File size: 10,102 Bytes
ca1ecab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
from typing import List, Optional, Tuple, Union

from transformers import (AutoTokenizer, PreTrainedTokenizer,
                          PreTrainedTokenizerFast)

from vllm.logger import init_logger
from vllm.lora.request import LoRARequest
from vllm.utils import make_async, LRUCache
from vllm.transformers_utils.tokenizers import *

logger = init_logger(__name__)


def get_tokenizer(
    tokenizer_name: str,
    *args,
    tokenizer_mode: str = "auto",
    trust_remote_code: bool = False,
    tokenizer_revision: Optional[str] = None,
    **kwargs,
) -> Union[PreTrainedTokenizer, PreTrainedTokenizerFast]:
    """Gets a tokenizer for the given model name via Huggingface."""
    if tokenizer_mode == "slow":
        if kwargs.get("use_fast", False):
            raise ValueError(
                "Cannot use the fast tokenizer in slow tokenizer mode.")
        kwargs["use_fast"] = False

    try:
        tokenizer = AutoTokenizer.from_pretrained(
            tokenizer_name,
            *args,
            trust_remote_code=trust_remote_code,
            tokenizer_revision=tokenizer_revision,
            **kwargs)
    except ValueError as e:
        # If the error pertains to the tokenizer class not existing or not
        # currently being imported, suggest using the --trust-remote-code flag.
        if (not trust_remote_code and
            ("does not exist or is not currently imported." in str(e)
             or "requires you to execute the tokenizer file" in str(e))):
            err_msg = (
                "Failed to load the tokenizer. If the tokenizer is a custom "
                "tokenizer not yet available in the HuggingFace transformers "
                "library, consider setting `trust_remote_code=True` in LLM "
                "or using the `--trust-remote-code` flag in the CLI.")
            raise RuntimeError(err_msg) from e
        else:
            raise e
    except AttributeError as e:
        if "BaichuanTokenizer" in str(e):
            # This is for the error "'BaichuanTokenizer' object has no
            # attribute 'sp_model'".
            tokenizer = BaichuanTokenizer.from_pretrained(
                tokenizer_name,
                *args,
                trust_remote_code=trust_remote_code,
                tokenizer_revision=tokenizer_revision,
                **kwargs)
        else:
            raise e

    if not isinstance(tokenizer, PreTrainedTokenizerFast):
        logger.warning(
            "Using a slow tokenizer. This might cause a significant "
            "slowdown. Consider using a fast tokenizer instead.")
    return tokenizer


def get_lora_tokenizer(lora_request: LoRARequest, *args,
                       **kwargs) -> Optional[PreTrainedTokenizer]:
    if lora_request is None:
        return None
    try:
        tokenizer = get_tokenizer(lora_request.lora_local_path, *args,
                                  **kwargs)
    except OSError as e:
        # No tokenizer was found in the LoRA folder,
        # use base model tokenizer
        logger.warning(
            f"No tokenizer found in {lora_request.lora_local_path}, "
            "using base model tokenizer instead. "
            f"(Exception: {str(e)})")
        tokenizer = None
    return tokenizer


get_lora_tokenizer_async = make_async(get_lora_tokenizer)


class TokenizerGroup:
    """A group of tokenizers that can be used for LoRA adapters."""

    def __init__(self, tokenizer_id: str, enable_lora: bool, max_num_seqs: int,
                 max_input_length: Optional[int], **tokenizer_config):
        self.tokenizer_id = tokenizer_id
        self.tokenizer_config = tokenizer_config
        self.enable_lora = enable_lora
        self.max_input_length = max_input_length
        self.tokenizer = get_tokenizer(self.tokenizer_id, **tokenizer_config)
        if enable_lora:
            self.lora_tokenizers = LRUCache(capacity=max_num_seqs)
        else:
            self.lora_tokenizers = None

    def encode(self,
               prompt: str,
               request_id: Optional[str] = None,
               lora_request: Optional[LoRARequest] = None) -> List[int]:
        tokenizer = self.get_lora_tokenizer(lora_request)
        return tokenizer.encode(prompt)

    async def encode_async(
            self,
            prompt: str,
            request_id: Optional[str] = None,
            lora_request: Optional[LoRARequest] = None) -> List[int]:
        tokenizer = await self.get_lora_tokenizer_async(lora_request)
        return tokenizer.encode(prompt)

    def get_lora_tokenizer(
            self,
            lora_request: Optional[LoRARequest]) -> "PreTrainedTokenizer":
        if not lora_request or not self.enable_lora:
            return self.tokenizer
        if lora_request.lora_int_id not in self.lora_tokenizers:
            tokenizer = (get_lora_tokenizer(
                lora_request, **self.tokenizer_config) or self.tokenizer)
            self.lora_tokenizers.put(lora_request.lora_int_id, tokenizer)
            return tokenizer
        else:
            return self.lora_tokenizers.get(lora_request.lora_int_id)

    async def get_lora_tokenizer_async(
            self,
            lora_request: Optional[LoRARequest]) -> "PreTrainedTokenizer":
        if not lora_request or not self.enable_lora:
            return self.tokenizer
        if lora_request.lora_int_id not in self.lora_tokenizers:
            tokenizer = (await get_lora_tokenizer_async(
                lora_request, **self.tokenizer_config) or self.tokenizer)
            self.lora_tokenizers.put(lora_request.lora_int_id, tokenizer)
            return tokenizer
        else:
            return self.lora_tokenizers.get(lora_request.lora_int_id)


def _convert_tokens_to_string_with_added_encoders(
    tokenizer: Union[PreTrainedTokenizer, PreTrainedTokenizerFast],
    output_tokens: List[str],
    skip_special_tokens: bool,
    spaces_between_special_tokens: bool,
) -> str:
    # Adapted from
    # https://github.com/huggingface/transformers/blob/v4.28.0/src/transformers/tokenization_utils.py#L921
    # NOTE(woosuk): The following code is slow because it runs a for loop over
    # the output_tokens. In Python, running a for loop over a list can be slow
    # even when the loop body is very simple.
    sub_texts = []
    current_sub_text = []
    all_special_tokens = set(tokenizer.all_special_tokens)
    for token in output_tokens:
        if skip_special_tokens and token in all_special_tokens:
            continue
        if token in tokenizer.get_added_vocab():
            if current_sub_text:
                sub_text = tokenizer.convert_tokens_to_string(current_sub_text)
                sub_texts.append(sub_text)
                current_sub_text = []
            sub_texts.append(token)
        else:
            current_sub_text.append(token)
    if current_sub_text:
        sub_text = tokenizer.convert_tokens_to_string(current_sub_text)
        sub_texts.append(sub_text)
    if spaces_between_special_tokens:
        return " ".join(sub_texts)
    else:
        return "".join(sub_texts)


# Based on
# https://github.com/huggingface/text-generation-inference/blob/v0.9.4/server/text_generation_server/models/model.py#L62C9-L62C15
# under Apache 2.0 license
def detokenize_incrementally(
    tokenizer: Union[PreTrainedTokenizer, PreTrainedTokenizerFast],
    all_input_ids: List[int],
    prev_tokens: Optional[List[str]],
    prefix_offset: int = 0,
    read_offset: int = 0,
    skip_special_tokens: bool = False,
    spaces_between_special_tokens: bool = True,
) -> Tuple[List[str], str, int, int]:
    new_token_id = all_input_ids[-1]
    # This is the first iteration for this sequence
    if prev_tokens is None:
        new_tokens = tokenizer.convert_ids_to_tokens(
            all_input_ids, skip_special_tokens=skip_special_tokens)
        output_tokens = new_tokens
        # 5 is an arbitrary value that should work for all
        # tokenizers (bigger = more conservative).
        # Subtract 1 extra to account for the generated token.
        prefix_offset = max(len(output_tokens) - 6, 0)
        # If the first new token is a special token, we can't skip 1 extra token
        if skip_special_tokens and new_token_id in tokenizer.all_special_ids:
            read_offset = max(len(output_tokens), 0)
        else:
            read_offset = max(len(output_tokens) - 1, 0)
    else:
        # Put new_token_id in a list so skip_special_tokens is respected
        new_tokens = tokenizer.convert_ids_to_tokens(
            [new_token_id], skip_special_tokens=skip_special_tokens)
        output_tokens = prev_tokens + new_tokens

    # The prefix text is necessary only to defeat cleanup algorithms in
    # the decode which decide to add a space or not depending on the
    # surrounding ids.
    if tokenizer.is_fast or not tokenizer.get_added_vocab():
        prefix_text = tokenizer.convert_tokens_to_string(
            output_tokens[prefix_offset:read_offset])
        new_text = tokenizer.convert_tokens_to_string(
            output_tokens[prefix_offset:])
    else:
        prefix_text = _convert_tokens_to_string_with_added_encoders(
            tokenizer,
            output_tokens[prefix_offset:read_offset],
            skip_special_tokens=skip_special_tokens,
            spaces_between_special_tokens=spaces_between_special_tokens,
        )
        new_text = _convert_tokens_to_string_with_added_encoders(
            tokenizer,
            output_tokens[prefix_offset:],
            skip_special_tokens=skip_special_tokens,
            spaces_between_special_tokens=spaces_between_special_tokens,
        )

    if len(new_text) > len(prefix_text) and not new_text.endswith("�"):
        # utf-8 char at the end means it's a potential unfinished byte sequence
        # from byte fallback tokenization.
        # If it's in the middle, it's probably a real invalid id generated
        # by the model
        new_text = new_text[len(prefix_text):]
        return new_tokens, new_text, read_offset, len(output_tokens)
    else:
        return new_tokens, "", prefix_offset, read_offset