File size: 8,659 Bytes
ca1ecab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
import logging
from abc import ABC, abstractmethod, abstractproperty
from typing import Any, List, Optional, Set, Type, Union

import torch

from vllm.lora.models import (TARGET_MODULES_QKV, LoRAModel, LoRAModelManager,
                              LRUCacheLoRAModelManager, create_lora_manager)
from vllm.lora.request import LoRARequest
from vllm.lora.layers import LoRAMapping
from vllm.config import LoRAConfig

logger = logging.getLogger(__name__)


class WorkerLoRAManager(ABC):
    """Abstract class for managing LoRA models on the worker side."""

    def __init__(self, max_num_seqs: int, max_num_batched_tokens: int,
                 vocab_size: int, lora_config: LoRAConfig,
                 device: torch.device):
        self.max_num_seqs = max_num_seqs
        self.max_num_batched_tokens = max_num_batched_tokens
        self.vocab_size = vocab_size
        self.device = device
        self.lora_config = lora_config

    @abstractproperty
    def is_enabled(self) -> bool:
        ...

    @abstractmethod
    def create_lora_manager(
        self,
        model: torch.nn.Module,
        target_modules: Union[str, List[str]] = TARGET_MODULES_QKV,
    ) -> Any:
        ...

    @abstractmethod
    def set_active_loras(self, lora_requests: List[LoRARequest],
                         lora_mapping: LoRAMapping) -> None:
        ...

    @abstractmethod
    def add_lora(self, lora_request: LoRARequest) -> bool:
        ...

    @abstractmethod
    def add_dummy_lora(self, lora_request: LoRARequest, rank: int) -> bool:
        ...

    @abstractmethod
    def remove_lora(self, lora_id: int) -> bool:
        ...

    @abstractmethod
    def remove_all_loras(self) -> bool:
        ...

    @abstractmethod
    def list_loras(self) -> Set[int]:
        ...


class WorkerLoRAManager(WorkerLoRAManager):
    """WorkerLoRAManager that manages LoRA models on the worker side.

    Every request, the requested LoRAs will be loaded (unless they are already
    loaded), and every other LoRA will be unloaded."""

    _lora_manager_cls: Type[LoRAModelManager] = LoRAModelManager

    def __init__(
        self,
        max_num_seqs: int,
        max_num_batched_tokens: int,
        vocab_size: int,
        lora_config: LoRAConfig,
        device: torch.device,
        lora_model_cls: Type[LoRAModel] = LoRAModel,
    ):
        self._lora_manager: Optional[LoRAModelManager] = None
        self._lora_model_cls = lora_model_cls
        super().__init__(max_num_seqs, max_num_batched_tokens, vocab_size,
                         lora_config, device)

    @property
    def is_enabled(self) -> bool:
        return True

    def create_lora_manager(
        self,
        model: torch.nn.Module,
        target_modules: Union[str, List[str]] = TARGET_MODULES_QKV,
    ) -> Any:
        lora_manager = create_lora_manager(
            model,
            max_num_seqs=self.max_num_seqs,
            max_num_batched_tokens=self.max_num_batched_tokens,
            target_modules=target_modules,
            vocab_size=self.vocab_size,
            lora_config=self.lora_config,
            lora_manager_cls=self._lora_manager_cls,
        )
        self._lora_manager: LoRAModelManager = lora_manager
        return lora_manager.model

    def set_active_loras(self, lora_requests: List[LoRARequest],
                         lora_mapping: LoRAMapping) -> None:
        self._apply_loras(lora_requests)
        self._lora_manager.set_lora_mapping(lora_mapping)

    def _apply_loras(self, lora_requests: List[LoRARequest]) -> None:
        loras_that_exist = self.list_loras()
        loras_map = {
            lora_request.lora_int_id: lora_request
            for lora_request in lora_requests if lora_request
        }
        if len(loras_map) > self._lora_manager.lora_slots:
            raise RuntimeError(
                f"Number of requested LoRAs ({len(loras_map)}) is greater "
                "than the number of GPU LoRA slots "
                f"({self._lora_manager.lora_slots}).")

        new_loras = set(loras_map)
        loras_to_add = new_loras - loras_that_exist
        loras_to_remove = loras_that_exist - new_loras

        for lora_id in loras_to_remove:
            self.remove_lora(lora_id)

        for lora_id in loras_to_add:
            self.add_lora(loras_map[lora_id])

    def _load_lora(self, lora_request: LoRARequest) -> LoRAModel:
        try:
            lora = self._lora_model_cls.from_local_checkpoint(
                lora_request.lora_local_path,
                lora_model_id=lora_request.lora_int_id,
                device="cpu",
                dtype=self.lora_config.lora_dtype,
                target_embedding_padding=self.vocab_size +
                self.lora_config.lora_extra_vocab_size,
            )
        except Exception as e:
            raise RuntimeError(
                f"Loading lora {lora_request.lora_local_path} failed") from e
        if lora.rank > self.lora_config.max_lora_rank:
            raise ValueError(
                f"LoRA rank {lora.rank} is greater than max_lora_rank "
                f"{self.lora_config.max_lora_rank}.")
        if lora.extra_vocab_size > self.lora_config.lora_extra_vocab_size:
            raise ValueError(
                f"LoRA added vocab size {lora.extra_vocab_size} is greater than "
                f"lora_extra_vocab_size {self.lora_config.lora_extra_vocab_size}."
            )
        return lora

    def add_dummy_lora(self, lora_request: LoRARequest, rank: int) -> bool:
        if lora_request.lora_int_id in self.list_loras():
            return False
        return self._lora_manager.add_lora(
            self._lora_manager.create_dummy_lora(lora_request.lora_int_id,
                                                 rank))

    def add_lora(self, lora_request: LoRARequest) -> bool:
        if lora_request.lora_int_id in self.list_loras():
            return False
        lora = self._load_lora(lora_request)
        loaded = self._lora_manager.add_lora(lora)
        self._lora_manager.activate_lora(lora.id)
        return loaded

    def remove_lora(self, lora_id: int) -> bool:
        return self._lora_manager.remove_lora(lora_id)

    def remove_all_loras(self) -> bool:
        self._lora_manager.remove_all_loras()

    def list_loras(self) -> Set[int]:
        return set(self._lora_manager.list_loras())


class LRUCacheWorkerLoRAManager(WorkerLoRAManager):
    """WorkerLoRAManager that manages LoRA models on the worker side.

    Uses an LRU Cache. Every request, the requested LoRAs will be loaded
    (unless they are already loaded) and least recently used LoRAs will
    be unloaded if the cache is above capacity."""

    _lora_manager_cls: Type[
        LRUCacheLoRAModelManager] = LRUCacheLoRAModelManager

    def create_lora_manager(
        self,
        model: torch.nn.Module,
        target_modules: Union[str, List[str]] = TARGET_MODULES_QKV,
    ) -> Any:
        lora_manager = create_lora_manager(
            model,
            target_modules=target_modules,
            lora_manager_cls=self._lora_manager_cls,
            max_num_seqs=self.max_num_seqs,
            vocab_size=self.vocab_size,
            lora_config=self.lora_config,
            max_num_batched_tokens=self.max_num_batched_tokens,
        )
        self._lora_manager: LRUCacheLoRAModelManager = lora_manager
        return lora_manager.model

    def _apply_loras(self, lora_requests: List[LoRARequest]) -> None:
        loras_map = {
            lora_request.lora_int_id: lora_request
            for lora_request in lora_requests if lora_request
        }
        if len(loras_map) > self._lora_manager.lora_slots:
            raise RuntimeError(
                f"Number of requested LoRAs ({len(loras_map)}) is greater "
                "than the number of GPU LoRA slots "
                f"({self._lora_manager.lora_slots}).")
        for lora in loras_map.values():
            self.add_lora(lora)

    def add_lora(self, lora_request: LoRARequest) -> bool:
        if lora_request.lora_int_id not in self.list_loras():
            # Remove before we load the new lora to save memory
            if len(self._lora_manager) + 1 > self._lora_manager.capacity:
                self._lora_manager.remove_oldest_lora()
            lora = self._load_lora(lora_request)
            loaded = self._lora_manager.add_lora(lora)
        else:
            # If the lora is already loaded, just touch it to
            # update its position in the caches
            loaded = self._lora_manager.get_lora(lora_request.lora_int_id)
        self._lora_manager.activate_lora(lora_request.lora_int_id)
        return loaded