File size: 12,384 Bytes
ca1ecab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
# coding=utf-8
# Copyright 2023 Stability AI, EleutherAI, and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# This code is based off the following work:
# https://huggingface.co/stabilityai/stablelm-3b-4e1t/blob/main/modeling_stablelm_epoch.py
# https://huggingface.co/stabilityai/stablelm-3b-4e1t/blob/main/config.json
"""Inference-only StabeLM (https://github.com/Stability-AI/StableLM) model compatible with HuggingFace weights."""
from typing import List, Optional, Tuple

import torch
from torch import nn
from transformers import PretrainedConfig

from vllm.model_executor.input_metadata import InputMetadata
from vllm.model_executor.layers.activation import SiluAndMul
from vllm.model_executor.layers.attention import PagedAttention
from vllm.model_executor.layers.linear import (LinearMethodBase,
                                               MergedColumnParallelLinear,
                                               QKVParallelLinear,
                                               RowParallelLinear)
from vllm.model_executor.layers.rotary_embedding import get_rope
from vllm.model_executor.layers.sampler import Sampler
from vllm.model_executor.layers.vocab_parallel_embedding import (
    VocabParallelEmbedding, ParallelLMHead)
from vllm.model_executor.parallel_utils.parallel_state import (
    get_tensor_model_parallel_world_size)
from vllm.model_executor.sampling_metadata import SamplingMetadata
from vllm.model_executor.weight_utils import (default_weight_loader,
                                              hf_model_weights_iterator)
from vllm.sequence import SamplerOutput

KVCache = Tuple[torch.Tensor, torch.Tensor]


class StablelmMLP(nn.Module):

    def __init__(self,
                 config: PretrainedConfig,
                 linear_method: Optional[LinearMethodBase] = None) -> None:
        super().__init__()
        self.config = config
        self.hidden_size = config.hidden_size
        self.intermediate_size = config.intermediate_size
        self.gate_up_proj = MergedColumnParallelLinear(
            config.hidden_size, [config.intermediate_size] * 2,
            bias=False,
            linear_method=linear_method)
        self.down_proj = RowParallelLinear(config.intermediate_size,
                                           config.hidden_size,
                                           bias=False)
        self.act_fn = SiluAndMul()

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        gate_up, _ = self.gate_up_proj(x)
        x = self.act_fn(gate_up)
        x, _ = self.down_proj(x)
        return x


class StablelmAttention(nn.Module):

    def __init__(self,
                 config: PretrainedConfig,
                 linear_method: Optional[LinearMethodBase] = None) -> None:
        super().__init__()
        self.config = config
        self.hidden_size = config.hidden_size
        tp_size = get_tensor_model_parallel_world_size()
        self.total_num_heads = config.num_attention_heads
        self.num_heads = self.total_num_heads // tp_size

        self.total_num_key_value_heads = config.num_key_value_heads
        if self.total_num_key_value_heads >= tp_size:
            # Number of KV heads is greater than TP size, so we partition
            # the KV heads across multiple tensor parallel GPUs.
            assert self.total_num_key_value_heads % tp_size == 0
        else:
            # Number of KV heads is less than TP size, so we replicate
            # the KV heads across multiple tensor parallel GPUs.
            assert tp_size % self.total_num_key_value_heads == 0
        self.num_key_value_heads = max(
            1, self.total_num_key_value_heads // tp_size)
        self.head_dim = self.hidden_size // self.total_num_heads
        self.max_position_embeddings = config.max_position_embeddings
        self.rotary_ndims = int(self.head_dim * self.config.rope_pct)
        self.scaling = self.head_dim**-0.5
        self.q_size = self.num_heads * self.head_dim
        self.kv_size = self.num_key_value_heads * self.head_dim
        self.qkv_bias = getattr(config, "use_qkv_bias", False)
        if (self.head_dim * self.num_heads * tp_size) != self.hidden_size:
            raise ValueError(
                f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
                f" and `num_heads`: {self.num_heads}).")

        self.qkv_proj = QKVParallelLinear(self.hidden_size,
                                          self.head_dim,
                                          self.total_num_heads,
                                          self.total_num_key_value_heads,
                                          self.qkv_bias,
                                          linear_method=linear_method)
        self.o_proj = RowParallelLinear(self.total_num_heads * self.head_dim,
                                        self.hidden_size,
                                        bias=False,
                                        linear_method=linear_method)
        self.rotary_ndims = int(self.head_dim * self.config.rope_pct)
        self.rotary_emb = get_rope(
            self.head_dim,
            rotary_dim=self.rotary_ndims,
            max_position=self.config.max_position_embeddings,
            base=self.config.rope_theta,
        )
        self.attn = PagedAttention(self.num_heads,
                                   self.head_dim,
                                   self.scaling,
                                   num_kv_heads=self.num_key_value_heads)

    def forward(
        self,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
        kv_cache: KVCache,
        input_metadata: InputMetadata,
    ) -> torch.Tensor:
        qkv, _ = self.qkv_proj(hidden_states)
        q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
        q, k = self.rotary_emb(positions, q, k)
        k_cache, v_cache = kv_cache
        attn_output = self.attn(q, k, v, k_cache, v_cache, input_metadata)
        output, _ = self.o_proj(attn_output)
        return output


class StablelmDecoderLayer(nn.Module):

    def __init__(
        self,
        config: PretrainedConfig,
        linear_method: Optional[LinearMethodBase] = None,
    ) -> None:
        super().__init__()
        self.self_attn = StablelmAttention(config)
        self.mlp = StablelmMLP(config, linear_method)
        self.input_layernorm = nn.LayerNorm(config.hidden_size,
                                            eps=config.norm_eps)
        self.post_attention_layernorm = nn.LayerNorm(config.hidden_size,
                                                     eps=config.norm_eps)

    def forward(
        self,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
        kv_cache: KVCache,
        input_metadata: InputMetadata,
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        # Self Attention
        residual = hidden_states
        hidden_states = self.input_layernorm(hidden_states)
        hidden_states = self.self_attn(
            positions=positions,
            hidden_states=hidden_states,
            kv_cache=kv_cache,
            input_metadata=input_metadata,
        )
        hidden_states = residual + hidden_states

        # Fully Connected
        residual = hidden_states
        hidden_states = self.post_attention_layernorm(hidden_states)
        hidden_states = self.mlp(hidden_states)
        hidden_states = residual + hidden_states

        return hidden_states, residual


class StableLMEpochModel(nn.Module):

    def __init__(self,
                 config: PretrainedConfig,
                 linear_method: Optional[LinearMethodBase] = None) -> None:
        super().__init__()
        # self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, config.pad_token_id)
        self.embed_tokens = VocabParallelEmbedding(
            config.vocab_size,
            config.hidden_size,
        )
        self.layers = nn.ModuleList([
            StablelmDecoderLayer(config, linear_method)
            for _ in range(config.num_hidden_layers)
        ])
        self.norm = nn.LayerNorm(config.hidden_size, eps=config.norm_eps)

    def forward(
        self,
        input_ids: torch.Tensor,
        positions: torch.Tensor,
        kv_caches: List[KVCache],
        input_metadata: InputMetadata,
    ) -> torch.Tensor:
        hidden_states = self.embed_tokens(input_ids)
        for i in range(len(self.layers)):
            layer = self.layers[i]
            hidden_states, residual = layer(
                positions,
                hidden_states,
                kv_caches[i],
                input_metadata,
            )
        hidden_states = self.norm(hidden_states)
        return hidden_states


class StablelmForCausalLM(nn.Module):

    def __init__(
        self,
        config: PretrainedConfig,
        linear_method: Optional[LinearMethodBase] = None,
    ) -> None:
        super().__init__()
        self.config = config
        self.linear_method = linear_method
        self.model = StableLMEpochModel(config, linear_method)
        self.lm_head = ParallelLMHead(config.vocab_size, config.hidden_size)
        self.sampler = Sampler(config.vocab_size)

    def forward(
        self,
        input_ids: torch.Tensor,
        positions: torch.Tensor,
        kv_caches: List[KVCache],
        input_metadata: InputMetadata,
    ) -> torch.Tensor:
        hidden_states = self.model(input_ids, positions, kv_caches,
                                   input_metadata)
        return hidden_states

    def sample(
        self,
        hidden_states: torch.Tensor,
        sampling_metadata: SamplingMetadata,
    ) -> Optional[SamplerOutput]:
        next_tokens = self.sampler(self.lm_head.weight, hidden_states,
                                   sampling_metadata)
        return next_tokens

    def load_weights(self,
                     model_name_or_path: str,
                     cache_dir: Optional[str] = None,
                     load_format: str = "auto",
                     revision: Optional[str] = None):
        stacked_params_mapping = [
            # (param_name, shard_name, shard_id)
            ("qkv_proj", "q_proj", "q"),
            ("qkv_proj", "k_proj", "k"),
            ("qkv_proj", "v_proj", "v"),
            ("gate_up_proj", "gate_proj", 0),
            ("gate_up_proj", "up_proj", 1),
        ]
        params_dict = dict(self.named_parameters())
        for name, loaded_weight in hf_model_weights_iterator(
                model_name_or_path, cache_dir, load_format, revision):
            if "rotary_emb.inv_freq" in name:
                continue
            if ("rotary_emb.cos_cached" in name
                    or "rotary_emb.sin_cached" in name):
                # Models trained using ColossalAI may include these tensors in
                # the checkpoint. Skip them.
                continue
            for (param_name, weight_name, shard_id) in stacked_params_mapping:
                if weight_name not in name:
                    continue
                name = name.replace(weight_name, param_name)
                # Skip loading extra bias for GPTQ models.
                if name.endswith(".bias") and name not in params_dict:
                    continue
                param = params_dict[name]
                weight_loader = param.weight_loader
                weight_loader(param, loaded_weight, shard_id)
                break
            else:
                # Skip loading extra bias for GPTQ models.
                if name.endswith(".bias") and name not in params_dict:
                    continue
                param = params_dict[name]
                weight_loader = getattr(param, "weight_loader",
                                        default_weight_loader)
                weight_loader(param, loaded_weight)