File size: 17,861 Bytes
ca1ecab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
# coding=utf-8
# Adapted from
# https://github.com/huggingface/transformers/blob/a5cc30d72ae2dc19af534e4b35c986cc28db1275/src/transformers/models/falcon/modeling_falcon.py
# Copyright 2023 The vLLM team.
# Copyright 2023 the Falcon authors and HuggingFace Inc. team.  All rights
# reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch Falcon model."""

import math
from typing import List, Optional, Tuple, Union

import torch
from torch import nn
from torch.nn import LayerNorm
from transformers import FalconConfig as HF_FalconConfig

from vllm.model_executor.input_metadata import InputMetadata
from vllm.model_executor.layers.activation import get_act_fn
from vllm.model_executor.layers.attention import PagedAttention
from vllm.model_executor.layers.linear import (ColumnParallelLinear,
                                               LinearMethodBase,
                                               QKVParallelLinear,
                                               RowParallelLinear)
from vllm.model_executor.layers.rotary_embedding import get_rope
from vllm.model_executor.layers.sampler import Sampler
from vllm.model_executor.layers.vocab_parallel_embedding import (
    VocabParallelEmbedding, ParallelLMHead)
from vllm.model_executor.parallel_utils.communication_op import (
    tensor_model_parallel_all_reduce)
from vllm.model_executor.parallel_utils.parallel_state import (
    get_tensor_model_parallel_rank, get_tensor_model_parallel_world_size)
from vllm.model_executor.sampling_metadata import SamplingMetadata
from vllm.model_executor.weight_utils import (default_weight_loader,
                                              hf_model_weights_iterator)
from vllm.sequence import SamplerOutput
from vllm.transformers_utils.configs import RWConfig

KVCache = Tuple[torch.Tensor, torch.Tensor]
FalconConfig = Union[HF_FalconConfig, RWConfig]


def _get_alibi_slopes(total_num_heads: int) -> torch.Tensor:
    closest_power_of_2 = 2**math.floor(math.log2(total_num_heads))
    base = torch.tensor(2**(-(2**-(math.log2(closest_power_of_2) - 3))),
                        dtype=torch.float32)
    powers = torch.arange(1, 1 + closest_power_of_2, dtype=torch.int32)
    slopes = torch.pow(base, powers)

    if closest_power_of_2 != total_num_heads:
        extra_base = torch.tensor(
            2**(-(2**-(math.log2(2 * closest_power_of_2) - 3))),
            dtype=torch.float32)
        num_remaining_heads = min(closest_power_of_2,
                                  total_num_heads - closest_power_of_2)
        extra_powers = torch.arange(1,
                                    1 + 2 * num_remaining_heads,
                                    2,
                                    dtype=torch.int32)
        slopes = torch.cat(
            [slopes, torch.pow(extra_base, extra_powers)], dim=0)

    return slopes


class FalconAttention(nn.Module):

    def __init__(
        self,
        config: FalconConfig,
        linear_method: Optional[LinearMethodBase] = None,
    ):
        super().__init__()

        self.hidden_size = config.hidden_size
        tp_size = get_tensor_model_parallel_world_size()

        self.total_num_heads = config.num_attention_heads
        assert self.total_num_heads % tp_size == 0
        self.num_heads = self.total_num_heads // tp_size
        self.head_dim = self.hidden_size // self.total_num_heads
        assert self.head_dim * self.total_num_heads == self.hidden_size

        self.new_decoder_architecture = config.new_decoder_architecture
        self.multi_query = config.multi_query

        if self.new_decoder_architecture:
            self.total_num_kv_heads = config.num_kv_heads
        elif self.multi_query:
            self.total_num_kv_heads = 1
        else:
            self.total_num_kv_heads = self.total_num_heads
        if self.total_num_kv_heads >= tp_size:
            # Number of KV heads is greater than TP size, so we partition
            # the KV heads across multiple tensor parallel GPUs.
            assert self.total_num_kv_heads % tp_size == 0
        else:
            # Number of KV heads is less than TP size, so we replicate
            # the KV heads across multiple tensor parallel GPUs.
            assert tp_size % self.total_num_kv_heads == 0
        self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size)

        self.query_key_value = QKVParallelLinear(
            self.hidden_size,
            self.head_dim,
            self.total_num_heads,
            self.total_num_kv_heads,
            bias=config.bias,
            skip_bias_add=True,
            linear_method=linear_method,
        )
        self.q_size = self.num_heads * self.head_dim
        self.kv_size = self.num_kv_heads * self.head_dim

        # Layer-wise attention scaling
        self.inv_norm_factor = 1.0 / math.sqrt(self.head_dim)
        self.reduce_row_parallel_results = not (config.new_decoder_architecture
                                                or config.parallel_attn)
        self.dense = RowParallelLinear(
            self.hidden_size,
            self.hidden_size,
            bias=config.bias,
            skip_bias_add=True,
            linear_method=linear_method,
            reduce_results=self.reduce_row_parallel_results)

        self.use_rotary = config.rotary
        self.use_alibi = config.alibi
        assert not (self.use_rotary and self.use_alibi), (
            "Rotary and alibi are mutually exclusive.")

        if self.use_rotary:
            rope_theta = getattr(config, "rope_theta", 10000)
            max_position_embeddings = getattr(config,
                                              "max_position_embeddings", 8192)
            self.rotary_emb = get_rope(
                self.head_dim,
                rotary_dim=self.head_dim,
                max_position=max_position_embeddings,
                base=rope_theta,
            )
            self.attn = PagedAttention(self.num_heads,
                                       self.head_dim,
                                       self.inv_norm_factor,
                                       num_kv_heads=self.num_kv_heads)
        elif self.use_alibi:
            tp_rank = get_tensor_model_parallel_rank()
            head_start = tp_rank * self.num_heads
            head_end = (tp_rank + 1) * self.num_heads
            alibi_slopes = (_get_alibi_slopes(self.total_num_heads) *
                            self.inv_norm_factor)
            alibi_slopes = alibi_slopes[head_start:head_end].tolist()
            self.attn = PagedAttention(self.num_heads,
                                       self.head_dim,
                                       self.inv_norm_factor,
                                       num_kv_heads=self.num_kv_heads,
                                       alibi_slopes=alibi_slopes)
        else:
            self.attn = PagedAttention(self.num_heads,
                                       self.head_dim,
                                       scale=self.inv_norm_factor,
                                       num_kv_heads=self.num_kv_heads)

    def forward(
        self,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
        kv_cache: KVCache,
        input_metadata: InputMetadata,
    ) -> torch.Tensor:
        qkv, bias = self.query_key_value(hidden_states)
        if bias is not None:
            qkv += bias
        q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
        if self.use_rotary:
            q, k = self.rotary_emb(positions, q, k)
        k_cache, v_cache = kv_cache
        attn_output = self.attn(q, k, v, k_cache, v_cache, input_metadata)
        attn_output, bias = self.dense(attn_output)
        return attn_output, bias


class FalconMLP(nn.Module):

    def __init__(
        self,
        config: FalconConfig,
        linear_method: Optional[LinearMethodBase] = None,
    ):
        super().__init__()
        hidden_size = config.hidden_size

        self.dense_h_to_4h = ColumnParallelLinear(hidden_size,
                                                  4 * hidden_size,
                                                  bias=config.bias,
                                                  skip_bias_add=True,
                                                  linear_method=linear_method)
        quant_config = getattr(linear_method, "quant_config", None)
        self.act = get_act_fn("gelu", quant_config, 4 * hidden_size)
        self.reduce_row_parallel_results = not (config.new_decoder_architecture
                                                or config.parallel_attn)
        self.dense_4h_to_h = RowParallelLinear(
            4 * hidden_size,
            hidden_size,
            bias=config.bias,
            skip_bias_add=True,
            reduce_results=self.reduce_row_parallel_results,
            linear_method=linear_method)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        # NOTE(zhuohan): Following huggingface, we do not fuse bias add here.
        x, bias = self.dense_h_to_4h(x)
        if bias is not None:
            x += bias
        x = self.act(x)
        x, bias = self.dense_4h_to_h(x)
        return x, bias


class FalconDecoderLayer(nn.Module):

    def __init__(
        self,
        config: FalconConfig,
        linear_method: Optional[LinearMethodBase] = None,
    ):
        super().__init__()
        hidden_size = config.hidden_size
        self.num_heads = config.num_attention_heads
        self.self_attention = FalconAttention(config, linear_method)
        self.mlp = FalconMLP(config, linear_method)
        self.config = config

        if config.new_decoder_architecture:
            # The layer norm before self-attention
            self.ln_attn = LayerNorm(hidden_size,
                                     eps=config.layer_norm_epsilon)
            # The layer norm before the MLP
            self.ln_mlp = LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
        else:
            self.input_layernorm = LayerNorm(hidden_size,
                                             eps=config.layer_norm_epsilon)
            if not config.parallel_attn:
                self.post_attention_layernorm = LayerNorm(
                    hidden_size, eps=config.layer_norm_epsilon)

        self.reduce_row_parallel_results = not (config.new_decoder_architecture
                                                or config.parallel_attn)

    def forward(
        self,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
        kv_cache: KVCache,
        input_metadata: InputMetadata,
    ) -> torch.Tensor:
        residual = hidden_states

        if self.config.new_decoder_architecture:
            attention_layernorm_out = self.ln_attn(hidden_states)
            mlp_layernorm_out = self.ln_mlp(hidden_states)
        else:
            attention_layernorm_out = self.input_layernorm(hidden_states)

        # Self attention.
        attention_output, attention_bias = self.self_attention(
            positions=positions,
            hidden_states=attention_layernorm_out,
            kv_cache=kv_cache,
            input_metadata=input_metadata,
        )
        if self.reduce_row_parallel_results and attention_bias is not None:
            attention_output += attention_bias

        if not self.config.new_decoder_architecture:
            if self.config.parallel_attn:
                mlp_layernorm_out = attention_layernorm_out
            else:
                residual += attention_output
                mlp_layernorm_out = self.post_attention_layernorm(residual)

        # MLP.
        mlp_output, mlp_bias = self.mlp(mlp_layernorm_out)
        if self.reduce_row_parallel_results and mlp_bias is not None:
            mlp_output += mlp_bias

        if not self.reduce_row_parallel_results:
            # When MLP and Attention layers are parallel, we can use
            # only one all-reduce operator to reduce the results from
            # both MLP and Attention layers.
            mlp_output += attention_output
            mlp_output = tensor_model_parallel_all_reduce(mlp_output)
            if attention_bias is not None:
                mlp_output += attention_bias
            if mlp_bias is not None:
                mlp_output += mlp_bias

        output = mlp_output + residual
        return output


class FalconModel(nn.Module):

    def __init__(
        self,
        config: FalconConfig,
        linear_method: Optional[LinearMethodBase] = None,
    ):
        super().__init__()
        self.config = config
        self.embed_dim = config.hidden_size
        self.num_heads = config.num_attention_heads
        self.use_alibi = config.alibi

        # Embedding + LN Embedding
        self.word_embeddings = VocabParallelEmbedding(
            config.vocab_size,
            self.embed_dim,
        )

        # Transformer blocks
        self.h = nn.ModuleList([
            FalconDecoderLayer(config, linear_method)
            for _ in range(config.num_hidden_layers)
        ])

        # Final Layer Norm
        self.ln_f = LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon)

    def forward(
        self,
        input_ids: torch.LongTensor,
        positions: torch.Tensor,
        kv_caches: List[KVCache],
        input_metadata: InputMetadata,
    ) -> torch.Tensor:
        hidden_states = self.word_embeddings(input_ids)
        for i in range(len(self.h)):
            layer = self.h[i]
            hidden_states = layer(
                positions,
                hidden_states,
                kv_caches[i],
                input_metadata,
            )
        hidden_states = self.ln_f(hidden_states)
        return hidden_states


class FalconForCausalLM(nn.Module):

    def __init__(
        self,
        config: FalconConfig,
        linear_method: Optional[LinearMethodBase] = None,
    ):
        super().__init__()
        self.config = config
        self.linear_method = linear_method
        self.transformer = FalconModel(config, linear_method)
        self.lm_head = ParallelLMHead(
            config.vocab_size,
            config.hidden_size,
        )
        self.sampler = Sampler(config.vocab_size)

    def forward(
        self,
        input_ids: torch.LongTensor,
        positions: torch.Tensor,
        kv_caches: List[KVCache],
        input_metadata: InputMetadata,
    ) -> torch.Tensor:
        hidden_states = self.transformer(
            input_ids,
            positions,
            kv_caches,
            input_metadata,
        )
        return hidden_states

    def sample(
        self,
        hidden_states: torch.Tensor,
        sampling_metadata: SamplingMetadata,
    ) -> Optional[SamplerOutput]:
        next_tokens = self.sampler(self.lm_head.weight, hidden_states,
                                   sampling_metadata)
        return next_tokens

    def load_weights(self,
                     model_name_or_path: str,
                     cache_dir: Optional[str] = None,
                     load_format: str = "auto",
                     revision: Optional[str] = None):
        total_num_heads = self.config.num_attention_heads
        if self.config.new_decoder_architecture:
            total_num_kv_heads = self.config.num_kv_heads
        elif self.config.multi_query:
            total_num_kv_heads = 1
        else:
            total_num_kv_heads = total_num_heads
        num_query_heads_per_kv_head = total_num_heads // total_num_kv_heads
        params_dict = dict(self.named_parameters())
        for name, loaded_weight in hf_model_weights_iterator(
                model_name_or_path, cache_dir, load_format, revision):
            # Skip loading extra bias for GPTQ models.
            if name.endswith(".bias") and name not in params_dict:
                continue
            param = params_dict[name]
            if "query_key_value" in name:
                output_dim = getattr(param, "output_dim", None)
                loaded_weight_shape = loaded_weight.shape
                if output_dim is not None:
                    loaded_weight = loaded_weight.view(
                        loaded_weight_shape[:output_dim] +
                        (total_num_kv_heads, num_query_heads_per_kv_head + 2,
                         -1) + loaded_weight_shape[output_dim + 1:])
                    wq = loaded_weight.narrow(
                        output_dim + 1, 0,
                        num_query_heads_per_kv_head).reshape(
                            *loaded_weight_shape[:output_dim], -1,
                            *loaded_weight_shape[output_dim + 1:])
                    wk = loaded_weight.narrow(
                        output_dim + 1, num_query_heads_per_kv_head,
                        1).reshape(*loaded_weight_shape[:output_dim], -1,
                                   *loaded_weight_shape[output_dim + 1:])
                    wv = loaded_weight.narrow(
                        output_dim + 1, num_query_heads_per_kv_head + 1,
                        1).reshape(*loaded_weight_shape[:output_dim], -1,
                                   *loaded_weight_shape[output_dim + 1:])
                    loaded_weight = torch.cat([wq, wk, wv], dim=output_dim)

            weight_loader = getattr(param, "weight_loader",
                                    default_weight_loader)
            weight_loader(param, loaded_weight)