File size: 11,030 Bytes
ca1ecab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
"""Utilities for downloading and initializing model weights."""
import filelock
import glob
import fnmatch
import json
import os
from collections import defaultdict
from typing import Any, Iterator, List, Optional, Tuple

from huggingface_hub import snapshot_download, HfFileSystem
import numpy as np
from safetensors.torch import load_file, save_file, safe_open
import torch
from transformers import PretrainedConfig
from tqdm.auto import tqdm

from vllm.logger import init_logger
from vllm.model_executor.layers.quantization import (get_quantization_config,
                                                     QuantizationConfig)

logger = init_logger(__name__)


class Disabledtqdm(tqdm):

    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs, disable=True)


def get_lock(model_name_or_path: str, cache_dir: Optional[str] = None):
    lock_dir = cache_dir if cache_dir is not None else "/tmp"
    lock_file_name = model_name_or_path.replace("/", "-") + ".lock"
    lock = filelock.FileLock(os.path.join(lock_dir, lock_file_name))
    return lock


def _shared_pointers(tensors):
    ptrs = defaultdict(list)
    for k, v in tensors.items():
        ptrs[v.data_ptr()].append(k)
    failing = []
    for _, names in ptrs.items():
        if len(names) > 1:
            failing.append(names)
    return failing


def convert_bin_to_safetensor_file(
    pt_filename: str,
    sf_filename: str,
) -> None:
    loaded = torch.load(pt_filename, map_location="cpu")
    if "state_dict" in loaded:
        loaded = loaded["state_dict"]
    shared = _shared_pointers(loaded)
    for shared_weights in shared:
        for name in shared_weights[1:]:
            loaded.pop(name)

    # For tensors to be contiguous
    loaded = {k: v.contiguous() for k, v in loaded.items()}

    dirname = os.path.dirname(sf_filename)
    os.makedirs(dirname, exist_ok=True)
    save_file(loaded, sf_filename, metadata={"format": "pt"})

    # check file size
    sf_size = os.stat(sf_filename).st_size
    pt_size = os.stat(pt_filename).st_size
    if (sf_size - pt_size) / pt_size > 0.01:
        raise RuntimeError(f"""The file size different is more than 1%:
         - {sf_filename}: {sf_size}
         - {pt_filename}: {pt_size}
         """)

    # check if the tensors are the same
    reloaded = load_file(sf_filename)
    for k in loaded:
        pt_tensor = loaded[k]
        sf_tensor = reloaded[k]
        if not torch.equal(pt_tensor, sf_tensor):
            raise RuntimeError(f"The output tensors do not match for key {k}")


# TODO(woosuk): Move this to other place.
def get_quant_config(
    quantization: str,
    model_name_or_path: str,
    hf_config: PretrainedConfig,
    cache_dir: Optional[str] = None,
) -> QuantizationConfig:
    quant_cls = get_quantization_config(quantization)
    # Read the quantization config from the HF model config, if available.
    hf_quant_config = getattr(hf_config, "quantization_config", None)
    if hf_quant_config is not None:
        return quant_cls.from_config(hf_quant_config)

    is_local = os.path.isdir(model_name_or_path)
    if not is_local:
        # Download the config files.
        with get_lock(model_name_or_path, cache_dir):
            hf_folder = snapshot_download(model_name_or_path,
                                          allow_patterns="*.json",
                                          cache_dir=cache_dir,
                                          tqdm_class=Disabledtqdm)
    else:
        hf_folder = model_name_or_path
    config_files = glob.glob(os.path.join(hf_folder, "*.json"))

    quant_config_files = [
        f for f in config_files if any(
            f.endswith(x) for x in quant_cls.get_config_filenames())
    ]
    if len(quant_config_files) == 0:
        raise ValueError(f"Cannot find the config file for {quantization}")
    if len(quant_config_files) > 1:
        raise ValueError(f"Found multiple config files for {quantization}: "
                         f"{quant_config_files}")

    quant_config_file = quant_config_files[0]
    with open(quant_config_file, "r") as f:
        config = json.load(f)
    return quant_cls.from_config(config)


def prepare_hf_model_weights(
    model_name_or_path: str,
    cache_dir: Optional[str] = None,
    load_format: str = "auto",
    fall_back_to_pt: bool = True,
    revision: Optional[str] = None,
) -> Tuple[str, List[str], bool]:
    # Download model weights from huggingface.
    is_local = os.path.isdir(model_name_or_path)
    use_safetensors = False
    # Some quantized models use .pt files for storing the weights.
    if load_format == "auto":
        allow_patterns = ["*.safetensors", "*.bin"]
    elif load_format == "safetensors":
        use_safetensors = True
        allow_patterns = ["*.safetensors"]
    elif load_format == "pt":
        allow_patterns = ["*.pt"]
    elif load_format == "npcache":
        allow_patterns = ["*.bin"]
    else:
        raise ValueError(f"Unknown load_format: {load_format}")

    if fall_back_to_pt:
        allow_patterns += ["*.pt"]

    if not is_local:
        # Before we download we look at that is available:
        fs = HfFileSystem()
        file_list = fs.ls(model_name_or_path, detail=False, revision=revision)

        # depending on what is available we download different things
        for pattern in allow_patterns:
            matching = fnmatch.filter(file_list, pattern)
            if len(matching) > 0:
                allow_patterns = [pattern]
                break

        logger.info(f"Using model weights format {allow_patterns}")
        # Use file lock to prevent multiple processes from
        # downloading the same model weights at the same time.
        with get_lock(model_name_or_path, cache_dir):
            hf_folder = snapshot_download(model_name_or_path,
                                          allow_patterns=allow_patterns,
                                          cache_dir=cache_dir,
                                          tqdm_class=Disabledtqdm,
                                          revision=revision)
    else:
        hf_folder = model_name_or_path
    hf_weights_files: List[str] = []
    for pattern in allow_patterns:
        hf_weights_files += glob.glob(os.path.join(hf_folder, pattern))
        if len(hf_weights_files) > 0:
            if pattern == "*.safetensors":
                use_safetensors = True
            break
    if not use_safetensors:
        # Exclude files that are not needed for inference.
        # https://github.com/huggingface/transformers/blob/v4.34.0/src/transformers/trainer.py#L227-L233
        blacklist = [
            "training_args.bin",
            "optimizer.bin",
            "optimizer.pt",
            "scheduler.pt",
            "scaler.pt",
        ]
        hf_weights_files = [
            f for f in hf_weights_files
            if not any(f.endswith(x) for x in blacklist)
        ]

    if len(hf_weights_files) == 0:
        raise RuntimeError(
            f"Cannot find any model weights with `{model_name_or_path}`")

    return hf_folder, hf_weights_files, use_safetensors


def hf_model_weights_iterator(
    model_name_or_path: str,
    cache_dir: Optional[str] = None,
    load_format: str = "auto",
    revision: Optional[str] = None,
    fall_back_to_pt: Optional[bool] = True,
) -> Iterator[Tuple[str, torch.Tensor]]:
    hf_folder, hf_weights_files, use_safetensors = prepare_hf_model_weights(
        model_name_or_path,
        cache_dir=cache_dir,
        load_format=load_format,
        fall_back_to_pt=fall_back_to_pt,
        revision=revision)

    if load_format == "npcache":
        # Currently np_cache only support *.bin checkpoints
        assert use_safetensors is False

        # Convert the model weights from torch tensors to numpy arrays for
        # faster loading.
        np_folder = os.path.join(hf_folder, "np")
        os.makedirs(np_folder, exist_ok=True)
        weight_names_file = os.path.join(np_folder, "weight_names.json")
        # Use file lock to prevent multiple processes from
        # dumping the same model weights to numpy at the same time.
        with get_lock(model_name_or_path, cache_dir):
            if not os.path.exists(weight_names_file):
                weight_names = []
                for bin_file in hf_weights_files:
                    state = torch.load(bin_file, map_location="cpu")
                    for name, param in state.items():
                        param_path = os.path.join(np_folder, name)
                        with open(param_path, "wb") as f:
                            np.save(f, param.cpu().detach().numpy())
                        weight_names.append(name)
                with open(weight_names_file, "w") as f:
                    json.dump(weight_names, f)

        with open(weight_names_file, "r") as f:
            weight_names = json.load(f)

        for name in weight_names:
            param_path = os.path.join(np_folder, name)
            with open(param_path, "rb") as f:
                param = np.load(f)
            yield name, torch.from_numpy(param)
    elif use_safetensors:
        for st_file in hf_weights_files:
            with safe_open(st_file, framework="pt") as f:
                for name in f.keys():  # noqa: SIM118
                    param = f.get_tensor(name)
                    yield name, param
    else:
        for bin_file in hf_weights_files:
            state = torch.load(bin_file, map_location="cpu")
            for name, param in state.items():
                yield name, param
            del state
            torch.cuda.empty_cache()


def convert_pyslice_to_tensor(x: Any) -> torch.Tensor:
    """convert PySafeSlice object from safetensors to torch.Tensor

    PySafeSlice object supports indexing, which is done before loading the
    actual tensor and can reduce the amount of memory being read into the
    memory. However, it does not support more advanced functionalities
    like `.view()` or `.t()`. Therefore, if we need to modify the loaded
    tensor with these more complicated operators, we need to convert to
    tensor first.
    """
    if not isinstance(x, torch.Tensor):
        x = x[:]
    return x


def default_weight_loader(param: torch.Tensor,
                          loaded_weight: torch.Tensor) -> None:
    """Default weight loader."""
    assert param.size() == loaded_weight.size()
    param.data.copy_(loaded_weight)


def initialize_dummy_weights(
    model: torch.nn.Module,
    low: float = -1e-3,
    high: float = 1e-3,
) -> None:
    """Initialize model weights with random values.

    The model weights must be randomly initialized for accurate performance
    measurements. Additionally, the model weights should not cause NaNs in the
    forward pass. We empirically found that initializing the weights with
    values between -1e-3 and 1e-3 works well for most models.
    """
    for param in model.state_dict().values():
        if torch.is_floating_point(param):
            param.data.uniform_(low, high)