File size: 10,098 Bytes
ca1ecab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
# coding=utf-8
# Adapted from
# https://github.com/huggingface/transformers/blob/v4.28.0/src/transformers/models/gpt2/modeling_gpt2.py
# Copyright 2023 The vLLM team.
# Copyright 2018 The OpenAI Team Authors and HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Inference-only GPT-2 model compatible with HuggingFace weights."""
from typing import List, Optional, Tuple

import torch
from torch import nn
from transformers import GPT2Config

from vllm.model_executor.input_metadata import InputMetadata
from vllm.model_executor.layers.activation import get_act_fn
from vllm.model_executor.layers.attention import PagedAttention
from vllm.model_executor.layers.linear import (ColumnParallelLinear,
                                               LinearMethodBase,
                                               QKVParallelLinear,
                                               RowParallelLinear)
from vllm.model_executor.layers.sampler import Sampler
from vllm.model_executor.layers.vocab_parallel_embedding import (
    VocabParallelEmbedding)
from vllm.model_executor.parallel_utils.parallel_state import (
    get_tensor_model_parallel_world_size)
from vllm.model_executor.sampling_metadata import SamplingMetadata
from vllm.model_executor.weight_utils import (default_weight_loader,
                                              hf_model_weights_iterator)
from vllm.sequence import SamplerOutput

KVCache = Tuple[torch.Tensor, torch.Tensor]


class GPT2Attention(nn.Module):

    def __init__(
        self,
        config: GPT2Config,
        linear_method: Optional[LinearMethodBase] = None,
    ):
        super().__init__()
        self.hidden_size = config.hidden_size
        total_num_heads = config.num_attention_heads
        tensor_model_parallel_world_size = (
            get_tensor_model_parallel_world_size())
        assert total_num_heads % tensor_model_parallel_world_size == 0
        self.num_heads = total_num_heads // tensor_model_parallel_world_size
        self.head_dim = self.hidden_size // total_num_heads
        self.scale = self.head_dim**-0.5

        self.c_attn = QKVParallelLinear(
            self.hidden_size,
            self.head_dim,
            total_num_heads,
            bias=True,
            linear_method=linear_method,
        )
        self.c_proj = RowParallelLinear(
            self.hidden_size,
            self.hidden_size,
            bias=True,
            linear_method=linear_method,
        )
        self.attn = PagedAttention(self.num_heads,
                                   self.head_dim,
                                   scale=self.scale)

    def forward(
        self,
        hidden_states: torch.Tensor,
        kv_cache: KVCache,
        input_metadata: InputMetadata,
    ) -> torch.Tensor:
        qkv, _ = self.c_attn(hidden_states)
        q, k, v = qkv.chunk(chunks=3, dim=-1)
        key_cache, value_cache = kv_cache
        attn_output = self.attn(q, k, v, key_cache, value_cache,
                                input_metadata)
        attn_output, _ = self.c_proj(attn_output)
        return attn_output


class GPT2MLP(nn.Module):

    def __init__(
        self,
        intermediate_size: int,
        config: GPT2Config,
        linear_method: Optional[LinearMethodBase] = None,
    ):
        super().__init__()
        hidden_size = config.hidden_size
        self.c_fc = ColumnParallelLinear(
            hidden_size,
            intermediate_size,
            bias=True,
            linear_method=linear_method,
        )
        self.c_proj = RowParallelLinear(
            intermediate_size,
            hidden_size,
            bias=True,
            linear_method=linear_method,
        )
        quant_config = getattr(linear_method, "quant_config", None)
        self.act = get_act_fn(config.activation_function, quant_config,
                              intermediate_size)

    def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
        hidden_states, _ = self.c_fc(hidden_states)
        hidden_states = self.act(hidden_states)
        hidden_states, _ = self.c_proj(hidden_states)
        return hidden_states


class GPT2Block(nn.Module):

    def __init__(
        self,
        config: GPT2Config,
        linear_method: Optional[LinearMethodBase] = None,
    ):
        super().__init__()
        hidden_size = config.hidden_size
        inner_dim = (config.n_inner if config.n_inner is not None else 4 *
                     hidden_size)

        self.ln_1 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
        self.attn = GPT2Attention(config, linear_method)
        self.ln_2 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
        self.mlp = GPT2MLP(inner_dim, config, linear_method)

    def forward(
        self,
        hidden_states: torch.Tensor,
        kv_cache: KVCache,
        input_metadata: InputMetadata,
    ) -> torch.Tensor:
        residual = hidden_states
        hidden_states = self.ln_1(hidden_states)
        attn_output = self.attn(
            hidden_states=hidden_states,
            kv_cache=kv_cache,
            input_metadata=input_metadata,
        )
        # residual connection
        hidden_states = attn_output + residual

        residual = hidden_states
        hidden_states = self.ln_2(hidden_states)
        feed_forward_hidden_states = self.mlp(hidden_states)
        # residual connection
        hidden_states = residual + feed_forward_hidden_states
        return hidden_states


class GPT2Model(nn.Module):

    def __init__(
        self,
        config: GPT2Config,
        linear_method: Optional[LinearMethodBase] = None,
    ):
        super().__init__()
        self.config = config
        assert not config.add_cross_attention
        assert not config.scale_attn_by_inverse_layer_idx
        assert not config.reorder_and_upcast_attn
        self.embed_dim = config.hidden_size
        self.wte = VocabParallelEmbedding(config.vocab_size, self.embed_dim)
        self.wpe = nn.Embedding(config.max_position_embeddings, self.embed_dim)
        self.h = nn.ModuleList([
            GPT2Block(config, linear_method)
            for _ in range(config.num_hidden_layers)
        ])
        self.ln_f = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon)

    def forward(
        self,
        input_ids: torch.Tensor,
        position_ids: torch.Tensor,
        kv_caches: List[KVCache],
        input_metadata: InputMetadata,
    ) -> torch.Tensor:
        inputs_embeds = self.wte(input_ids)
        position_embeds = self.wpe(position_ids)
        hidden_states = inputs_embeds + position_embeds

        for i in range(len(self.h)):
            layer = self.h[i]
            hidden_states = layer(hidden_states, kv_caches[i], input_metadata)

        hidden_states = self.ln_f(hidden_states)
        return hidden_states


class GPT2LMHeadModel(nn.Module):

    def __init__(
        self,
        config: GPT2Config,
        linear_method: Optional[LinearMethodBase] = None,
    ):
        super().__init__()
        self.config = config
        self.linear_method = linear_method
        self.transformer = GPT2Model(config, linear_method)
        self.lm_head_weight = self.transformer.wte.weight
        self.sampler = Sampler(config.vocab_size)

    def forward(
        self,
        input_ids: torch.Tensor,
        positions: torch.Tensor,
        kv_caches: List[KVCache],
        input_metadata: InputMetadata,
    ) -> torch.Tensor:
        hidden_states = self.transformer(input_ids, positions, kv_caches,
                                         input_metadata)
        return hidden_states

    def sample(
        self,
        hidden_states: torch.Tensor,
        sampling_metadata: SamplingMetadata,
    ) -> Optional[SamplerOutput]:
        next_tokens = self.sampler(self.lm_head_weight, hidden_states,
                                   sampling_metadata)
        return next_tokens

    def load_weights(self,
                     model_name_or_path: str,
                     cache_dir: Optional[str] = None,
                     load_format: str = "auto",
                     revision: Optional[str] = None):
        params_dict = dict(self.named_parameters(remove_duplicate=False))
        for name, loaded_weight in hf_model_weights_iterator(
                model_name_or_path, cache_dir, load_format, revision):
            if "lm_head.weight" in name:
                # GPT-2 ties the weights of the embedding layer and the final
                # linear layer.
                continue
            if ".attn.bias" in name or ".attn.masked_bias" in name:
                # Skip attention mask.
                # NOTE: "c_attn.bias" should not be skipped.
                continue
            if not name.startswith("transformer."):
                name = "transformer." + name
            param = params_dict[name]
            # The HF's GPT-2 implementation uses Conv1D instead of Linear.
            # Because of this, we need to transpose the weights.
            # Note(zhuohan): the logic below might break quantized models.
            for conv1d_weight_name in ["c_attn", "c_proj", "c_fc"]:
                if conv1d_weight_name not in name:
                    continue
                if not name.endswith(".weight"):
                    continue
                loaded_weight = loaded_weight.t()
            weight_loader = getattr(param, "weight_loader",
                                    default_weight_loader)
            weight_loader(param, loaded_weight)