shape[0]].copy_(
                                lora_a.T, non_blocking=True)
        self.lora_b_stacked[index,
                            0, :lora_b.shape[1], :lora_b.shape[0]].copy_(
                                lora_b.T, non_blocking=True)
        if embeddings_tensor is not None:
            self.embeddings_tensors[
                index, :embeddings_tensor.shape[0], :embeddings_tensor.
                shape[1], ] = embeddings_tensor

    def set_mapping(
        self,
        base_indices: torch.Tensor,
        sampler_indices: torch.Tensor,
        sampler_indices_padded: torch.Tensor,
        embeddings_indices: torch.Tensor,
        indices_len: List[int],
    ):
        self.indices = sampler_indices
        self.indices_padded = sampler_indices_padded
        self.indices_len = indices_len

    def _get_logits(
        self,
        hidden_states: torch.Tensor,
        embedding: torch.Tensor,
        embedding_bias: Optional[torch.Tensor] = None,
    ) -> torch.Tensor:
        # Get the logits for the next tokens.
        logits = torch.matmul(hidden_states, embedding.t())
        if embedding_bias is not None:
            logits += embedding_bias
        logits = tensor_model_parallel_gather(logits)
        if logits is None:
            return None

        lora_logits = torch.empty(
            self.embeddings_tensors.shape[0] + 1,
            self.embeddings_tensors.shape[1],
            hidden_states.shape[0],
            dtype=self.embeddings_tensors.dtype,
            device=self.embeddings_tensors.device,
        )
        torch.matmul(self.embeddings_tensors,
                     hidden_states.T,
                     out=lora_logits[:-1])
        lora_logits[-1] = float("-inf")
        lora_logits = lora_logits.mT
        lora_logits = (lora_logits.reshape(
            lora_logits.shape[0] * lora_logits.shape[1],
            lora_logits.shape[2],
        ).index_select(0,
                       self.indices_padded[:self.indices_len[2]]).nan_to_num_(
                           nan=float("-inf"),
                           posinf=float("inf"),
                           neginf=float("-inf")))
        logits[:,
               self.base_layer.org_vocab_size:self.base_layer.org_vocab_size +
               lora_logits.shape[1]] = lora_logits

        _apply_lora(
            hidden_states,
            self.lora_a_stacked,
            self.lora_b_stacked,
            self.indices[:self.indices_len[1]],
            logits,
        )

        # Remove paddings in vocab (if any).
        logits = logits[:, :self.base_layer.vocab_size]

        return logits

    def forward(self, *args, **kwargs):
        return type(self.base_layer).forward(self, *args, **kwargs)


def from_layer(
        layer: nn.Module,
        max_loras: int,
        lora_config: LoRAConfig,
        model_config: Optional[PretrainedConfig] = None) -> BaseLayerWithLoRA:
    supported_layer_types = {
        VocabParallelEmbedding: VocabParallelEmbeddingWithLoRA,
        ColumnParallelLinear: ColumnParallelLinearWithLoRA,
        QKVParallelLinear: QKVParallelLinearWithLora,
        MergedColumnParallelLinear: MergedColumnParallelLinearWithLoRA,
        RowParallelLinear: RowParallelLinearWithLoRA,
    }
    for src_layer_type, lora_layer_type in supported_layer_types.items():
        if type(layer) is src_layer_type:  # pylint: disable=unidiomatic-typecheck
            ret = lora_layer_type(layer)
            ret.create_lora_weights(max_loras, lora_config, model_config)
            return ret
    return layer


def from_layer_sampler(
    layer: Sampler,
    lm_head: ParallelLMHead,
    max_loras: int,
    lora_config: LoRAConfig,
    model_config: Optional[PretrainedConfig] = None,
) -> SamplerWithLoRA:
    ret = SamplerWithLoRA(layer, lm_head.embedding_dim, lm_head.weight.dtype,
                          lm_head.weight.device)
    ret.create_lora_weights(max_loras, lora_config, model_config)
    return ret