Spaces:
Sleeping
Sleeping
File size: 8,492 Bytes
ca1ecab |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 |
import enum
import os
import socket
import subprocess
import uuid
from platform import uname
from typing import List, Tuple, Union
from packaging.version import parse, Version
import psutil
import torch
import asyncio
from functools import partial
from typing import (
Awaitable,
Callable,
TypeVar,
)
from collections import OrderedDict
from typing import Any, Hashable, Optional
from vllm.logger import init_logger
T = TypeVar("T")
logger = init_logger(__name__)
STR_DTYPE_TO_TORCH_DTYPE = {
"half": torch.half,
"bfloat16": torch.bfloat16,
"float": torch.float,
"fp8_e5m2": torch.uint8,
}
class Device(enum.Enum):
GPU = enum.auto()
CPU = enum.auto()
class Counter:
def __init__(self, start: int = 0) -> None:
self.counter = start
def __next__(self) -> int:
i = self.counter
self.counter += 1
return i
def reset(self) -> None:
self.counter = 0
class LRUCache:
def __init__(self, capacity: int):
self.cache = OrderedDict()
self.capacity = capacity
def __contains__(self, key: Hashable) -> bool:
return key in self.cache
def __len__(self) -> int:
return len(self.cache)
def __getitem__(self, key: Hashable) -> Any:
return self.get(key)
def __setitem__(self, key: Hashable, value: Any) -> None:
self.put(key, value)
def __delitem__(self, key: Hashable) -> None:
self.pop(key)
def touch(self, key: Hashable) -> None:
self.cache.move_to_end(key)
def get(self, key: Hashable, default_value: Optional[Any] = None) -> int:
if key in self.cache:
value = self.cache[key]
self.cache.move_to_end(key)
else:
value = default_value
return value
def put(self, key: Hashable, value: Any) -> None:
self.cache[key] = value
self.cache.move_to_end(key)
self._remove_old_if_needed()
def _on_remove(self, key: Hashable, value: Any):
pass
def remove_oldest(self):
if not self.cache:
return
key, value = self.cache.popitem(last=False)
self._on_remove(key, value)
def _remove_old_if_needed(self) -> None:
while len(self.cache) > self.capacity:
self.remove_oldest()
def pop(self, key: int, default_value: Optional[Any] = None) -> Any:
run_on_remove = key in self.cache
value = self.cache.pop(key, default_value)
if run_on_remove:
self._on_remove(key, value)
return value
def clear(self):
while len(self.cache) > 0:
self.remove_oldest()
self.cache.clear()
def is_hip() -> bool:
return torch.version.hip is not None
def get_max_shared_memory_bytes(gpu: int = 0) -> int:
"""Returns the maximum shared memory per thread block in bytes."""
# NOTE: This import statement should be executed lazily since
# the Neuron-X backend does not have the `cuda_utils` module.
from vllm._C import cuda_utils
max_shared_mem = cuda_utils.get_max_shared_memory_per_block_device_attribute(
gpu)
# value 0 will cause MAX_SEQ_LEN become negative and test_attention.py will fail
assert max_shared_mem > 0, "max_shared_mem can not be zero"
return int(max_shared_mem)
def get_cpu_memory() -> int:
"""Returns the total CPU memory of the node in bytes."""
return psutil.virtual_memory().total
def random_uuid() -> str:
return str(uuid.uuid4().hex)
def in_wsl() -> bool:
# Reference: https://github.com/microsoft/WSL/issues/4071
return "microsoft" in " ".join(uname()).lower()
def make_async(func: Callable[..., T]) -> Callable[..., Awaitable[T]]:
"""Take a blocking function, and run it on in an executor thread.
This function prevents the blocking function from blocking the
asyncio event loop.
The code in this function needs to be thread safe.
"""
def _async_wrapper(*args, **kwargs) -> asyncio.Future:
loop = asyncio.get_event_loop()
p_func = partial(func, *args, **kwargs)
return loop.run_in_executor(executor=None, func=p_func)
return _async_wrapper
def get_ip() -> str:
s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
s.connect(("8.8.8.8", 80)) # Doesn't need to be reachable
return s.getsockname()[0]
def get_distributed_init_method(ip: str, port: int) -> str:
return f"tcp://{ip}:{port}"
def get_open_port() -> int:
with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
s.bind(("", 0))
return s.getsockname()[1]
def set_cuda_visible_devices(device_ids: List[int]) -> None:
os.environ["CUDA_VISIBLE_DEVICES"] = ",".join(map(str, device_ids))
def get_nvcc_cuda_version() -> Version:
cuda_home = os.environ.get('CUDA_HOME')
if not cuda_home:
cuda_home = '/usr/local/cuda'
logger.info(
f'CUDA_HOME is not found in the environment. Using {cuda_home} as CUDA_HOME.'
)
nvcc_output = subprocess.check_output([cuda_home + "/bin/nvcc", "-V"],
universal_newlines=True)
output = nvcc_output.split()
release_idx = output.index("release") + 1
nvcc_cuda_version = parse(output[release_idx].split(",")[0])
return nvcc_cuda_version
def _generate_random_fp8_e5m2(
tensor: torch.tensor,
low: float,
high: float,
) -> None:
# NOTE(zhaoyang): Due to NaN and Inf representation for fp8 data type,
# it may occur Inf or NaN if we directly use torch.randint
# to generate random data for fp8 data.
# For example, s.11111.00 in fp8e5m2 format repesents Inf.
# | E4M3 | E5M2
#-----|-------------|-------------------
# Inf | N/A | s.11111.00
# NaN | s.1111.111 | s.11111.{01,10,11}
from vllm._C import cache_ops
tensor_tmp = torch.empty_like(tensor, dtype=torch.float16)
tensor_tmp.uniform_(low, high)
cache_ops.convert_fp8_e5m2(tensor_tmp, tensor)
del tensor_tmp
def create_kv_caches_with_random(
num_blocks: int,
block_size: int,
num_layers: int,
num_heads: int,
head_size: int,
cache_dtype: Optional[Union[str, torch.dtype]],
model_dtype: Optional[Union[str, torch.dtype]] = None,
seed: Optional[int] = 0,
device: Optional[str] = "cuda",
) -> Tuple[List[torch.Tensor], List[torch.Tensor]]:
torch.random.manual_seed(seed)
torch.cuda.manual_seed(seed)
if isinstance(cache_dtype, str):
if cache_dtype == "auto":
if isinstance(model_dtype, str):
torch_dtype = STR_DTYPE_TO_TORCH_DTYPE[model_dtype]
elif isinstance(model_dtype, torch.dtype):
torch_dtype = model_dtype
else:
raise ValueError(f"Invalid model dtype: {model_dtype}")
elif cache_dtype in ["half", "bfloat16", "float"]:
torch_dtype = STR_DTYPE_TO_TORCH_DTYPE[cache_dtype]
elif cache_dtype == "fp8_e5m2":
torch_dtype = torch.uint8
else:
raise ValueError(f"Invalid kv cache dtype: {cache_dtype}")
elif isinstance(cache_dtype, torch.dtype):
torch_dtype = cache_dtype
else:
raise ValueError(f"Invalid kv cache dtype: {cache_dtype}")
scale = head_size**-0.5
x = 16 // torch.tensor([], dtype=torch_dtype).element_size()
key_cache_shape = (num_blocks, num_heads, head_size // x, block_size, x)
key_caches = []
for _ in range(num_layers):
key_cache = torch.empty(size=key_cache_shape,
dtype=torch_dtype,
device=device)
if cache_dtype in ["auto", "half", "bfloat16", "float"]:
key_cache.uniform_(-scale, scale)
elif cache_dtype == 'fp8_e5m2':
_generate_random_fp8_e5m2(key_cache, -scale, scale)
key_caches.append(key_cache)
value_cache_shape = (num_blocks, num_heads, head_size, block_size)
value_caches = []
for _ in range(num_layers):
value_cache = torch.empty(size=value_cache_shape,
dtype=torch_dtype,
device=device)
if cache_dtype in ["auto", "half", "bfloat16", "float"]:
value_cache.uniform_(-scale, scale)
elif cache_dtype == 'fp8_e5m2':
_generate_random_fp8_e5m2(value_cache, -scale, scale)
value_caches.append(value_cache)
return key_caches, value_caches
|