File size: 4,917 Bytes
ca1ecab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
"""Custom activation functions."""
import math
from typing import Optional

import torch
import torch.nn as nn
import torch.nn.functional as F

from vllm._C import ops
from vllm.model_executor.layers.quantization import QuantizationConfig
from vllm.model_executor.parallel_utils.parallel_state import (
    get_tensor_model_parallel_rank, get_tensor_model_parallel_world_size)
from vllm.model_executor.parallel_utils.utils import divide
from vllm.model_executor.utils import set_weight_attrs


class SiluAndMul(nn.Module):
    """An activation function for SwiGLU.

    The function computes x -> silu(x[:d]) * x[d:] where d = x.shape[-1] // 2.

    Shapes:
        x: (batch_size, seq_len, 2 * d) or (num_tokens, 2 * d)
        return: (batch_size, seq_len, d) or (num_tokens, d)
    """

    def _forward(self, x: torch.Tensor) -> torch.Tensor:
        """PyTorch-native implementation equivalent to forward()."""
        d = x.shape[-1] // 2
        return F.silu(x[..., :d]) * x[..., d:]

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        d = x.shape[-1] // 2
        output_shape = (x.shape[:-1] + (d, ))
        out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
        ops.silu_and_mul(out, x)
        return out


class NewGELU(nn.Module):

    def _forward(self, x: torch.Tensor) -> torch.Tensor:
        """PyTorch-native implementation equivalent to forward()."""
        c = math.sqrt(2.0 / math.pi)
        return 0.5 * x * (1.0 + torch.tanh(c *
                                           (x + 0.044715 * torch.pow(x, 3.0))))

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        out = torch.empty_like(x)
        ops.gelu_new(out, x)
        return out


class FastGELU(nn.Module):

    def _forward(self, x: torch.Tensor) -> torch.Tensor:
        """PyTorch-native implementation equivalent to forward()."""
        return 0.5 * x * (1.0 + torch.tanh(x * 0.7978845608 *
                                           (1.0 + 0.044715 * x * x)))

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        out = torch.empty_like(x)
        ops.gelu_fast(out, x)
        return out


class ScaledActivation(nn.Module):
    """An activation function with post-scale parameters.

    This is used for some quantization methods like AWQ.
    """

    def __init__(
        self,
        act_module: nn.Module,
        intermediate_size: int,
        input_is_parallel: bool = True,
        params_dtype: Optional[torch.dtype] = None,
    ):
        super().__init__()
        self.act = act_module
        self.input_is_parallel = input_is_parallel
        if input_is_parallel:
            tp_size = get_tensor_model_parallel_world_size()
            intermediate_size_per_partition = divide(intermediate_size,
                                                     tp_size)
        else:
            intermediate_size_per_partition = intermediate_size
        if params_dtype is None:
            params_dtype = torch.get_default_dtype()
        self.scales = nn.Parameter(
            torch.empty(intermediate_size_per_partition,
                        dtype=params_dtype,
                        device="cuda"))
        set_weight_attrs(self.scales, {"weight_loader": self.weight_loader})

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        return self.act(x) / self.scales

    def weight_loader(self, param: nn.Parameter, loaded_weight: torch.Tensor):
        param_data = param.data
        if self.input_is_parallel:
            tp_rank = get_tensor_model_parallel_rank()
            shard_size = param_data.shape[0]
            start_idx = tp_rank * shard_size
            loaded_weight = loaded_weight.narrow(0, start_idx, shard_size)
        assert param_data.shape == loaded_weight.shape
        param_data.copy_(loaded_weight)


_ACTIVATION_REGISTRY = {
    "gelu": nn.GELU(),
    "gelu_fast": FastGELU(),
    "gelu_new": NewGELU(),
    "gelu_pytorch_tanh": nn.GELU(approximate="tanh"),
    "relu": nn.ReLU(),
}


def get_act_fn(
    act_fn_name: str,
    quant_config: Optional[QuantizationConfig] = None,
    intermediate_size: Optional[int] = None,
    input_is_parallel: bool = True,
    params_dtype: Optional[torch.dtype] = None,
) -> nn.Module:
    """Get an activation function by name."""
    act_fn_name = act_fn_name.lower()
    if act_fn_name not in _ACTIVATION_REGISTRY:
        raise ValueError(
            f"Activation function {act_fn_name!r} is not supported.")

    act_fn = _ACTIVATION_REGISTRY[act_fn_name]
    if (quant_config is not None
            and act_fn_name in quant_config.get_scaled_act_names()):
        if intermediate_size is None:
            raise ValueError("intermediate_size must be specified for scaled "
                             "activation functions.")
        return ScaledActivation(act_fn, intermediate_size, input_is_parallel,
                                params_dtype)
    return act_fn