Spaces:
Sleeping
Sleeping
File size: 24,171 Bytes
ca1ecab |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 |
from abc import ABC, abstractmethod
from typing import Any, Dict, List, Optional
import torch
import torch.nn.functional as F
from torch.nn.parameter import Parameter
from vllm.model_executor.parallel_utils.parallel_state import (
get_tensor_model_parallel_rank, get_tensor_model_parallel_world_size)
from vllm.model_executor.parallel_utils.communication_op import (
tensor_model_parallel_all_reduce, tensor_model_parallel_all_gather)
from vllm.model_executor.parallel_utils.utils import (
divide, split_tensor_along_last_dim)
from vllm.model_executor.utils import set_weight_attrs
from vllm.logger import init_logger
logger = init_logger(__name__)
class LinearMethodBase(ABC):
"""Base class for different (maybe quantized) linear methods."""
@abstractmethod
def create_weights(self, input_size_per_partition: int,
output_size_per_partition: int, input_size: int,
output_size: int,
params_dtype: torch.dtype) -> Dict[str, Any]:
"""Create weights for a linear layer."""
raise NotImplementedError
@abstractmethod
def apply_weights(self,
weights: Dict[str, torch.Tensor],
x: torch.Tensor,
bias: Optional[torch.Tensor] = None) -> torch.Tensor:
"""Apply the weights to the input tensor."""
raise NotImplementedError
class UnquantizedLinearMethod(LinearMethodBase):
"""Linear method without quantization.
Args:
separate_bias_add: If true, add bias separately after matrix
multiplication.
"""
def __init__(self, separate_bias_add: bool = False):
self.separate_bias_add = separate_bias_add
def create_weights(self, input_size_per_partition: int,
output_size_per_partition: int, input_size: int,
output_size: int,
params_dtype: torch.dtype) -> Dict[str, Any]:
weight = Parameter(torch.empty(output_size_per_partition,
input_size_per_partition,
device=torch.cuda.current_device(),
dtype=params_dtype),
requires_grad=False)
set_weight_attrs(weight, {"input_dim": 1, "output_dim": 0})
return {"weight": weight}
def apply_weights(self,
weights: Dict[str, torch.Tensor],
x: torch.Tensor,
bias: Optional[torch.Tensor] = None) -> torch.Tensor:
weight = weights["weight"]
if self.separate_bias_add:
if bias:
return F.linear(x, weight) + bias
return F.linear(x, weight)
return F.linear(x, weight, bias)
class ReplicatedLinear(torch.nn.Module):
"""Replicated linear layer.
Args:
input_size: input dimension of the linear layer.
output_size: output dimension of the linear layer.
bias: If true, add bias.
skip_bias_add: If true, skip adding bias but instead return it.
params_dtype: Data type for the parameters.
linear_method: (Maybe quantized) linear method.
"""
def __init__(
self,
input_size: int,
output_size: int,
bias: bool = True,
skip_bias_add: bool = False,
params_dtype: Optional[torch.dtype] = None,
linear_method: Optional[LinearMethodBase] = None,
):
super().__init__()
# Keep input parameters
self.input_size = input_size
self.output_size = output_size
self.skip_bias_add = skip_bias_add
if params_dtype is None:
params_dtype = torch.get_default_dtype()
self.params_dtype = params_dtype
if linear_method is None:
linear_method = UnquantizedLinearMethod()
self.linear_method = linear_method
self.linear_weights = self.linear_method.create_weights(
self.input_size, self.output_size, self.input_size,
self.output_size, self.params_dtype)
for name, weight in self.linear_weights.items():
if isinstance(weight, torch.Tensor):
self.register_parameter(name, weight)
if bias:
self.bias = Parameter(
torch.empty(self.output_size,
device=torch.cuda.current_device(),
dtype=self.params_dtype))
set_weight_attrs(self.bias, {"output_dim": 0})
else:
self.register_parameter("bias", None)
def forward(self, x: torch.Tensor) -> torch.Tensor:
bias = self.bias if not self.skip_bias_add else None
output = self.linear_method.apply_weights(self.linear_weights, x, bias)
output_bias = self.bias if self.skip_bias_add else None
return output, output_bias
class ColumnParallelLinear(torch.nn.Module):
"""Linear layer with column parallelism.
The linear layer is defined as Y = XA + b. A is parallelized along
its second dimension as A = [A_1, ..., A_p].
Args:
input_size: first dimension of matrix A.
output_size: second dimension of matrix A.
bias: If true, add bias.
gather_output: If true, call all-gather on output and make Y available
to all GPUs, otherwise, every GPU will have its output
which is Y_i = XA_i
skip_bias_add: This was added to enable performance optimizations where
bias can be fused with other element-wise operations. we
skip adding bias but instead return it.
params_dtype: Data type for the parameters.
linear_method: (Maybe quantized) linear method.
"""
def __init__(
self,
input_size: int,
output_size: int,
bias: bool = True,
gather_output: bool = False,
skip_bias_add: bool = False,
params_dtype: Optional[torch.dtype] = None,
linear_method: Optional[LinearMethodBase] = None,
):
super().__init__()
# Keep input parameters
self.input_size = input_size
self.output_size = output_size
self.gather_output = gather_output
# Divide the weight matrix along the last dimension.
tp_size = get_tensor_model_parallel_world_size()
self.output_size_per_partition = divide(output_size, tp_size)
self.skip_bias_add = skip_bias_add
if params_dtype is None:
params_dtype = torch.get_default_dtype()
self.params_dtype = params_dtype
if linear_method is None:
linear_method = UnquantizedLinearMethod()
self.linear_method = linear_method
self.linear_weights = self.linear_method.create_weights(
self.input_size, self.output_size_per_partition, self.input_size,
self.output_size, self.params_dtype)
for name, weight in self.linear_weights.items():
if isinstance(weight, torch.Tensor):
self.register_parameter(name, weight)
set_weight_attrs(weight, {"weight_loader": self.weight_loader})
if bias:
self.bias = Parameter(
torch.empty(self.output_size_per_partition,
device=torch.cuda.current_device(),
dtype=params_dtype))
set_weight_attrs(self.bias, {
"output_dim": 0,
"weight_loader": self.weight_loader,
})
else:
self.register_parameter("bias", None)
def weight_loader(self, param: Parameter, loaded_weight: torch.Tensor):
tp_rank = get_tensor_model_parallel_rank()
output_dim = getattr(param, "output_dim", None)
param_data = param.data
if output_dim is not None:
shard_size = param_data.shape[output_dim]
start_idx = tp_rank * shard_size
loaded_weight = loaded_weight.narrow(output_dim, start_idx,
shard_size)
assert param_data.shape == loaded_weight.shape
param_data.copy_(loaded_weight)
def forward(self, input_):
bias = self.bias if not self.skip_bias_add else None
# Matrix multiply.
output_parallel = self.linear_method.apply_weights(
self.linear_weights, input_, bias)
if self.gather_output:
# All-gather across the partitions.
output = tensor_model_parallel_all_gather(output_parallel)
else:
output = output_parallel
output_bias = self.bias if self.skip_bias_add else None
return output, output_bias
class MergedColumnParallelLinear(ColumnParallelLinear):
"""Packed linear layers with column parallelism.
Similar to ColumnParallelLinear, but the weight matrix is concatenated
along the output dimension. When the weight matrix is loaded, the
different partitions are sharded separately.
Args:
input_size: input dimension of the linear layer.
output_sizes: list of output dimensions of the linear layer.
bias: If true, add bias.
gather_output: If true, call all-gather on output and make the output
available to all GPUs, otherwise, every GPU will have
its own output.
skip_bias_add: This was added to enable performance optimizations where
bias can be fused with other element-wise operations. we
skip adding bias but instead return it.
params_dtype: Data type for the parameters.
linear_method: (Maybe quantized) linear method.
"""
def __init__(
self,
input_size: int,
output_sizes: List[int],
bias: bool = True,
gather_output: bool = False,
skip_bias_add: bool = False,
params_dtype: Optional[torch.dtype] = None,
linear_method: Optional[LinearMethodBase] = None,
):
self.output_sizes = output_sizes
tp_size = get_tensor_model_parallel_world_size()
assert all(output_size % tp_size == 0 for output_size in output_sizes)
super().__init__(input_size, sum(output_sizes), bias, gather_output,
skip_bias_add, params_dtype, linear_method)
def weight_loader(self,
param: Parameter,
loaded_weight: torch.Tensor,
loaded_shard_id: Optional[int] = None):
param_data = param.data
output_dim = getattr(param, "output_dim", None)
if loaded_shard_id is None:
# Loaded weight is already packed.
if output_dim is None:
assert param_data.shape == loaded_weight.shape
param_data.copy_(loaded_weight)
return
current_shard_offset = 0
shard_offsets = []
for i, output_size in enumerate(self.output_sizes):
shard_offsets.append((i, current_shard_offset, output_size))
current_shard_offset += output_size
packed_dim = getattr(param, "packed_dim", None)
for shard_id, shard_offset, shard_size in shard_offsets:
# If quantized, we need to adjust the offset and size to account
# for the packing.
if packed_dim == output_dim:
shard_size = shard_size // param.pack_factor
shard_offset = shard_offset // param.pack_factor
loaded_weight_shard = loaded_weight.narrow(
output_dim, shard_offset, shard_size)
self.weight_loader(param, loaded_weight_shard, shard_id)
return
assert loaded_shard_id < len(self.output_sizes)
tp_rank = get_tensor_model_parallel_rank()
tp_size = get_tensor_model_parallel_world_size()
if output_dim is not None:
shard_offset = sum(self.output_sizes[:loaded_shard_id]) // tp_size
shard_size = self.output_sizes[loaded_shard_id] // tp_size
# If quantized, we need to adjust the offset and size to account
# for the packing.
packed_dim = getattr(param, "packed_dim", None)
if packed_dim == output_dim:
shard_size = shard_size // param.pack_factor
shard_offset = shard_offset // param.pack_factor
param_data = param_data.narrow(output_dim, shard_offset,
shard_size)
start_idx = tp_rank * shard_size
loaded_weight = loaded_weight.narrow(output_dim, start_idx,
shard_size)
else:
ignore_warning = getattr(param, "ignore_warning", False)
if not ignore_warning:
logger.warning(
"Loading a weight without `output_dim` attribute in "
"MergedColumnParallelLinear, assume the weight is "
"the same for all partitions.")
assert param_data.shape == loaded_weight.shape
param_data.copy_(loaded_weight)
class QKVParallelLinear(ColumnParallelLinear):
"""Linear layers for the attention's QKV transformation.
Linear layers for the linear transformation of the query, key, and value
vectors in the attention layer. The weight matrix is concatenated along
the output dimension. The layer is parallelized along the head dimension.
When the number of key/value heads is smaller than the number of query
heads (e.g., multi-query/grouped-query attention), the key/value head may
be replicated while the query heads are partitioned.
Args:
hidden_size: input hidden state size of the transformer.
head_size: size of each attention head.
total_num_heads: total number of attention query heads.
total_num_kv_heads: total number of attention key/value heads. If
None, assume total_num_kv_heads = total_num_heads.
bias: If true, add bias.
skip_bias_add: This was added to enable performance optimizations where
bias can be fused with other element-wise operations. we
skip adding bias but instead return it.
params_dtype: Data type for the parameters.
linear_method: (Maybe quantized) linear method.
"""
def __init__(
self,
hidden_size: int,
head_size: int,
total_num_heads: int,
total_num_kv_heads: Optional[int] = None,
bias: bool = True,
skip_bias_add: bool = False,
params_dtype: Optional[torch.dtype] = None,
linear_method: Optional[LinearMethodBase] = None,
):
self.hidden_size = hidden_size
self.head_size = head_size
self.total_num_heads = total_num_heads
if total_num_kv_heads is None:
total_num_kv_heads = total_num_heads
self.total_num_kv_heads = total_num_kv_heads
# Divide the weight matrix along the last dimension.
tp_size = get_tensor_model_parallel_world_size()
self.num_heads = divide(self.total_num_heads, tp_size)
if tp_size >= self.total_num_kv_heads:
self.num_kv_heads = 1
self.num_kv_head_replicas = divide(tp_size,
self.total_num_kv_heads)
else:
self.num_kv_heads = divide(self.total_num_kv_heads, tp_size)
self.num_kv_head_replicas = 1
input_size = self.hidden_size
output_size = (self.num_heads +
2 * self.num_kv_heads) * tp_size * self.head_size
super().__init__(input_size, output_size, bias, False, skip_bias_add,
params_dtype, linear_method)
def weight_loader(self,
param: Parameter,
loaded_weight: torch.Tensor,
loaded_shard_id: Optional[str] = None):
param_data = param.data
output_dim = getattr(param, "output_dim", None)
if loaded_shard_id is None:
# Loaded weight is already packed.
if output_dim is None:
assert param_data.shape == loaded_weight.shape
param_data.copy_(loaded_weight)
return
shard_offsets = [
# (shard_id, shard_offset, shard_size)
("q", 0, self.total_num_heads * self.head_size),
("k", self.total_num_heads * self.head_size,
self.total_num_kv_heads * self.head_size),
("v", (self.total_num_heads + self.total_num_kv_heads) *
self.head_size, self.total_num_kv_heads * self.head_size),
]
packed_dim = getattr(param, "packed_dim", None)
for shard_id, shard_offset, shard_size in shard_offsets:
# If quantized, we need to adjust the offset and size to account
# for the packing.
if packed_dim == output_dim:
shard_size = shard_size // param.pack_factor
shard_offset = shard_offset // param.pack_factor
loaded_weight_shard = loaded_weight.narrow(
output_dim, shard_offset, shard_size)
self.weight_loader(param, loaded_weight_shard, shard_id)
return
tp_rank = get_tensor_model_parallel_rank()
assert loaded_shard_id in ["q", "k", "v"]
if output_dim is not None:
if loaded_shard_id == "q":
shard_offset = 0
shard_size = self.num_heads * self.head_size
elif loaded_shard_id == "k":
shard_offset = self.num_heads * self.head_size
shard_size = self.num_kv_heads * self.head_size
elif loaded_shard_id == "v":
shard_offset = (self.num_heads +
self.num_kv_heads) * self.head_size
shard_size = self.num_kv_heads * self.head_size
# If quantized, we need to adjust the offset and size to account
# for the packing.
packed_dim = getattr(param, "packed_dim", None)
if packed_dim == output_dim:
shard_size = shard_size // param.pack_factor
shard_offset = shard_offset // param.pack_factor
param_data = param_data.narrow(output_dim, shard_offset,
shard_size)
if loaded_shard_id == "q":
shard_id = tp_rank
else:
shard_id = tp_rank // self.num_kv_head_replicas
start_idx = shard_id * shard_size
loaded_weight = loaded_weight.narrow(output_dim, start_idx,
shard_size)
else:
ignore_warning = getattr(param, "ignore_warning", False)
if not ignore_warning:
logger.warning(
"Loading a weight without `output_dim` attribute in "
"QKVParallelLinear, assume the weight is the same "
"for all partitions.")
assert param_data.shape == loaded_weight.shape
param_data.copy_(loaded_weight)
class RowParallelLinear(torch.nn.Module):
"""Linear layer with row parallelism.
The linear layer is defined as Y = XA + b. A is parallelized along
its first dimension and X along its second dimension as:
- -
| A_1 |
| . |
A = | . | X = [X_1, ..., X_p]
| . |
| A_p |
- -
Arguments:
input_size: first dimension of matrix A.
output_size: second dimension of matrix A.
bias: If true, add bias. Note that bias is not parallelized.
input_is_parallel: If true, we assume that the input is already
split across the GPUs and we do not split
again.
skip_bias_add: This was added to enable performance optimization where
bias can be fused with other element-wise operations.
We skip adding bias but instead return it.
params_dtype: Data type for the parameters.
linear_method: (Maybe quantized) linear method.
"""
def __init__(
self,
input_size: int,
output_size: int,
bias: bool = True,
input_is_parallel: bool = True,
skip_bias_add: bool = False,
params_dtype: Optional[torch.dtype] = None,
reduce_results: bool = True,
linear_method: Optional[LinearMethodBase] = None,
):
super().__init__()
# Keep input parameters
self.input_size = input_size
self.output_size = output_size
self.input_is_parallel = input_is_parallel
self.reduce_results = reduce_results
if params_dtype is None:
params_dtype = torch.get_default_dtype()
self.params_dtype = params_dtype
# Divide the weight matrix along the last dimension.
self.tp_size = get_tensor_model_parallel_world_size()
self.input_size_per_partition = divide(input_size, self.tp_size)
self.skip_bias_add = skip_bias_add
if linear_method is None:
linear_method = UnquantizedLinearMethod()
self.linear_method = linear_method
self.linear_weights = self.linear_method.create_weights(
self.input_size_per_partition, self.output_size, self.input_size,
self.output_size, self.params_dtype)
for name, weight in self.linear_weights.items():
if isinstance(weight, torch.Tensor):
self.register_parameter(name, weight)
set_weight_attrs(weight, {"weight_loader": self.weight_loader})
if not reduce_results and (bias and not skip_bias_add):
raise ValueError("When not reduce the results, adding bias to the "
"results can lead to incorrect results")
if bias:
self.bias = Parameter(
torch.empty(self.output_size,
device=torch.cuda.current_device(),
dtype=params_dtype))
set_weight_attrs(self.bias, {
"output_dim": 0,
"weight_loader": self.weight_loader,
})
else:
self.register_parameter("bias", None)
def weight_loader(self, param: Parameter, loaded_weight: torch.Tensor):
tp_rank = get_tensor_model_parallel_rank()
input_dim = getattr(param, "input_dim", None)
param_data = param.data
if input_dim is not None:
shard_size = param_data.shape[input_dim]
start_idx = tp_rank * shard_size
loaded_weight = loaded_weight.narrow(input_dim, start_idx,
shard_size)
assert param_data.shape == loaded_weight.shape
param_data.copy_(loaded_weight)
def forward(self, input_):
# Set up backprop all-reduce.
if self.input_is_parallel:
input_parallel = input_
else:
tp_rank = get_tensor_model_parallel_rank()
splitted_input = split_tensor_along_last_dim(
input_, num_partitions=self.tp_size)
input_parallel = splitted_input[tp_rank].contiguous()
# Matrix multiply.
output_parallel = self.linear_method.apply_weights(
self.linear_weights, input_parallel)
if self.reduce_results and self.tp_size > 1:
output_ = tensor_model_parallel_all_reduce(output_parallel)
else:
output_ = output_parallel
if not self.skip_bias_add:
output = output_ + self.bias if self.bias is not None else output_
output_bias = None
else:
output = output_
output_bias = self.bias
return output, output_bias
|