File size: 7,406 Bytes
ca1ecab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
import enum
from enum import Enum
from typing import Any, Dict, List, Optional

import torch
from torch.nn.parameter import Parameter

from vllm._C import ops
from vllm.model_executor.layers.linear import (LinearMethodBase,
                                               set_weight_attrs)
from vllm.model_executor.layers.quantization.base_config import (
    QuantizationConfig)


class GPTQConfig(QuantizationConfig):
    """Config class for GPTQ.

    Reference: https://arxiv.org/abs/2210.17323
    """

    def __init__(
        self,
        weight_bits: int,
        group_size: int,
        desc_act: bool,
    ) -> None:
        self.weight_bits = weight_bits
        self.group_size = group_size
        self.desc_act = desc_act
        self.pack_factor = 32 // self.weight_bits
        # exllama kernel v1 only supports 4 bit
        if self.weight_bits != 4:
            raise ValueError(
                "Currently, only 4-bit weight quantization is supported for "
                f"GPTQ, but got {self.weight_bits} bits.")

    def __repr__(self) -> str:
        return (f"GPTQConfig(weight_bits={self.weight_bits}, "
                f"group_size={self.group_size}, "
                f"desc_act={self.desc_act})")

    @classmethod
    def get_name(cls) -> str:
        return "gptq"

    @classmethod
    def get_supported_act_dtypes(cls) -> List[torch.dtype]:
        return [torch.half]

    @classmethod
    # Need to figure it out
    def get_min_capability(cls) -> int:
        return 60

    @classmethod
    def get_config_filenames(cls) -> List[str]:
        return ["quantize_config.json"]

    @classmethod
    def from_config(cls, config: Dict[str, Any]) -> "GPTQConfig":
        weight_bits = cls.get_from_keys(config, ["bits"])
        group_size = cls.get_from_keys(config, ["group_size"])
        desc_act = cls.get_from_keys(config, ["desc_act"])
        return cls(weight_bits, group_size, desc_act)

    def get_linear_method(self) -> "GPTQLinearMethod":
        return GPTQLinearMethod(self)

    def get_scaled_act_names(self) -> List[str]:
        return []


class ExllamaState(Enum):

    UNUSED = enum.auto()
    UNINITIALIZED = enum.auto()
    READY = enum.auto()


class GPTQLinearMethod(LinearMethodBase):
    """Linear method for GPTQ.

    Args:
        quant_config: The GPTQ quantization config.
    """

    def __init__(self, quant_config: GPTQConfig):
        self.quant_config = quant_config

    def create_weights(
        self,
        input_size_per_partition: int,
        output_size_per_partition: int,
        input_size: int,
        output_size: int,
        params_dtype: torch.dtype,
    ) -> Dict[str, Any]:
        del output_size  # Unused.
        if input_size_per_partition % self.quant_config.group_size != 0:
            raise ValueError(
                "The input size is not aligned with the quantized "
                "weight shape. This can be caused by too large "
                "tensor parallel size.")
        if output_size_per_partition % self.quant_config.pack_factor != 0:
            raise ValueError(
                "The output size is not aligned with the quantized "
                "weight shape. This can be caused by too large "
                "tensor parallel size.")

        if self.quant_config.group_size != -1:
            group_size = self.quant_config.group_size
        else:
            group_size = input_size
        exllama_state = ExllamaState.UNINITIALIZED
        scale_and_zero_size = input_size // group_size
        scale_and_zero_input_dim = None
        if input_size != input_size_per_partition and self.quant_config.group_size != -1:
            # For act-order models, we cannot use Exllama for row parallel layer
            if self.quant_config.desc_act:
                exllama_state = ExllamaState.UNUSED
            else:
                # we need to partition qzeros and scales for exllama kernel
                scale_and_zero_size = input_size_per_partition // group_size
                scale_and_zero_input_dim = 0

        qweight = Parameter(
            torch.empty(
                input_size_per_partition // self.quant_config.pack_factor,
                output_size_per_partition,
                device="cuda",
                dtype=torch.int32,
            ),
            requires_grad=False,
        )
        set_weight_attrs(
            qweight, {
                "input_dim": 0,
                "output_dim": 1,
                "packed_dim": 0,
                "pack_factor": self.quant_config.pack_factor,
            })
        g_idx = Parameter(
            torch.tensor(
                [
                    i // self.quant_config.group_size
                    for i in range(input_size_per_partition)
                ],
                device="cuda",
                dtype=torch.int32,
            ),
            requires_grad=False,
        )
        # Ignore warning from fused linear layers such as QKVParallelLinear.
        set_weight_attrs(g_idx, {"input_dim": 0, "ignore_warning": True})
        qzeros = Parameter(
            torch.empty(
                scale_and_zero_size,
                output_size_per_partition // self.quant_config.pack_factor,
                device="cuda",
                dtype=torch.int32,
            ),
            requires_grad=False,
        )
        set_weight_attrs(
            qzeros, {
                "input_dim": scale_and_zero_input_dim,
                "output_dim": 1,
                "packed_dim": 1,
                "pack_factor": self.quant_config.pack_factor,
            })
        scales = Parameter(
            torch.empty(
                scale_and_zero_size,
                output_size_per_partition,
                device="cuda",
                dtype=params_dtype,
            ),
            requires_grad=False,
        )
        set_weight_attrs(scales, {
            "input_dim": scale_and_zero_input_dim,
            "output_dim": 1,
        })
        return {
            "qweight": qweight,
            "g_idx": g_idx,
            "qzeros": qzeros,
            "scales": scales,
            "exllama_state": exllama_state,
        }

    def apply_weights(self,
                      weights: Dict[str, Any],
                      x: torch.Tensor,
                      bias: Optional[torch.Tensor] = None) -> torch.Tensor:
        qweight = weights["qweight"]
        out_shape = x.shape[:-1] + (qweight.shape[-1], )
        reshaped_x = x.reshape(-1, x.shape[-1])
        # exllama needs to shuffle the weight after the weight is loaded
        # here we do the shuffle on first forward pass
        if weights["exllama_state"] == ExllamaState.UNINITIALIZED:
            if self.quant_config.desc_act:
                weights["g_idx"] = torch.argsort(weights["g_idx"]).to(
                    torch.int)
            else:
                weights["g_idx"] = torch.empty((1, 1), device="meta")
            weights["exllama_state"] = ExllamaState.READY
            ops.gptq_shuffle(weights["qweight"], weights["g_idx"])
        output = ops.gptq_gemm(reshaped_x, weights["qweight"],
                               weights["qzeros"], weights["scales"],
                               weights["g_idx"],
                               weights["exllama_state"] == ExllamaState.READY)
        if bias is not None:
            output = output + bias
        return output.reshape(out_shape)