File size: 4,849 Bytes
ca1ecab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
from typing import List, Optional

import torch
from vllm.utils import in_wsl


class LoRALayerWeights:
    """LoRA weights for a layer composed of two low rank matrixes."""

    def __init__(
        self,
        module_name: str,
        rank: int,
        lora_alpha: int,
        lora_a: torch.Tensor,
        lora_b: torch.Tensor,
        embeddings_tensor: Optional[torch.Tensor] = None,
        scaling: Optional[float] = None,
    ) -> None:
        self.module_name = module_name
        self.rank = rank
        self.lora_alpha = lora_alpha
        self.lora_a = lora_a
        self.lora_b = lora_b
        self.embeddings_tensor = embeddings_tensor

        if scaling is None:
            self.scaling = self.lora_alpha / self.rank
        else:
            self.scaling = scaling

    def optimize(self) -> "LoRALayerWeights":
        """Optimize the LoRA by merging the scaling into lora_b."""
        if self.scaling == 1:
            return
        self.lora_b *= self.scaling
        self.scaling = 1
        return self

    @property
    def input_dim(self) -> int:
        return self.lora_a.shape[0]

    @property
    def output_dim(self) -> int:
        return self.lora_b.shape[1]

    @property
    def is_packed(self) -> bool:
        return False

    @property
    def extra_vocab_size(self) -> int:
        return self.embeddings_tensor.shape[
            0] if self.embeddings_tensor is not None else 0

    @classmethod
    def create_dummy_lora_weights(
            cls,
            module_name: str,
            input_dim: int,
            output_dim: int,
            rank: int,
            dtype: torch.dtype,
            device: torch.device,
            embeddings_tensor_dim: Optional[int] = None) -> "LoRALayerWeights":
        pin_memory = str(device) == "cpu" and not in_wsl()
        lora_a = torch.zeros([input_dim, rank],
                             dtype=dtype,
                             device=device,
                             pin_memory=pin_memory)
        lora_b = torch.zeros([rank, output_dim],
                             dtype=dtype,
                             device=device,
                             pin_memory=pin_memory)
        embeddings_tensor = torch.rand(
            10,
            embeddings_tensor_dim,
            dtype=dtype,
            device=device,
            pin_memory=pin_memory) if embeddings_tensor_dim else None
        return cls(
            module_name,
            rank=rank,
            lora_alpha=1,
            lora_a=lora_a,
            lora_b=lora_b,
            embeddings_tensor=embeddings_tensor,
        )


class PackedLoRALayerWeights(LoRALayerWeights):
    """LoRA used for packed layers (eg. qkv_proj)."""

    def __init__(
        self,
        module_name: str,
        rank: int,
        lora_alphas: List[int],
        lora_a: List[torch.Tensor],
        lora_b: List[torch.Tensor],
        scaling: Optional[List[float]] = None,
    ) -> None:
        super().__init__(
            module_name=module_name,
            rank=rank,
            lora_alpha=0,
            lora_a=lora_a,
            lora_b=lora_b,
            scaling=scaling,
            embeddings_tensor=None,
        )
        self.lora_alphas = lora_alphas
        if scaling is None:
            self.scaling = [
                lora_alpha / self.rank for lora_alpha in self.lora_alphas
            ]

    @classmethod
    def pack(cls, loras: List["LoRALayerWeights"]) -> "PackedLoRALayerWeights":
        """Pack a list of LoRAs into a single LoRA.

        If LoRA is None, it signifies that the submodule does not have a LoRA.
        """
        first_lora = next(lora for lora in loras if lora is not None)
        for lora in loras:
            if lora is None:
                continue
            lora.optimize()
        rank = first_lora.rank
        module_name = first_lora.module_name
        obj = cls(
            module_name,
            rank,
            [lora.lora_alpha if lora is not None else None for lora in loras],
            [lora.lora_a if lora is not None else None for lora in loras],
            [lora.lora_b if lora is not None else None for lora in loras],
            scaling=[1 if lora is not None else None for lora in loras])
        return obj

    def optimize(self) -> "PackedLoRALayerWeights":
        """Optimize the LoRA by merging the scaling into lora_b."""
        for i in range(len(self.lora_b)):
            if self.scaling[i] == 1 or self.lora_b[i] is None:
                continue
            self.lora_b[i] *= self.scaling[i]
            self.scaling[i] = 1
        return self

    @property
    def input_dim(self) -> int:
        raise NotImplementedError()

    @property
    def output_dim(self) -> int:
        raise NotImplementedError()

    @property
    def is_packed(self) -> bool:
        return True