Spaces:
Sleeping
Sleeping
File size: 11,115 Bytes
ca1ecab |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 |
"""A GPU worker class."""
import gc
import os
from typing import Dict, List, Tuple, Set, Optional
import torch
import torch.distributed
from vllm.config import (CacheConfig, ModelConfig, ParallelConfig,
SchedulerConfig, LoRAConfig)
from vllm.model_executor import set_random_seed
from vllm.model_executor.parallel_utils.communication_op import (
broadcast_tensor_dict)
from vllm.model_executor.parallel_utils.custom_all_reduce import init_custom_ar
from vllm.model_executor.parallel_utils.parallel_state import (
ensure_model_parallel_initialized)
from vllm.sequence import SamplerOutput, SequenceGroupMetadata
from vllm.worker.cache_engine import CacheEngine
from vllm.worker.model_runner import ModelRunner
from vllm.lora.request import LoRARequest
class Worker:
"""A worker class that executes (a partition of) the model on a GPU.
Each worker is associated with a single GPU. The worker is responsible for
maintaining the KV cache and executing the model on the GPU. In case of
distributed inference, each worker is assigned a partition of the model.
"""
def __init__(
self,
model_config: ModelConfig,
parallel_config: ParallelConfig,
scheduler_config: SchedulerConfig,
local_rank: int,
rank: int,
distributed_init_method: str,
lora_config: Optional[LoRAConfig] = None,
kv_cache_dtype: Optional[str] = "auto",
is_driver_worker: bool = False,
) -> None:
self.model_config = model_config
self.parallel_config = parallel_config
self.scheduler_config = scheduler_config
self.local_rank = local_rank
self.rank = rank
self.distributed_init_method = distributed_init_method
self.lora_config = lora_config
self.is_driver_worker = is_driver_worker
if self.is_driver_worker:
assert self.rank == 0, "The driver worker must have rank 0."
self.model_runner = ModelRunner(model_config,
parallel_config,
scheduler_config,
lora_config=self.lora_config,
kv_cache_dtype=kv_cache_dtype,
is_driver_worker=is_driver_worker)
# Uninitialized cache engine. Will be initialized by
# self.init_cache_engine().
self.cache_config = None
self.cache_engine = None
self.cache_events = None
self.gpu_cache = None
def init_model(self) -> None:
# torch.distributed.all_reduce does not free the input tensor until
# the synchronization point. This causes the memory usage to grow
# as the number of all_reduce calls increases. This env var disables
# this behavior.
# Related issue:
# https://discuss.pytorch.org/t/cuda-allocation-lifetime-for-inputs-to-distributed-all-reduce/191573
os.environ["TORCH_NCCL_AVOID_RECORD_STREAMS"] = "1"
# This env var set by Ray causes exceptions with graph building.
os.environ.pop("NCCL_ASYNC_ERROR_HANDLING", None)
self.device = torch.device(f"cuda:{self.local_rank}")
torch.cuda.set_device(self.device)
_check_if_gpu_supports_dtype(self.model_config.dtype)
# Initialize the distributed environment.
init_distributed_environment(self.parallel_config, self.rank,
self.distributed_init_method)
if not self.parallel_config.disable_custom_all_reduce:
init_custom_ar()
# Initialize the model.
set_random_seed(self.model_config.seed)
def load_model(self):
self.model_runner.load_model()
@torch.inference_mode()
def profile_num_available_blocks(
self,
block_size: int,
gpu_memory_utilization: float,
cpu_swap_space: int,
cache_dtype: str,
) -> Tuple[int, int]:
"""Profiles the peak memory usage of the model and returns the maximum
number of GPU and CPU cache blocks that can be allocated.
Args:
block_size: The size of the cache block.
gpu_memory_utilization: The fraction of the total GPU memory to use.
cpu_swap_space: The size of the CPU swap space in bytes.
"""
# Profile the memory usage of the model and get the maximum number of
# cache blocks that can be allocated with the remaining free memory.
torch.cuda.empty_cache()
# Execute a forward pass with dummy inputs to profile the memory usage
# of the model.
self.model_runner.profile_run()
# Calculate the number of blocks that can be allocated with the
# profiled peak memory.
torch.cuda.synchronize()
free_gpu_memory, total_gpu_memory = torch.cuda.mem_get_info()
peak_memory = total_gpu_memory - free_gpu_memory
cache_block_size = CacheEngine.get_cache_block_size(
block_size, cache_dtype, self.model_config, self.parallel_config)
num_gpu_blocks = int(
(total_gpu_memory * gpu_memory_utilization - peak_memory) //
cache_block_size)
num_cpu_blocks = int(cpu_swap_space // cache_block_size)
num_gpu_blocks = max(num_gpu_blocks, 0)
num_cpu_blocks = max(num_cpu_blocks, 0)
if self.model_runner.lora_manager:
self.model_runner.remove_all_loras()
gc.collect()
torch.cuda.empty_cache()
return num_gpu_blocks, num_cpu_blocks
def init_cache_engine(self, cache_config: CacheConfig) -> None:
self.cache_config = cache_config
self.cache_engine = CacheEngine(self.cache_config, self.model_config,
self.parallel_config)
self.cache_events = self.cache_engine.events
self.gpu_cache = self.cache_engine.gpu_cache
self.model_runner.set_block_size(self.cache_engine.block_size)
def warm_up_model(self) -> None:
if not self.model_config.enforce_eager:
self.model_runner.capture_model(self.gpu_cache)
# Reset the seed to ensure that the random state is not affected by
# the model initialization and profiling.
set_random_seed(self.model_config.seed)
def cache_swap(
self,
blocks_to_swap_in: Dict[int, int],
blocks_to_swap_out: Dict[int, int],
blocks_to_copy: Dict[int, List[int]],
) -> None:
# Issue cache operations.
issued_cache_op = False
if blocks_to_swap_in:
self.cache_engine.swap_in(blocks_to_swap_in)
issued_cache_op = True
if blocks_to_swap_out:
self.cache_engine.swap_out(blocks_to_swap_out)
issued_cache_op = True
if blocks_to_copy:
self.cache_engine.copy(blocks_to_copy)
issued_cache_op = True
cache_events = self.cache_events if issued_cache_op else None
# Wait for cache operations to finish.
# TODO(woosuk): Profile swapping overhead and optimize if needed.
if cache_events is not None:
for event in cache_events:
event.wait()
@torch.inference_mode()
def execute_model(
self,
seq_group_metadata_list: Optional[List[SequenceGroupMetadata]] = None,
blocks_to_swap_in: Optional[Dict[int, int]] = None,
blocks_to_swap_out: Optional[Dict[int, int]] = None,
blocks_to_copy: Optional[Dict[int, List[int]]] = None,
) -> Optional[SamplerOutput]:
if self.is_driver_worker:
assert seq_group_metadata_list is not None
num_seq_groups = len(seq_group_metadata_list)
assert blocks_to_swap_in is not None
assert blocks_to_swap_out is not None
assert blocks_to_copy is not None
data = {
"num_seq_groups": num_seq_groups,
"blocks_to_swap_in": blocks_to_swap_in,
"blocks_to_swap_out": blocks_to_swap_out,
"blocks_to_copy": blocks_to_copy,
}
broadcast_tensor_dict(data, src=0)
else:
data = broadcast_tensor_dict(src=0)
num_seq_groups = data["num_seq_groups"]
blocks_to_swap_in = data["blocks_to_swap_in"]
blocks_to_swap_out = data["blocks_to_swap_out"]
blocks_to_copy = data["blocks_to_copy"]
self.cache_swap(blocks_to_swap_in, blocks_to_swap_out, blocks_to_copy)
# If there is no input, we don't need to execute the model.
if num_seq_groups == 0:
return {}
output = self.model_runner.execute_model(seq_group_metadata_list,
self.gpu_cache)
return output
def add_lora(self, lora_request: LoRARequest) -> bool:
return self.model_runner.add_lora(lora_request)
def remove_lora(self, lora_id: int) -> bool:
return self.model_runner.remove_lora(lora_id)
def list_loras(self) -> Set[int]:
return self.model_runner.list_loras()
def init_distributed_environment(
parallel_config: ParallelConfig,
rank: int,
distributed_init_method: Optional[str] = None,
) -> None:
"""Initialize the distributed environment."""
if torch.distributed.is_initialized():
torch_world_size = torch.distributed.get_world_size()
if torch_world_size != parallel_config.world_size:
raise RuntimeError(
"torch.distributed is already initialized but the torch world "
"size does not match parallel_config.world_size "
f"({torch_world_size} vs. {parallel_config.world_size}).")
elif not distributed_init_method:
raise ValueError(
"distributed_init_method must be set if torch.distributed "
"is not already initialized")
else:
torch.distributed.init_process_group(
backend="nccl",
world_size=parallel_config.world_size,
rank=rank,
init_method=distributed_init_method,
)
# A small all_reduce for warmup.
torch.distributed.all_reduce(torch.zeros(1).cuda())
ensure_model_parallel_initialized(parallel_config.tensor_parallel_size,
parallel_config.pipeline_parallel_size)
def _check_if_gpu_supports_dtype(torch_dtype: torch.dtype):
# Check if the GPU supports the dtype.
if torch_dtype == torch.bfloat16:
compute_capability = torch.cuda.get_device_capability()
if compute_capability[0] < 8:
gpu_name = torch.cuda.get_device_name()
raise ValueError(
"Bfloat16 is only supported on GPUs with compute capability "
f"of at least 8.0. Your {gpu_name} GPU has compute capability "
f"{compute_capability[0]}.{compute_capability[1]}. "
"You can use float16 instead by explicitly setting the"
"`dtype` flag in CLI, for example: --dtype=half.")
|