Spaces:
Sleeping
Sleeping
File size: 12,986 Bytes
ca1ecab |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 |
# coding=utf-8
# Adapted from
# https://github.com/THUDM/ChatGLM2-6B
"""Inference-only ChatGLM model compatible with THUDM weights."""
from typing import List, Optional, Tuple
import torch
from torch import nn
from torch.nn import LayerNorm
from vllm.model_executor.input_metadata import InputMetadata
from vllm.model_executor.layers.activation import SiluAndMul
from vllm.model_executor.layers.attention import PagedAttention
from vllm.model_executor.layers.layernorm import RMSNorm
from vllm.model_executor.layers.linear import (LinearMethodBase,
MergedColumnParallelLinear,
QKVParallelLinear,
RowParallelLinear)
from vllm.model_executor.layers.rotary_embedding import get_rope
from vllm.model_executor.layers.sampler import Sampler
from vllm.model_executor.layers.vocab_parallel_embedding import (
VocabParallelEmbedding, ParallelLMHead)
from vllm.model_executor.parallel_utils.parallel_state import (
get_tensor_model_parallel_world_size)
from vllm.model_executor.sampling_metadata import SamplingMetadata
from vllm.model_executor.weight_utils import (default_weight_loader,
hf_model_weights_iterator)
from vllm.sequence import SamplerOutput
from vllm.transformers_utils.configs import ChatGLMConfig
KVCache = Tuple[torch.Tensor, torch.Tensor]
class GLMAttention(nn.Module):
def __init__(
self,
config,
linear_method: Optional[LinearMethodBase] = None,
):
super().__init__()
self.hidden_size = config.hidden_size
tp_size = get_tensor_model_parallel_world_size()
self.total_num_heads = config.num_attention_heads
assert self.total_num_heads % tp_size == 0
self.num_heads = self.total_num_heads // tp_size
self.multi_query_attention = config.multi_query_attention
self.total_num_kv_heads = (config.multi_query_group_num
if config.multi_query_attention else
config.num_attention_heads)
if self.total_num_kv_heads >= tp_size:
# Number of KV heads is greater than TP size, so we partition
# the KV heads across multiple tensor parallel GPUs.
assert self.total_num_kv_heads % tp_size == 0
else:
# Number of KV heads is less than TP size, so we replicate
# the KV heads across multiple tensor parallel GPUs.
assert tp_size % self.total_num_kv_heads == 0
self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size)
self.head_dim = config.hidden_size // self.total_num_heads
self.q_size = self.num_heads * self.head_dim
self.kv_size = self.num_kv_heads * self.head_dim
self.scaling = self.head_dim**-0.5
self.query_key_value = QKVParallelLinear(
self.hidden_size,
self.head_dim,
self.total_num_heads,
self.total_num_kv_heads,
bias=config.add_bias_linear or config.add_qkv_bias,
linear_method=linear_method,
)
self.dense = RowParallelLinear(
self.total_num_heads * self.head_dim,
config.hidden_size,
bias=config.add_bias_linear,
linear_method=linear_method,
)
# https://huggingface.co/THUDM/chatglm3-6b-32k/blob/e210410255278dd9d74463cf396ba559c0ef801c/modeling_chatglm.py#L141
rope_ratio = getattr(config, "rope_ratio", 1.0)
max_positions = getattr(config, "seq_length", 8192)
self.rotary_emb = get_rope(
self.head_dim,
rotary_dim=self.head_dim // 2,
max_position=max_positions,
base=10000 * rope_ratio,
is_neox_style=False,
)
self.attn = PagedAttention(
self.num_heads,
self.head_dim,
self.scaling,
num_kv_heads=self.num_kv_heads,
)
def forward(
self,
hidden_states: torch.Tensor,
position_ids: torch.Tensor,
kv_cache: KVCache,
input_metadata: InputMetadata,
) -> torch.Tensor:
qkv, _ = self.query_key_value(hidden_states)
q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
q, k = self.rotary_emb(position_ids, q, k)
key_cache, value_cache = kv_cache
context_layer = self.attn(
q,
k,
v,
key_cache,
value_cache,
input_metadata,
)
attn_output, _ = self.dense(context_layer)
return attn_output
class GLMMLP(nn.Module):
"""MLP.
MLP will take the input with h hidden state, project it to 4*h
hidden dimension, perform nonlinear transformation, and project the
state back into h hidden dimension.
"""
def __init__(
self,
config,
linear_method: Optional[LinearMethodBase] = None,
):
super().__init__()
self.add_bias = config.add_bias_linear
# Project to 4h.
self.dense_h_to_4h = MergedColumnParallelLinear(
config.hidden_size,
[config.ffn_hidden_size] * 2,
bias=config.add_bias_linear,
linear_method=linear_method,
)
self.activation_func = SiluAndMul()
# Project back to h.
self.dense_4h_to_h = RowParallelLinear(
config.ffn_hidden_size,
config.hidden_size,
bias=config.add_bias_linear,
linear_method=linear_method,
)
def forward(self, hidden_states):
# [s, b, 4hp]
intermediate_parallel, _ = self.dense_h_to_4h(hidden_states)
intermediate_parallel = self.activation_func(intermediate_parallel)
# [s, b, h]
output, _ = self.dense_4h_to_h(intermediate_parallel)
return output
class GLMBlock(nn.Module):
"""A single transformer layer.
Transformer layer takes input with size [s, b, h] and returns an
output of the same size.
"""
def __init__(
self,
config,
linear_method: Optional[LinearMethodBase] = None,
):
super().__init__()
self.apply_residual_connection_post_layernorm = (
config.apply_residual_connection_post_layernorm)
self.fp32_residual_connection = config.fp32_residual_connection
layer_norm_func = RMSNorm if config.rmsnorm else LayerNorm
# Layernorm on the input data.
self.input_layernorm = layer_norm_func(config.hidden_size,
eps=config.layernorm_epsilon)
# Self attention.
self.self_attention = GLMAttention(config, linear_method)
self.hidden_dropout = config.hidden_dropout
# Layernorm on the attention output
self.post_attention_layernorm = layer_norm_func(
config.hidden_size, eps=config.layernorm_epsilon)
# MLP
self.mlp = GLMMLP(config, linear_method)
def forward(
self,
hidden_states: torch.Tensor,
position_ids: torch.Tensor,
kv_cache: KVCache,
input_metadata: InputMetadata,
) -> torch.Tensor:
# hidden_states: [num_tokens, h]
# Layer norm at the beginning of the transformer layer.
layernorm_output = self.input_layernorm(hidden_states)
# Self attention.
attention_output = self.self_attention(
hidden_states=layernorm_output,
position_ids=position_ids,
kv_cache=kv_cache,
input_metadata=input_metadata,
)
# Residual connection.
if self.apply_residual_connection_post_layernorm:
residual = layernorm_output
else:
residual = hidden_states
layernorm_input = residual + attention_output
# Layer norm post the self attention.
layernorm_output = self.post_attention_layernorm(layernorm_input)
# Second residual connection.
if self.apply_residual_connection_post_layernorm:
residual = layernorm_output
else:
residual = layernorm_input
output = self.mlp(layernorm_output) + residual
return output
class GLMTransformer(nn.Module):
"""Transformer class."""
def __init__(
self,
config,
linear_method: Optional[LinearMethodBase] = None,
):
super().__init__()
self.post_layer_norm = config.post_layer_norm
# Number of layers.
self.num_layers = config.num_layers
# Transformer layers.
self.layers = nn.ModuleList(
[GLMBlock(config, linear_method) for i in range(self.num_layers)])
if self.post_layer_norm:
layer_norm_func = RMSNorm if config.rmsnorm else LayerNorm
# Final layer norm before output.
self.final_layernorm = layer_norm_func(
config.hidden_size, eps=config.layernorm_epsilon)
def forward(
self,
hidden_states: torch.Tensor,
position_ids: torch.Tensor,
kv_caches: List[KVCache],
input_metadata: InputMetadata,
) -> torch.Tensor:
for i in range(self.num_layers):
layer = self.layers[i]
hidden_states = layer(
hidden_states=hidden_states,
position_ids=position_ids,
kv_cache=kv_caches[i],
input_metadata=input_metadata,
)
# Final layer norm.
if self.post_layer_norm:
hidden_states = self.final_layernorm(hidden_states)
return hidden_states
class ChatGLMModel(nn.Module):
def __init__(
self,
config,
linear_method: Optional[LinearMethodBase] = None,
):
super().__init__()
self.embedding = VocabParallelEmbedding(config.padded_vocab_size,
config.hidden_size)
self.num_layers = config.num_layers
self.multi_query_group_num = config.multi_query_group_num
self.kv_channels = config.kv_channels
self.encoder = GLMTransformer(config, linear_method)
self.output_layer = ParallelLMHead(config.padded_vocab_size,
config.hidden_size)
def forward(
self,
input_ids: torch.Tensor,
position_ids: torch.Tensor,
kv_caches: List[KVCache],
input_metadata: InputMetadata,
) -> torch.Tensor:
inputs_embeds = self.embedding(input_ids)
# Run encoder.
hidden_states = self.encoder(
hidden_states=inputs_embeds,
position_ids=position_ids,
kv_caches=kv_caches,
input_metadata=input_metadata,
)
return hidden_states
class ChatGLMForCausalLM(nn.Module):
def __init__(
self,
config: ChatGLMConfig,
linear_method: Optional[LinearMethodBase] = None,
):
super().__init__()
self.config: ChatGLMConfig = config
self.linear_method = linear_method
self.transformer = ChatGLMModel(config, linear_method)
self.lm_head_weight = self.transformer.output_layer.weight
self.sampler = Sampler(config.padded_vocab_size)
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
kv_caches: List[KVCache],
input_metadata: InputMetadata,
) -> torch.Tensor:
hidden_states = self.transformer(input_ids, positions, kv_caches,
input_metadata)
return hidden_states
def sample(
self,
hidden_states: torch.Tensor,
sampling_metadata: SamplingMetadata,
) -> Optional[SamplerOutput]:
next_tokens = self.sampler(self.lm_head_weight, hidden_states,
sampling_metadata)
return next_tokens
def load_weights(self,
model_name_or_path: str,
cache_dir: Optional[str] = None,
load_format: str = "auto",
revision: Optional[str] = None):
params_dict = dict(self.named_parameters(remove_duplicate=False))
for name, loaded_weight in hf_model_weights_iterator(
model_name_or_path, cache_dir, load_format, revision):
if "rotary_pos_emb.inv_freq" in name:
continue
if "word_embeddings" in name:
name = name.replace(".word_embeddings", "")
# Skip loading extra bias for GPTQ models.
if name.endswith(".bias") and name not in params_dict:
continue
param = params_dict[name]
weight_loader = getattr(param, "weight_loader",
default_weight_loader)
weight_loader(param, loaded_weight)
|