Spaces:
Sleeping
Sleeping
File size: 10,102 Bytes
ca1ecab |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 |
from typing import List, Optional, Tuple, Union
from transformers import (AutoTokenizer, PreTrainedTokenizer,
PreTrainedTokenizerFast)
from vllm.logger import init_logger
from vllm.lora.request import LoRARequest
from vllm.utils import make_async, LRUCache
from vllm.transformers_utils.tokenizers import *
logger = init_logger(__name__)
def get_tokenizer(
tokenizer_name: str,
*args,
tokenizer_mode: str = "auto",
trust_remote_code: bool = False,
tokenizer_revision: Optional[str] = None,
**kwargs,
) -> Union[PreTrainedTokenizer, PreTrainedTokenizerFast]:
"""Gets a tokenizer for the given model name via Huggingface."""
if tokenizer_mode == "slow":
if kwargs.get("use_fast", False):
raise ValueError(
"Cannot use the fast tokenizer in slow tokenizer mode.")
kwargs["use_fast"] = False
try:
tokenizer = AutoTokenizer.from_pretrained(
tokenizer_name,
*args,
trust_remote_code=trust_remote_code,
tokenizer_revision=tokenizer_revision,
**kwargs)
except ValueError as e:
# If the error pertains to the tokenizer class not existing or not
# currently being imported, suggest using the --trust-remote-code flag.
if (not trust_remote_code and
("does not exist or is not currently imported." in str(e)
or "requires you to execute the tokenizer file" in str(e))):
err_msg = (
"Failed to load the tokenizer. If the tokenizer is a custom "
"tokenizer not yet available in the HuggingFace transformers "
"library, consider setting `trust_remote_code=True` in LLM "
"or using the `--trust-remote-code` flag in the CLI.")
raise RuntimeError(err_msg) from e
else:
raise e
except AttributeError as e:
if "BaichuanTokenizer" in str(e):
# This is for the error "'BaichuanTokenizer' object has no
# attribute 'sp_model'".
tokenizer = BaichuanTokenizer.from_pretrained(
tokenizer_name,
*args,
trust_remote_code=trust_remote_code,
tokenizer_revision=tokenizer_revision,
**kwargs)
else:
raise e
if not isinstance(tokenizer, PreTrainedTokenizerFast):
logger.warning(
"Using a slow tokenizer. This might cause a significant "
"slowdown. Consider using a fast tokenizer instead.")
return tokenizer
def get_lora_tokenizer(lora_request: LoRARequest, *args,
**kwargs) -> Optional[PreTrainedTokenizer]:
if lora_request is None:
return None
try:
tokenizer = get_tokenizer(lora_request.lora_local_path, *args,
**kwargs)
except OSError as e:
# No tokenizer was found in the LoRA folder,
# use base model tokenizer
logger.warning(
f"No tokenizer found in {lora_request.lora_local_path}, "
"using base model tokenizer instead. "
f"(Exception: {str(e)})")
tokenizer = None
return tokenizer
get_lora_tokenizer_async = make_async(get_lora_tokenizer)
class TokenizerGroup:
"""A group of tokenizers that can be used for LoRA adapters."""
def __init__(self, tokenizer_id: str, enable_lora: bool, max_num_seqs: int,
max_input_length: Optional[int], **tokenizer_config):
self.tokenizer_id = tokenizer_id
self.tokenizer_config = tokenizer_config
self.enable_lora = enable_lora
self.max_input_length = max_input_length
self.tokenizer = get_tokenizer(self.tokenizer_id, **tokenizer_config)
if enable_lora:
self.lora_tokenizers = LRUCache(capacity=max_num_seqs)
else:
self.lora_tokenizers = None
def encode(self,
prompt: str,
request_id: Optional[str] = None,
lora_request: Optional[LoRARequest] = None) -> List[int]:
tokenizer = self.get_lora_tokenizer(lora_request)
return tokenizer.encode(prompt)
async def encode_async(
self,
prompt: str,
request_id: Optional[str] = None,
lora_request: Optional[LoRARequest] = None) -> List[int]:
tokenizer = await self.get_lora_tokenizer_async(lora_request)
return tokenizer.encode(prompt)
def get_lora_tokenizer(
self,
lora_request: Optional[LoRARequest]) -> "PreTrainedTokenizer":
if not lora_request or not self.enable_lora:
return self.tokenizer
if lora_request.lora_int_id not in self.lora_tokenizers:
tokenizer = (get_lora_tokenizer(
lora_request, **self.tokenizer_config) or self.tokenizer)
self.lora_tokenizers.put(lora_request.lora_int_id, tokenizer)
return tokenizer
else:
return self.lora_tokenizers.get(lora_request.lora_int_id)
async def get_lora_tokenizer_async(
self,
lora_request: Optional[LoRARequest]) -> "PreTrainedTokenizer":
if not lora_request or not self.enable_lora:
return self.tokenizer
if lora_request.lora_int_id not in self.lora_tokenizers:
tokenizer = (await get_lora_tokenizer_async(
lora_request, **self.tokenizer_config) or self.tokenizer)
self.lora_tokenizers.put(lora_request.lora_int_id, tokenizer)
return tokenizer
else:
return self.lora_tokenizers.get(lora_request.lora_int_id)
def _convert_tokens_to_string_with_added_encoders(
tokenizer: Union[PreTrainedTokenizer, PreTrainedTokenizerFast],
output_tokens: List[str],
skip_special_tokens: bool,
spaces_between_special_tokens: bool,
) -> str:
# Adapted from
# https://github.com/huggingface/transformers/blob/v4.28.0/src/transformers/tokenization_utils.py#L921
# NOTE(woosuk): The following code is slow because it runs a for loop over
# the output_tokens. In Python, running a for loop over a list can be slow
# even when the loop body is very simple.
sub_texts = []
current_sub_text = []
all_special_tokens = set(tokenizer.all_special_tokens)
for token in output_tokens:
if skip_special_tokens and token in all_special_tokens:
continue
if token in tokenizer.get_added_vocab():
if current_sub_text:
sub_text = tokenizer.convert_tokens_to_string(current_sub_text)
sub_texts.append(sub_text)
current_sub_text = []
sub_texts.append(token)
else:
current_sub_text.append(token)
if current_sub_text:
sub_text = tokenizer.convert_tokens_to_string(current_sub_text)
sub_texts.append(sub_text)
if spaces_between_special_tokens:
return " ".join(sub_texts)
else:
return "".join(sub_texts)
# Based on
# https://github.com/huggingface/text-generation-inference/blob/v0.9.4/server/text_generation_server/models/model.py#L62C9-L62C15
# under Apache 2.0 license
def detokenize_incrementally(
tokenizer: Union[PreTrainedTokenizer, PreTrainedTokenizerFast],
all_input_ids: List[int],
prev_tokens: Optional[List[str]],
prefix_offset: int = 0,
read_offset: int = 0,
skip_special_tokens: bool = False,
spaces_between_special_tokens: bool = True,
) -> Tuple[List[str], str, int, int]:
new_token_id = all_input_ids[-1]
# This is the first iteration for this sequence
if prev_tokens is None:
new_tokens = tokenizer.convert_ids_to_tokens(
all_input_ids, skip_special_tokens=skip_special_tokens)
output_tokens = new_tokens
# 5 is an arbitrary value that should work for all
# tokenizers (bigger = more conservative).
# Subtract 1 extra to account for the generated token.
prefix_offset = max(len(output_tokens) - 6, 0)
# If the first new token is a special token, we can't skip 1 extra token
if skip_special_tokens and new_token_id in tokenizer.all_special_ids:
read_offset = max(len(output_tokens), 0)
else:
read_offset = max(len(output_tokens) - 1, 0)
else:
# Put new_token_id in a list so skip_special_tokens is respected
new_tokens = tokenizer.convert_ids_to_tokens(
[new_token_id], skip_special_tokens=skip_special_tokens)
output_tokens = prev_tokens + new_tokens
# The prefix text is necessary only to defeat cleanup algorithms in
# the decode which decide to add a space or not depending on the
# surrounding ids.
if tokenizer.is_fast or not tokenizer.get_added_vocab():
prefix_text = tokenizer.convert_tokens_to_string(
output_tokens[prefix_offset:read_offset])
new_text = tokenizer.convert_tokens_to_string(
output_tokens[prefix_offset:])
else:
prefix_text = _convert_tokens_to_string_with_added_encoders(
tokenizer,
output_tokens[prefix_offset:read_offset],
skip_special_tokens=skip_special_tokens,
spaces_between_special_tokens=spaces_between_special_tokens,
)
new_text = _convert_tokens_to_string_with_added_encoders(
tokenizer,
output_tokens[prefix_offset:],
skip_special_tokens=skip_special_tokens,
spaces_between_special_tokens=spaces_between_special_tokens,
)
if len(new_text) > len(prefix_text) and not new_text.endswith("�"):
# utf-8 char at the end means it's a potential unfinished byte sequence
# from byte fallback tokenization.
# If it's in the middle, it's probably a real invalid id generated
# by the model
new_text = new_text[len(prefix_text):]
return new_tokens, new_text, read_offset, len(output_tokens)
else:
return new_tokens, "", prefix_offset, read_offset
|