File size: 11,115 Bytes
ca1ecab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
"""A GPU worker class."""
import gc
import os
from typing import Dict, List, Tuple, Set, Optional

import torch
import torch.distributed

from vllm.config import (CacheConfig, ModelConfig, ParallelConfig,
                         SchedulerConfig, LoRAConfig)
from vllm.model_executor import set_random_seed
from vllm.model_executor.parallel_utils.communication_op import (
    broadcast_tensor_dict)
from vllm.model_executor.parallel_utils.custom_all_reduce import init_custom_ar
from vllm.model_executor.parallel_utils.parallel_state import (
    ensure_model_parallel_initialized)
from vllm.sequence import SamplerOutput, SequenceGroupMetadata
from vllm.worker.cache_engine import CacheEngine
from vllm.worker.model_runner import ModelRunner
from vllm.lora.request import LoRARequest


class Worker:
    """A worker class that executes (a partition of) the model on a GPU.

    Each worker is associated with a single GPU. The worker is responsible for
    maintaining the KV cache and executing the model on the GPU. In case of
    distributed inference, each worker is assigned a partition of the model.
    """

    def __init__(
        self,
        model_config: ModelConfig,
        parallel_config: ParallelConfig,
        scheduler_config: SchedulerConfig,
        local_rank: int,
        rank: int,
        distributed_init_method: str,
        lora_config: Optional[LoRAConfig] = None,
        kv_cache_dtype: Optional[str] = "auto",
        is_driver_worker: bool = False,
    ) -> None:
        self.model_config = model_config
        self.parallel_config = parallel_config
        self.scheduler_config = scheduler_config
        self.local_rank = local_rank
        self.rank = rank
        self.distributed_init_method = distributed_init_method
        self.lora_config = lora_config
        self.is_driver_worker = is_driver_worker
        if self.is_driver_worker:
            assert self.rank == 0, "The driver worker must have rank 0."

        self.model_runner = ModelRunner(model_config,
                                        parallel_config,
                                        scheduler_config,
                                        lora_config=self.lora_config,
                                        kv_cache_dtype=kv_cache_dtype,
                                        is_driver_worker=is_driver_worker)
        # Uninitialized cache engine. Will be initialized by
        # self.init_cache_engine().
        self.cache_config = None
        self.cache_engine = None
        self.cache_events = None
        self.gpu_cache = None

    def init_model(self) -> None:
        # torch.distributed.all_reduce does not free the input tensor until
        # the synchronization point. This causes the memory usage to grow
        # as the number of all_reduce calls increases. This env var disables
        # this behavior.
        # Related issue:
        # https://discuss.pytorch.org/t/cuda-allocation-lifetime-for-inputs-to-distributed-all-reduce/191573
        os.environ["TORCH_NCCL_AVOID_RECORD_STREAMS"] = "1"

        # This env var set by Ray causes exceptions with graph building.
        os.environ.pop("NCCL_ASYNC_ERROR_HANDLING", None)
        self.device = torch.device(f"cuda:{self.local_rank}")
        torch.cuda.set_device(self.device)

        _check_if_gpu_supports_dtype(self.model_config.dtype)

        # Initialize the distributed environment.
        init_distributed_environment(self.parallel_config, self.rank,
                                     self.distributed_init_method)
        if not self.parallel_config.disable_custom_all_reduce:
            init_custom_ar()
        # Initialize the model.
        set_random_seed(self.model_config.seed)

    def load_model(self):
        self.model_runner.load_model()

    @torch.inference_mode()
    def profile_num_available_blocks(
        self,
        block_size: int,
        gpu_memory_utilization: float,
        cpu_swap_space: int,
        cache_dtype: str,
    ) -> Tuple[int, int]:
        """Profiles the peak memory usage of the model and returns the maximum
        number of GPU and CPU cache blocks that can be allocated.

        Args:
            block_size: The size of the cache block.
            gpu_memory_utilization: The fraction of the total GPU memory to use.
            cpu_swap_space: The size of the CPU swap space in bytes.
        """
        # Profile the memory usage of the model and get the maximum number of
        # cache blocks that can be allocated with the remaining free memory.
        torch.cuda.empty_cache()

        # Execute a forward pass with dummy inputs to profile the memory usage
        # of the model.
        self.model_runner.profile_run()

        # Calculate the number of blocks that can be allocated with the
        # profiled peak memory.
        torch.cuda.synchronize()
        free_gpu_memory, total_gpu_memory = torch.cuda.mem_get_info()
        peak_memory = total_gpu_memory - free_gpu_memory

        cache_block_size = CacheEngine.get_cache_block_size(
            block_size, cache_dtype, self.model_config, self.parallel_config)
        num_gpu_blocks = int(
            (total_gpu_memory * gpu_memory_utilization - peak_memory) //
            cache_block_size)
        num_cpu_blocks = int(cpu_swap_space // cache_block_size)
        num_gpu_blocks = max(num_gpu_blocks, 0)
        num_cpu_blocks = max(num_cpu_blocks, 0)
        if self.model_runner.lora_manager:
            self.model_runner.remove_all_loras()
        gc.collect()
        torch.cuda.empty_cache()
        return num_gpu_blocks, num_cpu_blocks

    def init_cache_engine(self, cache_config: CacheConfig) -> None:
        self.cache_config = cache_config
        self.cache_engine = CacheEngine(self.cache_config, self.model_config,
                                        self.parallel_config)
        self.cache_events = self.cache_engine.events
        self.gpu_cache = self.cache_engine.gpu_cache
        self.model_runner.set_block_size(self.cache_engine.block_size)

    def warm_up_model(self) -> None:
        if not self.model_config.enforce_eager:
            self.model_runner.capture_model(self.gpu_cache)
        # Reset the seed to ensure that the random state is not affected by
        # the model initialization and profiling.
        set_random_seed(self.model_config.seed)

    def cache_swap(
        self,
        blocks_to_swap_in: Dict[int, int],
        blocks_to_swap_out: Dict[int, int],
        blocks_to_copy: Dict[int, List[int]],
    ) -> None:
        # Issue cache operations.
        issued_cache_op = False
        if blocks_to_swap_in:
            self.cache_engine.swap_in(blocks_to_swap_in)
            issued_cache_op = True
        if blocks_to_swap_out:
            self.cache_engine.swap_out(blocks_to_swap_out)
            issued_cache_op = True
        if blocks_to_copy:
            self.cache_engine.copy(blocks_to_copy)
            issued_cache_op = True

        cache_events = self.cache_events if issued_cache_op else None

        # Wait for cache operations to finish.
        # TODO(woosuk): Profile swapping overhead and optimize if needed.
        if cache_events is not None:
            for event in cache_events:
                event.wait()

    @torch.inference_mode()
    def execute_model(
        self,
        seq_group_metadata_list: Optional[List[SequenceGroupMetadata]] = None,
        blocks_to_swap_in: Optional[Dict[int, int]] = None,
        blocks_to_swap_out: Optional[Dict[int, int]] = None,
        blocks_to_copy: Optional[Dict[int, List[int]]] = None,
    ) -> Optional[SamplerOutput]:
        if self.is_driver_worker:
            assert seq_group_metadata_list is not None
            num_seq_groups = len(seq_group_metadata_list)
            assert blocks_to_swap_in is not None
            assert blocks_to_swap_out is not None
            assert blocks_to_copy is not None
            data = {
                "num_seq_groups": num_seq_groups,
                "blocks_to_swap_in": blocks_to_swap_in,
                "blocks_to_swap_out": blocks_to_swap_out,
                "blocks_to_copy": blocks_to_copy,
            }
            broadcast_tensor_dict(data, src=0)
        else:
            data = broadcast_tensor_dict(src=0)
            num_seq_groups = data["num_seq_groups"]
            blocks_to_swap_in = data["blocks_to_swap_in"]
            blocks_to_swap_out = data["blocks_to_swap_out"]
            blocks_to_copy = data["blocks_to_copy"]

        self.cache_swap(blocks_to_swap_in, blocks_to_swap_out, blocks_to_copy)

        # If there is no input, we don't need to execute the model.
        if num_seq_groups == 0:
            return {}

        output = self.model_runner.execute_model(seq_group_metadata_list,
                                                 self.gpu_cache)
        return output

    def add_lora(self, lora_request: LoRARequest) -> bool:
        return self.model_runner.add_lora(lora_request)

    def remove_lora(self, lora_id: int) -> bool:
        return self.model_runner.remove_lora(lora_id)

    def list_loras(self) -> Set[int]:
        return self.model_runner.list_loras()


def init_distributed_environment(
    parallel_config: ParallelConfig,
    rank: int,
    distributed_init_method: Optional[str] = None,
) -> None:
    """Initialize the distributed environment."""
    if torch.distributed.is_initialized():
        torch_world_size = torch.distributed.get_world_size()
        if torch_world_size != parallel_config.world_size:
            raise RuntimeError(
                "torch.distributed is already initialized but the torch world "
                "size does not match parallel_config.world_size "
                f"({torch_world_size} vs. {parallel_config.world_size}).")
    elif not distributed_init_method:
        raise ValueError(
            "distributed_init_method must be set if torch.distributed "
            "is not already initialized")
    else:
        torch.distributed.init_process_group(
            backend="nccl",
            world_size=parallel_config.world_size,
            rank=rank,
            init_method=distributed_init_method,
        )

    # A small all_reduce for warmup.
    torch.distributed.all_reduce(torch.zeros(1).cuda())
    ensure_model_parallel_initialized(parallel_config.tensor_parallel_size,
                                      parallel_config.pipeline_parallel_size)


def _check_if_gpu_supports_dtype(torch_dtype: torch.dtype):
    # Check if the GPU supports the dtype.
    if torch_dtype == torch.bfloat16:
        compute_capability = torch.cuda.get_device_capability()
        if compute_capability[0] < 8:
            gpu_name = torch.cuda.get_device_name()
            raise ValueError(
                "Bfloat16 is only supported on GPUs with compute capability "
                f"of at least 8.0. Your {gpu_name} GPU has compute capability "
                f"{compute_capability[0]}.{compute_capability[1]}. "
                "You can use float16 instead by explicitly setting the"
                "`dtype` flag in CLI, for example: --dtype=half.")