File size: 24,171 Bytes
ca1ecab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
from abc import ABC, abstractmethod
from typing import Any, Dict, List, Optional

import torch
import torch.nn.functional as F
from torch.nn.parameter import Parameter

from vllm.model_executor.parallel_utils.parallel_state import (
    get_tensor_model_parallel_rank, get_tensor_model_parallel_world_size)
from vllm.model_executor.parallel_utils.communication_op import (
    tensor_model_parallel_all_reduce, tensor_model_parallel_all_gather)
from vllm.model_executor.parallel_utils.utils import (
    divide, split_tensor_along_last_dim)
from vllm.model_executor.utils import set_weight_attrs
from vllm.logger import init_logger

logger = init_logger(__name__)


class LinearMethodBase(ABC):
    """Base class for different (maybe quantized) linear methods."""

    @abstractmethod
    def create_weights(self, input_size_per_partition: int,
                       output_size_per_partition: int, input_size: int,
                       output_size: int,
                       params_dtype: torch.dtype) -> Dict[str, Any]:
        """Create weights for a linear layer."""
        raise NotImplementedError

    @abstractmethod
    def apply_weights(self,
                      weights: Dict[str, torch.Tensor],
                      x: torch.Tensor,
                      bias: Optional[torch.Tensor] = None) -> torch.Tensor:
        """Apply the weights to the input tensor."""
        raise NotImplementedError


class UnquantizedLinearMethod(LinearMethodBase):
    """Linear method without quantization.

    Args:
        separate_bias_add: If true, add bias separately after matrix
                           multiplication.
    """

    def __init__(self, separate_bias_add: bool = False):
        self.separate_bias_add = separate_bias_add

    def create_weights(self, input_size_per_partition: int,
                       output_size_per_partition: int, input_size: int,
                       output_size: int,
                       params_dtype: torch.dtype) -> Dict[str, Any]:
        weight = Parameter(torch.empty(output_size_per_partition,
                                       input_size_per_partition,
                                       device=torch.cuda.current_device(),
                                       dtype=params_dtype),
                           requires_grad=False)
        set_weight_attrs(weight, {"input_dim": 1, "output_dim": 0})
        return {"weight": weight}

    def apply_weights(self,
                      weights: Dict[str, torch.Tensor],
                      x: torch.Tensor,
                      bias: Optional[torch.Tensor] = None) -> torch.Tensor:
        weight = weights["weight"]
        if self.separate_bias_add:
            if bias:
                return F.linear(x, weight) + bias
            return F.linear(x, weight)
        return F.linear(x, weight, bias)


class ReplicatedLinear(torch.nn.Module):
    """Replicated linear layer.

    Args:
        input_size: input dimension of the linear layer.
        output_size: output dimension of the linear layer.
        bias: If true, add bias.
        skip_bias_add: If true, skip adding bias but instead return it.
        params_dtype: Data type for the parameters.
        linear_method: (Maybe quantized) linear method.
    """

    def __init__(
        self,
        input_size: int,
        output_size: int,
        bias: bool = True,
        skip_bias_add: bool = False,
        params_dtype: Optional[torch.dtype] = None,
        linear_method: Optional[LinearMethodBase] = None,
    ):
        super().__init__()

        # Keep input parameters
        self.input_size = input_size
        self.output_size = output_size
        self.skip_bias_add = skip_bias_add
        if params_dtype is None:
            params_dtype = torch.get_default_dtype()
        self.params_dtype = params_dtype
        if linear_method is None:
            linear_method = UnquantizedLinearMethod()
        self.linear_method = linear_method
        self.linear_weights = self.linear_method.create_weights(
            self.input_size, self.output_size, self.input_size,
            self.output_size, self.params_dtype)
        for name, weight in self.linear_weights.items():
            if isinstance(weight, torch.Tensor):
                self.register_parameter(name, weight)
        if bias:
            self.bias = Parameter(
                torch.empty(self.output_size,
                            device=torch.cuda.current_device(),
                            dtype=self.params_dtype))
            set_weight_attrs(self.bias, {"output_dim": 0})
        else:
            self.register_parameter("bias", None)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        bias = self.bias if not self.skip_bias_add else None
        output = self.linear_method.apply_weights(self.linear_weights, x, bias)
        output_bias = self.bias if self.skip_bias_add else None
        return output, output_bias


class ColumnParallelLinear(torch.nn.Module):
    """Linear layer with column parallelism.

    The linear layer is defined as Y = XA + b. A is parallelized along
    its second dimension as A = [A_1, ..., A_p].

    Args:
        input_size: first dimension of matrix A.
        output_size: second dimension of matrix A.
        bias: If true, add bias.
        gather_output: If true, call all-gather on output and make Y available
                       to all GPUs, otherwise, every GPU will have its output
                       which is Y_i = XA_i
        skip_bias_add: This was added to enable performance optimizations where
                       bias can be fused with other element-wise operations. we
                       skip adding bias but instead return it.
        params_dtype: Data type for the parameters.
        linear_method: (Maybe quantized) linear method.
    """

    def __init__(
        self,
        input_size: int,
        output_size: int,
        bias: bool = True,
        gather_output: bool = False,
        skip_bias_add: bool = False,
        params_dtype: Optional[torch.dtype] = None,
        linear_method: Optional[LinearMethodBase] = None,
    ):
        super().__init__()

        # Keep input parameters
        self.input_size = input_size
        self.output_size = output_size
        self.gather_output = gather_output
        # Divide the weight matrix along the last dimension.
        tp_size = get_tensor_model_parallel_world_size()
        self.output_size_per_partition = divide(output_size, tp_size)
        self.skip_bias_add = skip_bias_add
        if params_dtype is None:
            params_dtype = torch.get_default_dtype()
        self.params_dtype = params_dtype
        if linear_method is None:
            linear_method = UnquantizedLinearMethod()
        self.linear_method = linear_method
        self.linear_weights = self.linear_method.create_weights(
            self.input_size, self.output_size_per_partition, self.input_size,
            self.output_size, self.params_dtype)
        for name, weight in self.linear_weights.items():
            if isinstance(weight, torch.Tensor):
                self.register_parameter(name, weight)
                set_weight_attrs(weight, {"weight_loader": self.weight_loader})
        if bias:
            self.bias = Parameter(
                torch.empty(self.output_size_per_partition,
                            device=torch.cuda.current_device(),
                            dtype=params_dtype))
            set_weight_attrs(self.bias, {
                "output_dim": 0,
                "weight_loader": self.weight_loader,
            })
        else:
            self.register_parameter("bias", None)

    def weight_loader(self, param: Parameter, loaded_weight: torch.Tensor):
        tp_rank = get_tensor_model_parallel_rank()
        output_dim = getattr(param, "output_dim", None)
        param_data = param.data
        if output_dim is not None:
            shard_size = param_data.shape[output_dim]
            start_idx = tp_rank * shard_size
            loaded_weight = loaded_weight.narrow(output_dim, start_idx,
                                                 shard_size)
        assert param_data.shape == loaded_weight.shape
        param_data.copy_(loaded_weight)

    def forward(self, input_):
        bias = self.bias if not self.skip_bias_add else None

        # Matrix multiply.
        output_parallel = self.linear_method.apply_weights(
            self.linear_weights, input_, bias)
        if self.gather_output:
            # All-gather across the partitions.
            output = tensor_model_parallel_all_gather(output_parallel)
        else:
            output = output_parallel
        output_bias = self.bias if self.skip_bias_add else None
        return output, output_bias


class MergedColumnParallelLinear(ColumnParallelLinear):
    """Packed linear layers with column parallelism.

    Similar to ColumnParallelLinear, but the weight matrix is concatenated
    along the output dimension. When the weight matrix is loaded, the
    different partitions are sharded separately.

    Args:
        input_size: input dimension of the linear layer.
        output_sizes: list of output dimensions of the linear layer.
        bias: If true, add bias.
        gather_output: If true, call all-gather on output and make the output
                       available to all GPUs, otherwise, every GPU will have
                       its own output.
        skip_bias_add: This was added to enable performance optimizations where
                       bias can be fused with other element-wise operations. we
                       skip adding bias but instead return it.
        params_dtype: Data type for the parameters.
        linear_method: (Maybe quantized) linear method.
    """

    def __init__(
        self,
        input_size: int,
        output_sizes: List[int],
        bias: bool = True,
        gather_output: bool = False,
        skip_bias_add: bool = False,
        params_dtype: Optional[torch.dtype] = None,
        linear_method: Optional[LinearMethodBase] = None,
    ):
        self.output_sizes = output_sizes
        tp_size = get_tensor_model_parallel_world_size()
        assert all(output_size % tp_size == 0 for output_size in output_sizes)
        super().__init__(input_size, sum(output_sizes), bias, gather_output,
                         skip_bias_add, params_dtype, linear_method)

    def weight_loader(self,
                      param: Parameter,
                      loaded_weight: torch.Tensor,
                      loaded_shard_id: Optional[int] = None):
        param_data = param.data
        output_dim = getattr(param, "output_dim", None)
        if loaded_shard_id is None:
            # Loaded weight is already packed.
            if output_dim is None:
                assert param_data.shape == loaded_weight.shape
                param_data.copy_(loaded_weight)
                return
            current_shard_offset = 0
            shard_offsets = []
            for i, output_size in enumerate(self.output_sizes):
                shard_offsets.append((i, current_shard_offset, output_size))
                current_shard_offset += output_size
            packed_dim = getattr(param, "packed_dim", None)
            for shard_id, shard_offset, shard_size in shard_offsets:
                # If quantized, we need to adjust the offset and size to account
                # for the packing.
                if packed_dim == output_dim:
                    shard_size = shard_size // param.pack_factor
                    shard_offset = shard_offset // param.pack_factor
                loaded_weight_shard = loaded_weight.narrow(
                    output_dim, shard_offset, shard_size)
                self.weight_loader(param, loaded_weight_shard, shard_id)
            return

        assert loaded_shard_id < len(self.output_sizes)
        tp_rank = get_tensor_model_parallel_rank()
        tp_size = get_tensor_model_parallel_world_size()
        if output_dim is not None:
            shard_offset = sum(self.output_sizes[:loaded_shard_id]) // tp_size
            shard_size = self.output_sizes[loaded_shard_id] // tp_size
            # If quantized, we need to adjust the offset and size to account
            # for the packing.
            packed_dim = getattr(param, "packed_dim", None)
            if packed_dim == output_dim:
                shard_size = shard_size // param.pack_factor
                shard_offset = shard_offset // param.pack_factor
            param_data = param_data.narrow(output_dim, shard_offset,
                                           shard_size)
            start_idx = tp_rank * shard_size
            loaded_weight = loaded_weight.narrow(output_dim, start_idx,
                                                 shard_size)
        else:
            ignore_warning = getattr(param, "ignore_warning", False)
            if not ignore_warning:
                logger.warning(
                    "Loading a weight without `output_dim` attribute in "
                    "MergedColumnParallelLinear, assume the weight is "
                    "the same for all partitions.")
        assert param_data.shape == loaded_weight.shape
        param_data.copy_(loaded_weight)


class QKVParallelLinear(ColumnParallelLinear):
    """Linear layers for the attention's QKV transformation.

    Linear layers for the linear transformation of the query, key, and value
    vectors in the attention layer. The weight matrix is concatenated along
    the output dimension. The layer is parallelized along the head dimension.
    When the number of key/value heads is smaller than the number of query
    heads (e.g., multi-query/grouped-query attention), the key/value head may
    be replicated while the query heads are partitioned.

    Args:
        hidden_size: input hidden state size of the transformer.
        head_size: size of each attention head.
        total_num_heads: total number of attention query heads.
        total_num_kv_heads: total number of attention key/value heads. If
                            None, assume total_num_kv_heads = total_num_heads.
        bias: If true, add bias.
        skip_bias_add: This was added to enable performance optimizations where
                       bias can be fused with other element-wise operations. we
                       skip adding bias but instead return it.
        params_dtype: Data type for the parameters.
        linear_method: (Maybe quantized) linear method.
    """

    def __init__(
        self,
        hidden_size: int,
        head_size: int,
        total_num_heads: int,
        total_num_kv_heads: Optional[int] = None,
        bias: bool = True,
        skip_bias_add: bool = False,
        params_dtype: Optional[torch.dtype] = None,
        linear_method: Optional[LinearMethodBase] = None,
    ):
        self.hidden_size = hidden_size
        self.head_size = head_size
        self.total_num_heads = total_num_heads
        if total_num_kv_heads is None:
            total_num_kv_heads = total_num_heads
        self.total_num_kv_heads = total_num_kv_heads
        # Divide the weight matrix along the last dimension.
        tp_size = get_tensor_model_parallel_world_size()
        self.num_heads = divide(self.total_num_heads, tp_size)
        if tp_size >= self.total_num_kv_heads:
            self.num_kv_heads = 1
            self.num_kv_head_replicas = divide(tp_size,
                                               self.total_num_kv_heads)
        else:
            self.num_kv_heads = divide(self.total_num_kv_heads, tp_size)
            self.num_kv_head_replicas = 1
        input_size = self.hidden_size
        output_size = (self.num_heads +
                       2 * self.num_kv_heads) * tp_size * self.head_size
        super().__init__(input_size, output_size, bias, False, skip_bias_add,
                         params_dtype, linear_method)

    def weight_loader(self,
                      param: Parameter,
                      loaded_weight: torch.Tensor,
                      loaded_shard_id: Optional[str] = None):
        param_data = param.data
        output_dim = getattr(param, "output_dim", None)
        if loaded_shard_id is None:
            # Loaded weight is already packed.
            if output_dim is None:
                assert param_data.shape == loaded_weight.shape
                param_data.copy_(loaded_weight)
                return
            shard_offsets = [
                # (shard_id, shard_offset, shard_size)
                ("q", 0, self.total_num_heads * self.head_size),
                ("k", self.total_num_heads * self.head_size,
                 self.total_num_kv_heads * self.head_size),
                ("v", (self.total_num_heads + self.total_num_kv_heads) *
                 self.head_size, self.total_num_kv_heads * self.head_size),
            ]
            packed_dim = getattr(param, "packed_dim", None)
            for shard_id, shard_offset, shard_size in shard_offsets:
                # If quantized, we need to adjust the offset and size to account
                # for the packing.
                if packed_dim == output_dim:
                    shard_size = shard_size // param.pack_factor
                    shard_offset = shard_offset // param.pack_factor
                loaded_weight_shard = loaded_weight.narrow(
                    output_dim, shard_offset, shard_size)
                self.weight_loader(param, loaded_weight_shard, shard_id)
            return

        tp_rank = get_tensor_model_parallel_rank()
        assert loaded_shard_id in ["q", "k", "v"]
        if output_dim is not None:
            if loaded_shard_id == "q":
                shard_offset = 0
                shard_size = self.num_heads * self.head_size
            elif loaded_shard_id == "k":
                shard_offset = self.num_heads * self.head_size
                shard_size = self.num_kv_heads * self.head_size
            elif loaded_shard_id == "v":
                shard_offset = (self.num_heads +
                                self.num_kv_heads) * self.head_size
                shard_size = self.num_kv_heads * self.head_size
            # If quantized, we need to adjust the offset and size to account
            # for the packing.
            packed_dim = getattr(param, "packed_dim", None)
            if packed_dim == output_dim:
                shard_size = shard_size // param.pack_factor
                shard_offset = shard_offset // param.pack_factor
            param_data = param_data.narrow(output_dim, shard_offset,
                                           shard_size)
            if loaded_shard_id == "q":
                shard_id = tp_rank
            else:
                shard_id = tp_rank // self.num_kv_head_replicas
            start_idx = shard_id * shard_size
            loaded_weight = loaded_weight.narrow(output_dim, start_idx,
                                                 shard_size)
        else:
            ignore_warning = getattr(param, "ignore_warning", False)
            if not ignore_warning:
                logger.warning(
                    "Loading a weight without `output_dim` attribute in "
                    "QKVParallelLinear, assume the weight is the same "
                    "for all partitions.")
        assert param_data.shape == loaded_weight.shape
        param_data.copy_(loaded_weight)


class RowParallelLinear(torch.nn.Module):
    """Linear layer with row parallelism.

    The linear layer is defined as Y = XA + b. A is parallelized along
    its first dimension and X along its second dimension as:
               -   -
              | A_1 |
              | .   |
          A = | .   |        X = [X_1, ..., X_p]
              | .   |
              | A_p |
               -   -
    Arguments:
        input_size: first dimension of matrix A.
        output_size: second dimension of matrix A.
        bias: If true, add bias. Note that bias is not parallelized.
        input_is_parallel: If true, we assume that the input is already
                           split across the GPUs and we do not split
                           again.
        skip_bias_add: This was added to enable performance optimization where
                       bias can be fused with other element-wise operations.
                       We skip adding bias but instead return it.
        params_dtype: Data type for the parameters.
        linear_method: (Maybe quantized) linear method.
    """

    def __init__(
        self,
        input_size: int,
        output_size: int,
        bias: bool = True,
        input_is_parallel: bool = True,
        skip_bias_add: bool = False,
        params_dtype: Optional[torch.dtype] = None,
        reduce_results: bool = True,
        linear_method: Optional[LinearMethodBase] = None,
    ):
        super().__init__()
        # Keep input parameters
        self.input_size = input_size
        self.output_size = output_size
        self.input_is_parallel = input_is_parallel
        self.reduce_results = reduce_results
        if params_dtype is None:
            params_dtype = torch.get_default_dtype()
        self.params_dtype = params_dtype

        # Divide the weight matrix along the last dimension.
        self.tp_size = get_tensor_model_parallel_world_size()
        self.input_size_per_partition = divide(input_size, self.tp_size)
        self.skip_bias_add = skip_bias_add
        if linear_method is None:
            linear_method = UnquantizedLinearMethod()
        self.linear_method = linear_method
        self.linear_weights = self.linear_method.create_weights(
            self.input_size_per_partition, self.output_size, self.input_size,
            self.output_size, self.params_dtype)
        for name, weight in self.linear_weights.items():
            if isinstance(weight, torch.Tensor):
                self.register_parameter(name, weight)
                set_weight_attrs(weight, {"weight_loader": self.weight_loader})

        if not reduce_results and (bias and not skip_bias_add):
            raise ValueError("When not reduce the results, adding bias to the "
                             "results can lead to incorrect results")

        if bias:
            self.bias = Parameter(
                torch.empty(self.output_size,
                            device=torch.cuda.current_device(),
                            dtype=params_dtype))
            set_weight_attrs(self.bias, {
                "output_dim": 0,
                "weight_loader": self.weight_loader,
            })
        else:
            self.register_parameter("bias", None)

    def weight_loader(self, param: Parameter, loaded_weight: torch.Tensor):
        tp_rank = get_tensor_model_parallel_rank()
        input_dim = getattr(param, "input_dim", None)
        param_data = param.data
        if input_dim is not None:
            shard_size = param_data.shape[input_dim]
            start_idx = tp_rank * shard_size
            loaded_weight = loaded_weight.narrow(input_dim, start_idx,
                                                 shard_size)
        assert param_data.shape == loaded_weight.shape
        param_data.copy_(loaded_weight)

    def forward(self, input_):
        # Set up backprop all-reduce.
        if self.input_is_parallel:
            input_parallel = input_
        else:
            tp_rank = get_tensor_model_parallel_rank()
            splitted_input = split_tensor_along_last_dim(
                input_, num_partitions=self.tp_size)
            input_parallel = splitted_input[tp_rank].contiguous()

        # Matrix multiply.
        output_parallel = self.linear_method.apply_weights(
            self.linear_weights, input_parallel)
        if self.reduce_results and self.tp_size > 1:
            output_ = tensor_model_parallel_all_reduce(output_parallel)
        else:
            output_ = output_parallel

        if not self.skip_bias_add:
            output = output_ + self.bias if self.bias is not None else output_
            output_bias = None
        else:
            output = output_
            output_bias = self.bias
        return output, output_bias