File size: 23,915 Bytes
ca1ecab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
"""A layer that samples the next tokens from the model's outputs."""
from typing import Dict, List, Optional, Tuple

import torch
import torch.nn as nn

from vllm.model_executor.parallel_utils.communication_op import (
    tensor_model_parallel_gather)
from vllm.model_executor.sampling_metadata import SamplingMetadata, SamplingTensors
from vllm.sampling_params import SamplingParams, SamplingType
from vllm.sequence import (PromptLogprobs, SampleLogprobs, SamplerOutput,
                           SequenceData, SequenceGroupOutput, SequenceOutput)


class Sampler(nn.Module):
    """Samples the next tokens from the model's outputs.

    This layer does the following:
    1. Discard the hidden states that are not used for sampling (i.e., all
        tokens except the final one in each prompt).
    2. Compute the logits for the next tokens.
    3. Apply presence, frequency and repetition penalties.
    4. Apply temperature scaling.
    5. Apply top-p and top-k truncation.
    6. Sample the next tokens.
    Here, each sequence group within the batch can have different sampling
    parameters (e.g., sampling method, temperature, top-p, top-k, etc.).
    """

    def __init__(self,
                 vocab_size: int,
                 org_vocab_size: Optional[int] = None) -> None:
        super().__init__()
        self.vocab_size = vocab_size
        # original vocabulary size (without LoRA).
        self.org_vocab_size = org_vocab_size or vocab_size

    def _get_logits(self, hidden_states: torch.Tensor, embedding: torch.Tensor,
                    embedding_bias: Optional[torch.Tensor]) -> torch.Tensor:
        # Get the logits for the next tokens.
        logits = torch.matmul(hidden_states, embedding.t())
        if embedding_bias is not None:
            logits += embedding_bias
        logits = tensor_model_parallel_gather(logits)
        # Remove paddings in vocab (if any).
        if logits is not None:
            logits = logits[:, :self.org_vocab_size]
        return logits

    def forward(
        self,
        embedding: torch.Tensor,
        hidden_states: torch.Tensor,
        sampling_metadata: SamplingMetadata,
        embedding_bias: Optional[torch.Tensor] = None,
    ) -> Optional[SamplerOutput]:
        # Get the hidden states that we use for sampling.
        hidden_states = _prune_hidden_states(hidden_states, sampling_metadata)

        # Get the logits for the next tokens.
        logits = self._get_logits(hidden_states, embedding, embedding_bias)

        # Only perform sampling in the driver worker.
        # Note: `_get_logits` is still distributed across TP workers because
        # the `embedding` weight is distributed across TP workers.
        # TODO(zhuohan): Change the get_logits part to a separate stage.
        if not sampling_metadata.perform_sampling:
            return None

        assert logits is not None
        _, vocab_size = logits.shape

        # Apply logits processors (if any).
        logits = _apply_logits_processors(logits, sampling_metadata)

        # Prepare sampling tensors with pinned memory to avoid blocking.
        (sampling_tensors, do_penalties, do_top_p_top_k,
         do_min_p) = SamplingTensors.from_sampling_metadata(
             sampling_metadata, vocab_size, logits.device, logits.dtype)

        # Apply presence and frequency penalties.
        if do_penalties:
            logits = _apply_penalties(logits, sampling_tensors.prompt_tokens,
                                      sampling_tensors.output_tokens,
                                      sampling_tensors.presence_penalties,
                                      sampling_tensors.frequency_penalties,
                                      sampling_tensors.repetition_penalties)

        # Apply temperature scaling.
        # Use in-place division to avoid creating a new tensor.
        logits.div_(sampling_tensors.temperatures.unsqueeze_(dim=1))

        if do_top_p_top_k:
            logits = _apply_top_k_top_p(logits, sampling_tensors.top_ps,
                                        sampling_tensors.top_ks)

        if do_min_p:
            logits = _apply_min_p(logits, sampling_tensors.min_ps)

        # We use float32 for probabilities and log probabilities.
        # Compute the probabilities.
        probs = torch.softmax(logits, dim=-1, dtype=torch.float)
        # Compute the log probabilities.
        # Use log_softmax to ensure numerical stability.
        logprobs = torch.log_softmax(logits, dim=-1, dtype=torch.float)

        # Sample the next tokens.
        sample_results = _sample(probs, logprobs, sampling_metadata)
        # Get the logprobs query results.
        prompt_logprobs, sample_logprobs = _get_logprobs(
            logprobs, sampling_metadata, sample_results)
        return _build_sampler_output(sample_results, sampling_metadata,
                                     prompt_logprobs, sample_logprobs)


def _prune_hidden_states(
    hidden_states: torch.Tensor,
    sampling_metadata: SamplingMetadata,
) -> torch.Tensor:
    hidden_states = hidden_states.view(-1, hidden_states.shape[-1])
    return hidden_states.index_select(0,
                                      sampling_metadata.selected_token_indices)


def _get_bin_counts_and_mask(
    tokens: torch.Tensor,
    vocab_size: int,
    num_seqs: int,
) -> Tuple[torch.Tensor, torch.Tensor]:
    # Compute the bin counts for the tokens.
    # vocab_size + 1 for padding.
    bin_counts = torch.zeros((num_seqs, vocab_size + 1),
                             dtype=torch.long,
                             device=tokens.device)
    bin_counts.scatter_add_(1, tokens, torch.ones_like(tokens))
    bin_counts = bin_counts[:, :vocab_size]
    mask = bin_counts > 0

    return bin_counts, mask


def _apply_logits_processors(
    logits: torch.Tensor,
    sampling_metadata: SamplingMetadata,
) -> torch.Tensor:
    logits_row_idx = 0
    found_logits_processors = False
    for seq_ids, sampling_params in sampling_metadata.seq_groups:
        logits_processors = sampling_params.logits_processors
        if logits_processors:
            found_logits_processors = True
            for seq_id in seq_ids:
                logits_row = logits[logits_row_idx]
                token_ids = sampling_metadata.seq_data[seq_id].output_token_ids
                for logits_processor in logits_processors:
                    logits_row = logits_processor(token_ids, logits_row)
                logits[logits_row_idx] = logits_row
                logits_row_idx += 1
        else:
            logits_row_idx += len(seq_ids)
    if found_logits_processors:
        assert logits_row_idx == logits.shape[0]
    return logits


def _apply_penalties(logits: torch.Tensor, prompt_tokens_tensor: torch.Tensor,
                     output_tokens_tensor: torch.Tensor,
                     presence_penalties: torch.Tensor,
                     frequency_penalties: torch.Tensor,
                     repetition_penalties: torch.Tensor) -> torch.Tensor:
    num_seqs, vocab_size = logits.shape
    _, prompt_mask = _get_bin_counts_and_mask(prompt_tokens_tensor, vocab_size,
                                              num_seqs)
    output_bin_counts, output_mask = _get_bin_counts_and_mask(
        output_tokens_tensor, vocab_size, num_seqs)

    repetition_penalties = repetition_penalties[:, None].repeat(1, vocab_size)
    repetition_penalties[~(prompt_mask | output_mask)] = 1.0
    logits = torch.where(logits > 0, logits / repetition_penalties,
                         logits * repetition_penalties)

    # We follow the definition in OpenAI API.
    # Refer to https://platform.openai.com/docs/api-reference/parameter-details
    logits -= frequency_penalties.unsqueeze_(dim=1) * output_bin_counts
    logits -= presence_penalties.unsqueeze_(dim=1) * output_mask
    return logits


def _apply_top_k_top_p(
    logits: torch.Tensor,
    p: torch.Tensor,
    k: torch.Tensor,
) -> torch.Tensor:
    logits_sort, logits_idx = logits.sort(dim=-1, descending=False)

    # Apply top-k.
    top_k_mask = logits_sort.size(1) - k.to(torch.long)
    # Get all the top_k values.
    top_k_mask = logits_sort.gather(1, top_k_mask.unsqueeze(dim=1))
    top_k_mask = logits_sort < top_k_mask
    logits_sort.masked_fill_(top_k_mask, -float("inf"))

    # Apply top-p.
    probs_sort = logits_sort.softmax(dim=-1)
    probs_sum = probs_sort.cumsum(dim=-1)
    top_p_mask = probs_sum <= 1 - p.unsqueeze(dim=1)
    # at least one
    top_p_mask[:, -1] = False
    logits_sort.masked_fill_(top_p_mask, -float("inf"))

    # Re-sort the probabilities.
    src = torch.arange(logits_idx.shape[-1],
                       device=logits_idx.device).expand_as(logits_idx)
    logits_idx_inv = torch.empty_like(logits_idx).scatter_(dim=-1,
                                                           index=logits_idx,
                                                           src=src)
    logits = torch.gather(logits_sort, dim=-1, index=logits_idx_inv)
    return logits


def _apply_min_p(
    logits: torch.Tensor,
    min_p: torch.Tensor,
) -> torch.Tensor:
    """
    Adapted from
    https://github.com/oobabooga/text-generation-webui/blob/3146124ec01f02c8fb1650a6517cf1b60b537aaf/modules/sampler_hijack.py#L16C17-L16C17
    """
    probs = torch.softmax(logits, dim=-1)
    top_probs, _ = probs.max(dim=-1, keepdim=True)
    scaled_min_p = min_p.unsqueeze_(dim=1) * top_probs
    tokens_to_remove = probs < scaled_min_p
    logits = logits.masked_fill_(tokens_to_remove, -float("inf"))

    return logits


def _greedy_sample(
    selected_seq_groups: List[Tuple[List[int], SamplingParams]],
    samples: torch.Tensor,
) -> List[Tuple[List[int], List[int]]]:
    samples = samples.tolist()
    sample_idx = 0
    results = []
    for seq_group in selected_seq_groups:
        seq_ids, _ = seq_group
        num_parent_seqs = len(seq_ids)
        assert num_parent_seqs == 1, (
            "Greedy sampling should have only one seq.")
        parent_ids = list(range(num_parent_seqs))
        next_token_ids = [samples[sample_idx]]
        results.append((next_token_ids, parent_ids))
        sample_idx += num_parent_seqs
    return results


def _random_sample(
    selected_seq_groups: List[Tuple[List[int], SamplingParams]],
    is_prompts: List[bool],
    random_samples: torch.Tensor,
) -> List[Tuple[List[int], List[int]]]:
    # Find the maximum best_of value of the prompt phase requests.
    random_samples = random_samples.cpu()
    sample_idx = 0
    results = []
    for seq_group, is_prompt in zip(selected_seq_groups, is_prompts):
        seq_ids, sampling_params = seq_group
        num_parent_seqs = len(seq_ids)
        if is_prompt:
            # Prompt phase.
            parent_ids = [0] * sampling_params.best_of
            next_token_ids = random_samples[
                sample_idx, :sampling_params.best_of].tolist()
        else:
            # Generation phase.
            parent_ids = list(range(num_parent_seqs))
            next_token_ids = random_samples[sample_idx:sample_idx +
                                            num_parent_seqs, 0].tolist()
        results.append((next_token_ids, parent_ids))
        sample_idx += num_parent_seqs
    return results


def _beam_search_sample(
    selected_seq_groups: List[Tuple[List[int], SamplingParams]],
    is_prompts: List[bool],
    seq_data: Dict[int, SequenceData],
    logprobs: torch.Tensor,
) -> List[Tuple[List[int], List[int]]]:
    # We sample 2 * beam_width candidates to make sure that with high
    # probability we can get `beam_width` candidates in addition to
    # the finished sequences for the next iteration. See
    # https://github.com/tensorflow/tensor2tensor/blob/bafdc1b67730430d38d6ab802cbd51f9d053ba2e/tensor2tensor/utils/beam_search.py#L557-L563
    # for details. See also HF reference:
    # https://github.com/huggingface/transformers/blob/a4dd53d88e4852f023332d284ff07a01afcd5681/src/transformers/generation/utils.py#L3063-L3065
    #
    # NOTE: Beam search is not vectorized, so its speed can be slower than
    # other sampling methods.
    sample_idx = 0
    results = []
    for seq_group, is_prompt in zip(selected_seq_groups, is_prompts):
        seq_ids, sampling_params = seq_group
        num_parent_seqs = len(seq_ids)
        beam_width = sampling_params.best_of
        seq_group_logprobs = logprobs[sample_idx:sample_idx + num_parent_seqs]
        if is_prompt:
            # Prompt phase.
            assert num_parent_seqs == 1, (
                "Prompt input should have only one seq.")
            parent_ids = [0] * (2 * beam_width)
            _, next_token_ids = torch.topk(seq_group_logprobs[0],
                                           2 * beam_width)
            next_token_ids = next_token_ids.tolist()
        else:
            # Generation phase.
            cumulative_logprobs = [
                seq_data[seq_id].cumulative_logprob for seq_id in seq_ids
            ]
            cumulative_logprobs = torch.tensor(
                cumulative_logprobs,
                dtype=torch.float,
                device=seq_group_logprobs.device)
            seq_group_logprobs = (seq_group_logprobs +
                                  cumulative_logprobs.unsqueeze(dim=1))
            _, topk_ids = torch.topk(seq_group_logprobs.flatten(),
                                     2 * beam_width)
            topk_ids = topk_ids.tolist()
            vocab_size = seq_group_logprobs.size(-1)
            parent_ids = [i // vocab_size for i in topk_ids]
            next_token_ids = [i % vocab_size for i in topk_ids]
        results.append((next_token_ids, parent_ids))
        sample_idx += num_parent_seqs
    assert sample_idx == logprobs.size(0)
    return results


# torch.multinomial forces a GPU<->CPU sync.
# Therefore, we use an optimized implementation instead.
# Note that we always sample with replacement.
# probs will be modified in place, but this is fine, as we pass
# in a copy already.
def _multinomial(
    probs: torch.Tensor,
    num_samples: int,
):
    if num_samples > 1:
        # This is equivalent to torch.repeat_interleaved (which also
        # forces a GPU<->CPU sync).
        # This allows us to do sampling with replacement by creating
        # num_samples copies of each row in the tensor, and then
        # batch sampling the resulting tensor.
        probs = probs[:, None, :].expand(probs.shape[0], num_samples,
                                         probs.shape[1]).contiguous().view(
                                             -1, probs.shape[1])
    q = torch.empty_like(probs).exponential_(1)
    return probs.div_(q).argmax(dim=1).view(-1, num_samples)


def _sample(
    probs: torch.Tensor,
    logprobs: torch.Tensor,
    sampling_metadata: SamplingMetadata,
) -> List[Tuple[List[int], List[int]]]:
    categorized_seq_group_ids = {t: [] for t in SamplingType}
    categorized_sample_indices = sampling_metadata.categorized_sample_indices
    for i, seq_group in enumerate(sampling_metadata.seq_groups):
        _, sampling_params = seq_group
        sampling_type = sampling_params.sampling_type
        categorized_seq_group_ids[sampling_type].append(i)

    sample_results_dict: Dict[int, Tuple[List[int], List[int]]] = {}
    sample_metadata = {}

    # Counterintiutively, having two loops here is actually faster.
    # The first loop can run without waiting on GPU<->CPU sync.
    for sampling_type in SamplingType:
        sample_indices = categorized_sample_indices[sampling_type]
        num_tokens = len(sample_indices)
        if num_tokens == 0:
            continue
        seq_group_ids = categorized_seq_group_ids[sampling_type]
        seq_groups = [sampling_metadata.seq_groups[i] for i in seq_group_ids]
        is_prompts = [i < sampling_metadata.num_prompts for i in seq_group_ids]
        sample_metadata[sampling_type] = (seq_group_ids, seq_groups,
                                          is_prompts, sample_indices)
        if sampling_type == SamplingType.GREEDY:
            greedy_samples = torch.argmax(logprobs[sample_indices], dim=-1)
        elif sampling_type == SamplingType.RANDOM:
            max_best_of = 1
            for seq_group, is_prompt in zip(seq_groups, is_prompts):
                if is_prompt:
                    _, sampling_params = seq_group
                    max_best_of = max(max_best_of, sampling_params.best_of)
            multinomial_samples = _multinomial(probs[sample_indices],
                                               max_best_of)
        elif sampling_type == SamplingType.BEAM:
            beam_search_logprobs = logprobs[sample_indices]
        else:
            raise ValueError(f"Unsupported sampling type: {sampling_type}")

    # GPU<->CPU sync happens in the loop below.

    for sampling_type in SamplingType:
        if sampling_type not in sample_metadata:
            continue
        seq_group_ids, seq_groups, is_prompts, sample_indices = sample_metadata[
            sampling_type]
        if sampling_type == SamplingType.GREEDY:
            sample_results = _greedy_sample(seq_groups, greedy_samples)
        elif sampling_type == SamplingType.RANDOM:
            sample_results = _random_sample(seq_groups, is_prompts,
                                            multinomial_samples)
        elif sampling_type == SamplingType.BEAM:
            sample_results = _beam_search_sample(seq_groups, is_prompts,
                                                 sampling_metadata.seq_data,
                                                 beam_search_logprobs)
        sample_results_dict.update(zip(seq_group_ids, sample_results))

    sample_results = [
        sample_results_dict[i]
        for i in range(len(sampling_metadata.seq_groups))
    ]
    return sample_results


def _get_logprobs(
    logprobs: torch.Tensor,
    sampling_metadata: SamplingMetadata,
    sample_results: List[Tuple[List[int], List[int]]],
) -> Tuple[List[Optional[List[Optional[Dict[int, float]]]]], List[List[Dict[
        int, float]]]]:
    # Prepare query indices
    batched_logprobs_query_seq_indices: List[int] = []
    batched_logprobs_query_token_indices: List[int] = []
    largest_num_logprobs = 0
    sample_idx = 0
    for i, (seq_group, sample_result) in enumerate(
            zip(sampling_metadata.seq_groups, sample_results)):
        seq_ids, sampling_params = seq_group
        next_token_ids, parent_ids = sample_result
        num_parent_seqs = len(seq_ids)
        if (i < sampling_metadata.num_prompts
                and sampling_params.prompt_logprobs is not None):
            largest_num_logprobs = max(largest_num_logprobs,
                                       sampling_params.prompt_logprobs)
            prompt_len = sampling_metadata.prompt_lens[i]
            prompt_tokens = sampling_metadata.seq_data[
                seq_ids[0]].prompt_token_ids
            batched_logprobs_query_seq_indices.extend(
                sample_idx + j for j in range(prompt_len - 1))
            batched_logprobs_query_token_indices.extend(
                token_id for token_id in prompt_tokens[1:])
            sample_idx += prompt_len - 1
        batched_logprobs_query_seq_indices.extend(
            [sample_idx + parent_id for parent_id in parent_ids])
        batched_logprobs_query_token_indices.extend(next_token_ids)
        if sampling_params.logprobs is not None:
            largest_num_logprobs = max(largest_num_logprobs,
                                       sampling_params.logprobs)
        sample_idx += num_parent_seqs
    assert sample_idx == logprobs.size(0)

    # Batched query for logprobs of selected token
    batched_logprobs_query_result = logprobs[[
        batched_logprobs_query_seq_indices,
        batched_logprobs_query_token_indices
    ]]

    # Batched query for logprobs of topk tokens
    if largest_num_logprobs > 0:
        top_logprobs, top_token_ids = torch.topk(logprobs,
                                                 largest_num_logprobs,
                                                 dim=-1)
        top_logprobs = top_logprobs.cpu()
        top_token_ids = top_token_ids.cpu()
    else:
        top_logprobs, top_token_ids = None, None

    batched_logprobs_query_result = batched_logprobs_query_result.cpu()

    # Gather results
    result_prompt_logprobs: List[Optional[PromptLogprobs]] = []
    result_sample_logprobs: List[SampleLogprobs] = []
    sample_idx = 0
    query_result_idx = 0
    for i, (seq_group, sample_result) in enumerate(
            zip(sampling_metadata.seq_groups, sample_results)):
        seq_ids, sampling_params = seq_group
        next_token_ids, parent_ids = sample_result

        # Prompt logprobs
        if (i < sampling_metadata.num_prompts
                and sampling_params.prompt_logprobs is not None):
            num_logprobs = sampling_params.prompt_logprobs
            prompt_len = sampling_metadata.prompt_lens[i]
            prompt_tokens = sampling_metadata.seq_data[
                seq_ids[0]].prompt_token_ids
            group_prompt_logprobs: PromptLogprobs = [None]
            for token_id in prompt_tokens[1:]:
                prompt_logprobs_dict = {
                    token_id:
                    batched_logprobs_query_result[query_result_idx].item()
                }
                if num_logprobs > 0:
                    prompt_logprobs_dict.update(
                        zip(top_token_ids[sample_idx, :num_logprobs].tolist(),
                            top_logprobs[sample_idx, :num_logprobs].tolist()))
                group_prompt_logprobs.append(prompt_logprobs_dict)
                sample_idx += 1
                query_result_idx += 1
            result_prompt_logprobs.append(group_prompt_logprobs)
        else:
            result_prompt_logprobs.append(None)

        # Sample logprobs
        num_logprobs = sampling_params.logprobs
        if num_logprobs is None:
            num_logprobs = 0
        group_sample_logprobs: SampleLogprobs = []
        for next_token_id, parent_id in zip(next_token_ids, parent_ids):
            sample_logprobs_dict = {
                next_token_id:
                batched_logprobs_query_result[query_result_idx].item()
            }
            query_result_idx += 1
            if num_logprobs > 0:
                sample_logprobs_dict.update(
                    zip(
                        top_token_ids[sample_idx +
                                      parent_id, :num_logprobs].tolist(),
                        top_logprobs[sample_idx +
                                     parent_id, :num_logprobs].tolist()))
            group_sample_logprobs.append(sample_logprobs_dict)
        result_sample_logprobs.append(group_sample_logprobs)
        sample_idx += len(seq_ids)

    return result_prompt_logprobs, result_sample_logprobs


def _build_sampler_output(
    sample_results: List[Tuple[List[int], List[int]]],
    sampling_metadata: SamplingMetadata,
    prompt_logprobs: List[Optional[PromptLogprobs]],
    sample_logprobs: List[SampleLogprobs],
) -> SamplerOutput:
    sampler_output = []
    for (seq_group, sample_result, group_prompt_logprobs,
         group_sample_logprobs) in zip(sampling_metadata.seq_groups,
                                       sample_results, prompt_logprobs,
                                       sample_logprobs):
        seq_ids, _ = seq_group
        next_token_ids, parent_ids = sample_result
        seq_outputs = []
        for parent_id, next_token_id, logprobs in zip(parent_ids,
                                                      next_token_ids,
                                                      group_sample_logprobs):
            seq_outputs.append(
                SequenceOutput(seq_ids[parent_id], next_token_id, logprobs))
        sampler_output.append(
            SequenceGroupOutput(seq_outputs, group_prompt_logprobs))
    return sampler_output