File size: 12,986 Bytes
ca1ecab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
# coding=utf-8
# Adapted from
# https://github.com/THUDM/ChatGLM2-6B
"""Inference-only ChatGLM model compatible with THUDM weights."""
from typing import List, Optional, Tuple

import torch
from torch import nn
from torch.nn import LayerNorm

from vllm.model_executor.input_metadata import InputMetadata
from vllm.model_executor.layers.activation import SiluAndMul
from vllm.model_executor.layers.attention import PagedAttention
from vllm.model_executor.layers.layernorm import RMSNorm
from vllm.model_executor.layers.linear import (LinearMethodBase,
                                               MergedColumnParallelLinear,
                                               QKVParallelLinear,
                                               RowParallelLinear)
from vllm.model_executor.layers.rotary_embedding import get_rope
from vllm.model_executor.layers.sampler import Sampler
from vllm.model_executor.layers.vocab_parallel_embedding import (
    VocabParallelEmbedding, ParallelLMHead)
from vllm.model_executor.parallel_utils.parallel_state import (
    get_tensor_model_parallel_world_size)
from vllm.model_executor.sampling_metadata import SamplingMetadata
from vllm.model_executor.weight_utils import (default_weight_loader,
                                              hf_model_weights_iterator)
from vllm.sequence import SamplerOutput
from vllm.transformers_utils.configs import ChatGLMConfig

KVCache = Tuple[torch.Tensor, torch.Tensor]


class GLMAttention(nn.Module):

    def __init__(
        self,
        config,
        linear_method: Optional[LinearMethodBase] = None,
    ):
        super().__init__()
        self.hidden_size = config.hidden_size
        tp_size = get_tensor_model_parallel_world_size()
        self.total_num_heads = config.num_attention_heads
        assert self.total_num_heads % tp_size == 0
        self.num_heads = self.total_num_heads // tp_size
        self.multi_query_attention = config.multi_query_attention
        self.total_num_kv_heads = (config.multi_query_group_num
                                   if config.multi_query_attention else
                                   config.num_attention_heads)
        if self.total_num_kv_heads >= tp_size:
            # Number of KV heads is greater than TP size, so we partition
            # the KV heads across multiple tensor parallel GPUs.
            assert self.total_num_kv_heads % tp_size == 0
        else:
            # Number of KV heads is less than TP size, so we replicate
            # the KV heads across multiple tensor parallel GPUs.
            assert tp_size % self.total_num_kv_heads == 0
        self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size)
        self.head_dim = config.hidden_size // self.total_num_heads
        self.q_size = self.num_heads * self.head_dim
        self.kv_size = self.num_kv_heads * self.head_dim
        self.scaling = self.head_dim**-0.5

        self.query_key_value = QKVParallelLinear(
            self.hidden_size,
            self.head_dim,
            self.total_num_heads,
            self.total_num_kv_heads,
            bias=config.add_bias_linear or config.add_qkv_bias,
            linear_method=linear_method,
        )
        self.dense = RowParallelLinear(
            self.total_num_heads * self.head_dim,
            config.hidden_size,
            bias=config.add_bias_linear,
            linear_method=linear_method,
        )

        # https://huggingface.co/THUDM/chatglm3-6b-32k/blob/e210410255278dd9d74463cf396ba559c0ef801c/modeling_chatglm.py#L141
        rope_ratio = getattr(config, "rope_ratio", 1.0)
        max_positions = getattr(config, "seq_length", 8192)
        self.rotary_emb = get_rope(
            self.head_dim,
            rotary_dim=self.head_dim // 2,
            max_position=max_positions,
            base=10000 * rope_ratio,
            is_neox_style=False,
        )
        self.attn = PagedAttention(
            self.num_heads,
            self.head_dim,
            self.scaling,
            num_kv_heads=self.num_kv_heads,
        )

    def forward(
        self,
        hidden_states: torch.Tensor,
        position_ids: torch.Tensor,
        kv_cache: KVCache,
        input_metadata: InputMetadata,
    ) -> torch.Tensor:
        qkv, _ = self.query_key_value(hidden_states)
        q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
        q, k = self.rotary_emb(position_ids, q, k)
        key_cache, value_cache = kv_cache
        context_layer = self.attn(
            q,
            k,
            v,
            key_cache,
            value_cache,
            input_metadata,
        )
        attn_output, _ = self.dense(context_layer)
        return attn_output


class GLMMLP(nn.Module):
    """MLP.

    MLP will take the input with h hidden state, project it to 4*h
    hidden dimension, perform nonlinear transformation, and project the
    state back into h hidden dimension.
    """

    def __init__(
        self,
        config,
        linear_method: Optional[LinearMethodBase] = None,
    ):
        super().__init__()

        self.add_bias = config.add_bias_linear

        # Project to 4h.
        self.dense_h_to_4h = MergedColumnParallelLinear(
            config.hidden_size,
            [config.ffn_hidden_size] * 2,
            bias=config.add_bias_linear,
            linear_method=linear_method,
        )

        self.activation_func = SiluAndMul()

        # Project back to h.
        self.dense_4h_to_h = RowParallelLinear(
            config.ffn_hidden_size,
            config.hidden_size,
            bias=config.add_bias_linear,
            linear_method=linear_method,
        )

    def forward(self, hidden_states):
        # [s, b, 4hp]
        intermediate_parallel, _ = self.dense_h_to_4h(hidden_states)
        intermediate_parallel = self.activation_func(intermediate_parallel)
        # [s, b, h]
        output, _ = self.dense_4h_to_h(intermediate_parallel)
        return output


class GLMBlock(nn.Module):
    """A single transformer layer.

    Transformer layer takes input with size [s, b, h] and returns an
    output of the same size.
    """

    def __init__(
        self,
        config,
        linear_method: Optional[LinearMethodBase] = None,
    ):
        super().__init__()
        self.apply_residual_connection_post_layernorm = (
            config.apply_residual_connection_post_layernorm)

        self.fp32_residual_connection = config.fp32_residual_connection

        layer_norm_func = RMSNorm if config.rmsnorm else LayerNorm
        # Layernorm on the input data.
        self.input_layernorm = layer_norm_func(config.hidden_size,
                                               eps=config.layernorm_epsilon)

        # Self attention.
        self.self_attention = GLMAttention(config, linear_method)
        self.hidden_dropout = config.hidden_dropout

        # Layernorm on the attention output
        self.post_attention_layernorm = layer_norm_func(
            config.hidden_size, eps=config.layernorm_epsilon)

        # MLP
        self.mlp = GLMMLP(config, linear_method)

    def forward(
        self,
        hidden_states: torch.Tensor,
        position_ids: torch.Tensor,
        kv_cache: KVCache,
        input_metadata: InputMetadata,
    ) -> torch.Tensor:
        # hidden_states: [num_tokens, h]
        # Layer norm at the beginning of the transformer layer.
        layernorm_output = self.input_layernorm(hidden_states)
        # Self attention.
        attention_output = self.self_attention(
            hidden_states=layernorm_output,
            position_ids=position_ids,
            kv_cache=kv_cache,
            input_metadata=input_metadata,
        )

        # Residual connection.
        if self.apply_residual_connection_post_layernorm:
            residual = layernorm_output
        else:
            residual = hidden_states

        layernorm_input = residual + attention_output

        # Layer norm post the self attention.
        layernorm_output = self.post_attention_layernorm(layernorm_input)

        # Second residual connection.
        if self.apply_residual_connection_post_layernorm:
            residual = layernorm_output
        else:
            residual = layernorm_input

        output = self.mlp(layernorm_output) + residual

        return output


class GLMTransformer(nn.Module):
    """Transformer class."""

    def __init__(
        self,
        config,
        linear_method: Optional[LinearMethodBase] = None,
    ):
        super().__init__()
        self.post_layer_norm = config.post_layer_norm

        # Number of layers.
        self.num_layers = config.num_layers

        # Transformer layers.
        self.layers = nn.ModuleList(
            [GLMBlock(config, linear_method) for i in range(self.num_layers)])

        if self.post_layer_norm:
            layer_norm_func = RMSNorm if config.rmsnorm else LayerNorm
            # Final layer norm before output.
            self.final_layernorm = layer_norm_func(
                config.hidden_size, eps=config.layernorm_epsilon)

    def forward(
        self,
        hidden_states: torch.Tensor,
        position_ids: torch.Tensor,
        kv_caches: List[KVCache],
        input_metadata: InputMetadata,
    ) -> torch.Tensor:
        for i in range(self.num_layers):
            layer = self.layers[i]
            hidden_states = layer(
                hidden_states=hidden_states,
                position_ids=position_ids,
                kv_cache=kv_caches[i],
                input_metadata=input_metadata,
            )
        # Final layer norm.
        if self.post_layer_norm:
            hidden_states = self.final_layernorm(hidden_states)

        return hidden_states


class ChatGLMModel(nn.Module):

    def __init__(
        self,
        config,
        linear_method: Optional[LinearMethodBase] = None,
    ):
        super().__init__()

        self.embedding = VocabParallelEmbedding(config.padded_vocab_size,
                                                config.hidden_size)

        self.num_layers = config.num_layers
        self.multi_query_group_num = config.multi_query_group_num
        self.kv_channels = config.kv_channels
        self.encoder = GLMTransformer(config, linear_method)

        self.output_layer = ParallelLMHead(config.padded_vocab_size,
                                           config.hidden_size)

    def forward(
        self,
        input_ids: torch.Tensor,
        position_ids: torch.Tensor,
        kv_caches: List[KVCache],
        input_metadata: InputMetadata,
    ) -> torch.Tensor:
        inputs_embeds = self.embedding(input_ids)

        # Run encoder.
        hidden_states = self.encoder(
            hidden_states=inputs_embeds,
            position_ids=position_ids,
            kv_caches=kv_caches,
            input_metadata=input_metadata,
        )
        return hidden_states


class ChatGLMForCausalLM(nn.Module):

    def __init__(
        self,
        config: ChatGLMConfig,
        linear_method: Optional[LinearMethodBase] = None,
    ):
        super().__init__()
        self.config: ChatGLMConfig = config
        self.linear_method = linear_method
        self.transformer = ChatGLMModel(config, linear_method)
        self.lm_head_weight = self.transformer.output_layer.weight
        self.sampler = Sampler(config.padded_vocab_size)

    def forward(
        self,
        input_ids: torch.Tensor,
        positions: torch.Tensor,
        kv_caches: List[KVCache],
        input_metadata: InputMetadata,
    ) -> torch.Tensor:
        hidden_states = self.transformer(input_ids, positions, kv_caches,
                                         input_metadata)
        return hidden_states

    def sample(
        self,
        hidden_states: torch.Tensor,
        sampling_metadata: SamplingMetadata,
    ) -> Optional[SamplerOutput]:
        next_tokens = self.sampler(self.lm_head_weight, hidden_states,
                                   sampling_metadata)
        return next_tokens

    def load_weights(self,
                     model_name_or_path: str,
                     cache_dir: Optional[str] = None,
                     load_format: str = "auto",
                     revision: Optional[str] = None):
        params_dict = dict(self.named_parameters(remove_duplicate=False))
        for name, loaded_weight in hf_model_weights_iterator(
                model_name_or_path, cache_dir, load_format, revision):
            if "rotary_pos_emb.inv_freq" in name:
                continue
            if "word_embeddings" in name:
                name = name.replace(".word_embeddings", "")
            # Skip loading extra bias for GPTQ models.
            if name.endswith(".bias") and name not in params_dict:
                continue
            param = params_dict[name]
            weight_loader = getattr(param, "weight_loader",
                                    default_weight_loader)
            weight_loader(param, loaded_weight)