File size: 14,746 Bytes
ca1ecab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
# coding=utf-8
# Adapted from
# https://github.com/huggingface/transformers/blob/v4.33.2/src/transformers/models/llama/modeling_llama.py
# Copyright 2023 The vLLM team.
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
#
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
# and OPT implementations in this library. It has been modified from its
# original forms to accommodate minor architectural differences compared
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Rotary Positional Embeddings."""
import math
from typing import Any, Dict, Optional, Tuple, Union

import torch
import torch.nn as nn

from vllm._C import ops


def _rotate_neox(x: torch.Tensor) -> torch.Tensor:
    x1 = x[..., :x.shape[-1] // 2]
    x2 = x[..., x.shape[-1] // 2:]
    return torch.cat((-x2, x1), dim=-1)


def _rotate_gptj(x: torch.Tensor) -> torch.Tensor:
    x1 = x[..., ::2]
    x2 = x[..., 1::2]
    x = torch.stack((-x2, x1), dim=-1)
    return x.flatten(-2)


class RotaryEmbedding(nn.Module):
    """Original rotary positional embedding."""

    def __init__(
        self,
        head_size: int,
        rotary_dim: int,
        max_position_embeddings: int,
        base: int,
        is_neox_style: bool,
    ) -> None:
        super().__init__()
        self.head_size = head_size
        self.rotary_dim = rotary_dim
        self.max_position_embeddings = max_position_embeddings
        self.base = base
        self.is_neox_style = is_neox_style

        cache = self._compute_cos_sin_cache()
        cache = cache.to(torch.get_default_dtype())
        self.register_buffer("cos_sin_cache", cache, persistent=False)

    def _compute_inv_freq(self, base: Union[int, float]) -> torch.Tensor:
        """Compute the inverse frequency."""
        # NOTE(woosuk): The HF implementation uses `torch.arange(...).float()`.
        # However, we use `torch.arange(..., dtype=torch.float)` instead to
        # avoid numerical issues with large base values (e.g., 10000000).
        # This may cause a slight numerical difference between the HF
        # implementation and ours.
        # NOTE(woosuk): To exactly match the HF implementation, we need to
        # use CPU to compute the cache and then move it to GPU. However, we
        # create the cache on GPU for faster initialization. This may cause
        # a slight numerical difference between the HF implementation and ours.
        inv_freq = 1.0 / (base**(torch.arange(
            0, self.rotary_dim, 2, dtype=torch.float, device="cuda") /
                                 self.rotary_dim))
        return inv_freq

    def _compute_cos_sin_cache(self) -> torch.Tensor:
        """Compute the cos and sin cache."""
        inv_freq = self._compute_inv_freq(self.base)
        t = torch.arange(self.max_position_embeddings,
                         dtype=torch.float,
                         device="cuda")

        freqs = torch.einsum("i,j -> ij", t, inv_freq)
        cos = freqs.cos()
        sin = freqs.sin()
        cache = torch.cat((cos, sin), dim=-1)
        return cache

    def _forward(
        self,
        positions: torch.Tensor,
        query: torch.Tensor,
        key: torch.Tensor,
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        """PyTorch-native implementation equivalent to forward()."""
        query = query.view(*query.shape[:-1], -1, self.head_size)
        key = key.view(*key.shape[:-1], -1, self.head_size)

        query_rot = query[..., :self.rotary_dim]
        key_rot = key[..., :self.rotary_dim]
        if self.rotary_dim < self.head_size:
            query_pass = query[..., self.rotary_dim:]
            key_pass = key[..., self.rotary_dim:]

        cos_sin = self.cos_sin_cache[positions]
        cos, sin = cos_sin.chunk(2, dim=-1)
        if self.is_neox_style:
            # NOTE(woosuk): Here we assume that the positions tensor has the
            # shape [batch_size, seq_len].
            cos = cos.repeat(1, 1, 2).unsqueeze(-2)
            sin = sin.repeat(1, 1, 2).unsqueeze(-2)
        else:
            cos = cos.repeat_interleave(2, dim=-1).unsqueeze(-2)
            sin = sin.repeat_interleave(2, dim=-1).unsqueeze(-2)

        rotate_fn = _rotate_neox if self.is_neox_style else _rotate_gptj
        query_rot = query_rot * cos + rotate_fn(query_rot) * sin
        key_rot = key_rot * cos + rotate_fn(key_rot) * sin

        if self.rotary_dim < self.head_size:
            query = torch.cat((query_rot, query_pass), dim=-1)
            key = torch.cat((key_rot, key_pass), dim=-1)
        else:
            query = query_rot
            key = key_rot
        query = query.flatten(-2)
        key = key.flatten(-2)
        return query, key

    def forward(
        self,
        positions: torch.Tensor,
        query: torch.Tensor,
        key: torch.Tensor,
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        # ops.rotary_embedding() is an in-place operation that
        # updates the query and key tensors.
        ops.rotary_embedding(positions, query, key, self.head_size,
                             self.cos_sin_cache, self.is_neox_style)
        return query, key


class LinearScalingRotaryEmbedding(RotaryEmbedding):
    """RotaryEmbedding extended with linear scaling.

    Credits to the Reddit user /u/kaiokendev
    """

    def __init__(
        self,
        head_size: int,
        rotary_dim: int,
        max_position_embeddings: int,
        base: int,
        is_neox_style: bool,
        scaling_factor: float,
    ) -> None:
        self.scaling_factor = scaling_factor
        super().__init__(head_size, rotary_dim, max_position_embeddings, base,
                         is_neox_style)

    def _compute_cos_sin_cache(self) -> torch.Tensor:
        inv_freq = self._compute_inv_freq(self.base)
        # NOTE(woosuk): self.max_position_embeddings is the original
        # maximum length before applying the rope scaling.
        # Thus, the maximum length after applying the rope scaling is
        # self.max_position_embeddings * self.scaling_factor.
        max_len = self.max_position_embeddings * self.scaling_factor
        t = torch.arange(max_len, dtype=torch.float, device="cuda")
        t = t / self.scaling_factor

        freqs = torch.einsum("i,j -> ij", t, inv_freq)
        cos = freqs.cos()
        sin = freqs.sin()
        cache = torch.cat((cos, sin), dim=-1)
        return cache


class DynamicNTKScalingRotaryEmbedding(RotaryEmbedding):
    """RotaryEmbedding extended with Dynamic NTK scaling.

    Credits to the Reddit users /u/bloc97 and /u/emozilla
    """

    def __init__(
        self,
        head_size: int,
        rotary_dim: int,
        max_position_embeddings: int,
        base: int,
        is_neox_style: bool,
        scaling_factor: float,
    ) -> None:
        self.scaling_factor = scaling_factor
        super().__init__(head_size, rotary_dim, max_position_embeddings, base,
                         is_neox_style)

    def _compute_cos_sin_cache(self) -> torch.Tensor:
        # NOTE(woosuk): self.max_position_embeddings is the original
        # maximum length before applying the rope scaling.
        # Thus, the maximum length after applying the rope scaling is
        # self.max_position_embeddings * self.scaling_factor.
        max_len = self.max_position_embeddings * self.scaling_factor
        base = self.base * (
            (self.scaling_factor * max_len / self.max_position_embeddings) -
            (self.scaling_factor - 1))**(self.rotary_dim /
                                         (self.rotary_dim - 2))
        inv_freq = self._compute_inv_freq(base)
        t = torch.arange(max_len, dtype=torch.float, device="cuda")

        freqs = torch.einsum("i,j -> ij", t, inv_freq)
        cos = freqs.cos()
        sin = freqs.sin()
        cache = torch.cat((cos, sin), dim=-1)
        return cache


# Inverse dim formula to find dim based on number of rotations
def _yarn_find_correction_dim(num_rotations: int,
                              dim: int,
                              base: float = 10000,
                              max_position_embeddings: int = 2048) -> float:
    return (dim * math.log(max_position_embeddings /
                           (num_rotations * 2 * math.pi))) / (2 *
                                                              math.log(base))


# Find dim range bounds based on rotations
def _yarn_find_correction_range(low_rot: int,
                                high_rot: int,
                                dim: int,
                                base: float = 10000,
                                max_position_embeddings: int = 2048) -> int:
    low = math.floor(
        _yarn_find_correction_dim(low_rot, dim, base, max_position_embeddings))
    high = math.ceil(
        _yarn_find_correction_dim(high_rot, dim, base,
                                  max_position_embeddings))
    return max(low, 0), min(high, dim - 1)  # Clamp values just in case


def _yarn_linear_ramp_mask(low: float, high: float, dim: int,
                           dtype: torch.dtype,
                           device: torch.device) -> torch.Tensor:
    if low == high:
        high += 0.001  # Prevent singularity

    linear_func = (torch.arange(dim, dtype=dtype, device=device) -
                   low) / (high - low)
    ramp_func = torch.clamp(linear_func, 0, 1)
    return ramp_func


def _yarn_get_mscale(scale: float = 1) -> float:
    if scale <= 1:
        return 1.0
    return 0.1 * math.log(scale) + 1.0


class YaRNScalingRotaryEmbedding(RotaryEmbedding):
    """RotaryEmbedding extended with YaRN method.

    Credits to Peng et al. github.com/jquesnelle/yarn
    """

    def __init__(
        self,
        head_size: int,
        rotary_dim: int,
        max_position_embeddings: int,
        base: int,
        is_neox_style: bool,
        scaling_factor: float,
        *,
        extrapolation_factor: float = 1,
        attn_factor: float = 1,
        beta_fast: float = 32,
        beta_slow: float = 1,
    ) -> None:
        self.scaling_factor = scaling_factor
        self.extrapolation_factor = extrapolation_factor
        self.attn_factor = attn_factor
        self.beta_fast = beta_fast
        self.beta_slow = beta_slow
        # Get n-d magnitude scaling corrected for interpolation
        self.mscale = float(
            _yarn_get_mscale(self.scaling_factor) * attn_factor)
        super().__init__(head_size, rotary_dim, max_position_embeddings, base,
                         is_neox_style)

    def _compute_inv_freq(self, scaling_factor: float) -> torch.Tensor:
        pos_freqs = self.base**(torch.arange(
            0, self.rotary_dim, 2, dtype=torch.float, device="cuda") /
                                self.rotary_dim)
        inv_freq_extrapolation = 1.0 / pos_freqs
        inv_freq_interpolation = 1.0 / (scaling_factor * pos_freqs)

        low, high = _yarn_find_correction_range(self.beta_fast, self.beta_slow,
                                                self.rotary_dim, self.base,
                                                self.max_position_embeddings)
        # Get n-d rotational scaling corrected for extrapolation
        inv_freq_mask = (1 - _yarn_linear_ramp_mask(
            low, high, self.rotary_dim // 2, dtype=torch.float,
            device="cuda")) * self.extrapolation_factor
        inv_freq = inv_freq_interpolation * (
            1 - inv_freq_mask) + inv_freq_extrapolation * inv_freq_mask
        return inv_freq

    def _compute_cos_sin_cache(self) -> torch.Tensor:
        inv_freq = self._compute_inv_freq(self.scaling_factor)
        t = torch.arange(self.max_position_embeddings * self.scaling_factor,
                         device="cuda",
                         dtype=torch.float32)
        freqs = torch.einsum("i,j -> ij", t, inv_freq)
        cos = (freqs.cos() * self.mscale)
        sin = (freqs.sin() * self.mscale)
        cache = torch.cat((cos, sin), dim=-1)
        return cache


_ROPE_DICT: Dict[Tuple, RotaryEmbedding] = {}


def get_rope(
    head_size: int,
    rotary_dim: int,
    max_position: int,
    base: int,
    is_neox_style: bool = True,
    rope_scaling: Optional[Dict[str, Any]] = None,
) -> RotaryEmbedding:
    key = (head_size, rotary_dim, max_position, base, is_neox_style,
           tuple(rope_scaling.items()) if rope_scaling is not None else None)
    if key in _ROPE_DICT:
        return _ROPE_DICT[key]

    if rope_scaling is None:
        rotary_emb = RotaryEmbedding(head_size, rotary_dim, max_position, base,
                                     is_neox_style)
    else:
        scaling_type = rope_scaling["type"]
        scaling_factor = rope_scaling["factor"]
        if scaling_type == "linear":
            rotary_emb = LinearScalingRotaryEmbedding(head_size, rotary_dim,
                                                      max_position, base,
                                                      is_neox_style,
                                                      scaling_factor)
        elif scaling_type == "dynamic":
            rotary_emb = DynamicNTKScalingRotaryEmbedding(
                head_size, rotary_dim, max_position, base, is_neox_style,
                scaling_factor)
        elif scaling_type == "yarn":
            original_max_position = rope_scaling[
                "original_max_position_embeddings"]
            assert max_position == original_max_position * scaling_factor
            extra_kwargs = {
                k: v
                for k, v in rope_scaling.items()
                if k in ("extrapolation_factor", "attn_factor", "beta_fast",
                         "beta_slow")
            }
            rotary_emb = YaRNScalingRotaryEmbedding(head_size, rotary_dim,
                                                    original_max_position,
                                                    base, is_neox_style,
                                                    scaling_factor,
                                                    **extra_kwargs)
        else:
            raise ValueError(f"Unknown RoPE scaling type {scaling_type}")
    _ROPE_DICT[key] = rotary_emb
    return rotary_emb