File size: 10,792 Bytes
ca1ecab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
# coding=utf-8
# Adapted from https://huggingface.co/mosaicml/mpt-7b/tree/main
import math
from typing import List, Optional, Tuple

import torch
import torch.nn as nn

from vllm.model_executor.input_metadata import InputMetadata
from vllm.model_executor.layers.activation import get_act_fn
from vllm.model_executor.layers.attention import PagedAttention
from vllm.model_executor.layers.linear import (ColumnParallelLinear,
                                               LinearMethodBase,
                                               QKVParallelLinear,
                                               RowParallelLinear)
from vllm.model_executor.layers.sampler import Sampler
from vllm.model_executor.layers.vocab_parallel_embedding import (
    VocabParallelEmbedding)
from vllm.model_executor.parallel_utils.parallel_state import (
    get_tensor_model_parallel_rank, get_tensor_model_parallel_world_size)
from vllm.model_executor.sampling_metadata import SamplingMetadata
from vllm.model_executor.weight_utils import (default_weight_loader,
                                              hf_model_weights_iterator)
from vllm.sequence import SamplerOutput
from vllm.transformers_utils.configs.mpt import MPTConfig

KVCache = Tuple[torch.Tensor, torch.Tensor]


def _get_alibi_slopes(
    total_num_heads: int,
    alibi_bias_max: int,
) -> torch.Tensor:
    next_power_of_2 = 2**math.ceil(math.log2(total_num_heads))
    m = torch.arange(1, next_power_of_2 + 1, dtype=torch.float32)
    m = m.mul(alibi_bias_max / next_power_of_2)
    slopes = 1.0 / torch.pow(2, m)
    if next_power_of_2 != total_num_heads:
        slopes = torch.concat([slopes[1::2], slopes[::2]])[:total_num_heads]
    return slopes


class MPTAttention(nn.Module):

    def __init__(
        self,
        config: MPTConfig,
        linear_method: Optional[LinearMethodBase] = None,
    ):
        super().__init__()
        self.d_model = config.d_model
        self.total_num_heads = config.n_heads
        self.head_dim = self.d_model // self.total_num_heads
        self.clip_qkv = config.attn_config["clip_qkv"]
        self.qk_ln = config.attn_config["qk_ln"]
        self.alibi_bias_max = config.attn_config["alibi_bias_max"]
        if "kv_n_heads" in config.attn_config:
            self.total_num_kv_heads = config.attn_config['kv_n_heads']
        else:
            self.total_num_kv_heads = self.total_num_heads
        assert not config.attn_config["prefix_lm"]
        assert config.attn_config["alibi"]

        # pylint: disable=invalid-name
        self.Wqkv = QKVParallelLinear(
            self.d_model,
            self.d_model // self.total_num_heads,
            self.total_num_heads,
            self.total_num_kv_heads,
            bias=not config.no_bias,
            linear_method=linear_method,
        )
        if self.qk_ln:
            self.q_ln = nn.LayerNorm(self.d_model)
            self.k_ln = nn.LayerNorm(self.d_model)
        self.out_proj = RowParallelLinear(
            self.d_model,
            self.d_model,
            bias=not config.no_bias,
            linear_method=linear_method,
        )

        tp_world_size = get_tensor_model_parallel_world_size()
        assert self.total_num_heads % tp_world_size == 0
        self.num_heads = self.total_num_heads // tp_world_size

        if self.total_num_kv_heads >= tp_world_size:
            # Number of KV heads is greater than TP size, so we partition
            # the KV heads across multiple tensor parallel GPUs.
            assert self.total_num_kv_heads % tp_world_size == 0
        else:
            # Number of KV heads is less than TP size, so we replicate
            # the KV heads across multiple tensor parallel GPUs.
            assert tp_world_size % self.total_num_kv_heads == 0
        self.num_kv_heads = max(1, self.total_num_kv_heads // tp_world_size)
        self.q_size = self.num_heads * self.head_dim
        self.kv_size = self.num_kv_heads * self.head_dim
        # Create the alibi slopes and slice them.
        tp_rank = get_tensor_model_parallel_rank()
        head_start = tp_rank * self.num_heads
        head_end = (tp_rank + 1) * self.num_heads
        alibi_slopes = _get_alibi_slopes(self.total_num_heads,
                                         self.alibi_bias_max)
        alibi_slopes = alibi_slopes[head_start:head_end].tolist()

        self.head_dim = self.d_model // self.total_num_heads
        scaling = self.head_dim**-0.5
        self.attn = PagedAttention(self.num_heads,
                                   self.head_dim,
                                   scaling,
                                   alibi_slopes=alibi_slopes,
                                   num_kv_heads=self.num_kv_heads)

    def forward(
        self,
        position_ids: torch.Tensor,
        hidden_states: torch.Tensor,
        kv_cache: KVCache,
        input_metadata: InputMetadata,
    ) -> torch.Tensor:
        del position_ids  # unused.
        qkv, _ = self.Wqkv(hidden_states)
        if self.clip_qkv is not None:
            qkv.clamp_(min=-self.clip_qkv, max=self.clip_qkv)
        q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
        if self.qk_ln:
            q = self.q_ln(q)
            k = self.k_ln(k)
        k_cache, v_cache = kv_cache
        attn_output = self.attn(q, k, v, k_cache, v_cache, input_metadata)
        output, _ = self.out_proj(attn_output)
        return output


class MPTMLP(nn.Module):

    def __init__(
        self,
        config: MPTConfig,
        linear_method: Optional[LinearMethodBase] = None,
    ):
        super().__init__()
        hidden_size = config.d_model
        expansion_ratio = config.expansion_ratio
        intermediate_size = expansion_ratio * hidden_size
        self.up_proj = ColumnParallelLinear(
            hidden_size,
            intermediate_size,
            bias=not config.no_bias,
            linear_method=linear_method,
        )
        quant_config = getattr(linear_method, "quant_config", None)
        self.act = get_act_fn("gelu", quant_config, intermediate_size)
        self.down_proj = RowParallelLinear(
            intermediate_size,
            hidden_size,
            bias=not config.no_bias,
            linear_method=linear_method,
        )

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        x, _ = self.up_proj(x)
        x = self.act(x)
        x, _ = self.down_proj(x)
        return x


class MPTBlock(nn.Module):

    def __init__(
        self,
        config: MPTConfig,
        linear_method: Optional[LinearMethodBase] = None,
    ):
        super().__init__()
        hidden_size = config.d_model
        self.norm_1 = nn.LayerNorm(hidden_size)
        self.attn = MPTAttention(config, linear_method)
        self.norm_2 = nn.LayerNorm(hidden_size)
        self.ffn = MPTMLP(config, linear_method)

    def forward(
        self,
        position_ids: torch.Tensor,
        hidden_states: torch.Tensor,
        kv_cache: KVCache,
        input_metadata: InputMetadata,
    ) -> torch.Tensor:
        x = self.norm_1(hidden_states)
        x = self.attn(
            position_ids=position_ids,
            hidden_states=x,
            kv_cache=kv_cache,
            input_metadata=input_metadata,
        )
        hidden_states = hidden_states + x
        x = self.norm_2(hidden_states)
        x = self.ffn(x)
        hidden_states = hidden_states + x
        return hidden_states


class MPTModel(nn.Module):

    def __init__(
        self,
        config: MPTConfig,
        linear_method: Optional[LinearMethodBase] = None,
    ):
        super().__init__()
        assert config.embedding_fraction == 1.0
        assert config.norm_type == "low_precision_layernorm"

        self.wte = VocabParallelEmbedding(
            config.vocab_size,
            config.d_model,
        )
        self.blocks = nn.ModuleList(
            [MPTBlock(config, linear_method) for _ in range(config.n_layers)])
        self.norm_f = nn.LayerNorm(config.d_model)
        if config.no_bias:
            for module in self.modules():
                if hasattr(module, "bias") and isinstance(
                        module.bias, nn.Parameter):
                    # Remove the bias term in Linear and LayerNorm.
                    module.register_parameter("bias", None)

    def forward(
        self,
        input_ids: torch.Tensor,
        position_ids: torch.Tensor,
        kv_caches: List[KVCache],
        input_metadata: InputMetadata,
    ) -> torch.Tensor:
        hidden_states = self.wte(input_ids)
        for i in range(len(self.blocks)):
            block = self.blocks[i]
            hidden_states = block(
                position_ids,
                hidden_states,
                kv_caches[i],
                input_metadata,
            )
        hidden_states = self.norm_f(hidden_states)
        return hidden_states


class MPTForCausalLM(nn.Module):

    def __init__(
        self,
        config: MPTConfig,
        linear_method: Optional[LinearMethodBase] = None,
    ):
        super().__init__()
        self.config = config
        assert config.tie_word_embeddings
        self.linear_method = linear_method

        self.transformer = MPTModel(config, linear_method)
        self.lm_head_weight = self.transformer.wte.weight
        self.sampler = Sampler(config.vocab_size)

    def forward(
        self,
        input_ids: torch.Tensor,
        positions: torch.Tensor,
        kv_caches: List[KVCache],
        input_metadata: InputMetadata,
    ) -> torch.Tensor:
        hidden_states = self.transformer(input_ids, positions, kv_caches,
                                         input_metadata)
        return hidden_states

    def sample(
        self,
        hidden_states: torch.Tensor,
        sampling_metadata: SamplingMetadata,
    ) -> Optional[SamplerOutput]:
        next_tokens = self.sampler(self.lm_head_weight, hidden_states,
                                   sampling_metadata)
        return next_tokens

    def load_weights(self,
                     model_name_or_path: str,
                     cache_dir: Optional[str] = None,
                     load_format: str = "auto",
                     revision: Optional[str] = None):
        params_dict = dict(self.named_parameters(remove_duplicate=False))
        for name, loaded_weight in hf_model_weights_iterator(
                model_name_or_path, cache_dir, load_format, revision):
            # Skip loading extra bias for GPTQ models.
            if name.endswith(".bias") and name not in params_dict:
                continue
            param = params_dict[name]
            weight_loader = getattr(param, "weight_loader",
                                    default_weight_loader)
            weight_loader(param, loaded_weight)