Spaces:
Sleeping
Sleeping
File size: 22,484 Bytes
e2d4dfc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 |
from datetime import datetime
import json
import logging
import os
import time
import traceback
from typing import List, Union, AsyncGenerator
from uuid import uuid4
from fastapi import FastAPI, Request
from fastapi.responses import JSONResponse
from sse_starlette.sse import EventSourceResponse, AsyncContentStream
from openai import AsyncClient, APIStatusError, APIResponseValidationError, APIError, OpenAIError
from openai.types.chat import ChatCompletion
import tiktoken
from .proxy import ProxyBase, RequestFilterBase, ResponseFilterBase, RequestFilterException, ResponseFilterException
from .accesslog import _AccessLogBase, RequestItemBase, ResponseItemBase, StreamChunkItemBase, ErrorItemBase
from .queueclient import QueueClientBase
logger = logging.getLogger(__name__)
class ChatGPTRequestItem(RequestItemBase):
def to_accesslog(self, accesslog_cls: _AccessLogBase) -> _AccessLogBase:
request_headers_copy = self.request_headers.copy()
if auth := request_headers_copy.get("authorization"):
request_headers_copy["authorization"] = auth[:12] + "*****" + auth[-2:]
content = self.request_json["messages"][-1]["content"]
if isinstance(content, list):
for c in content:
if c["type"] == "text":
content = c["text"]
break
else:
content = json.dumps(content)
accesslog = accesslog_cls(
request_id=self.request_id,
created_at=datetime.utcnow(),
direction="request",
content=content,
raw_body=json.dumps(self.request_json, ensure_ascii=False),
raw_headers=json.dumps(request_headers_copy, ensure_ascii=False),
model=self.request_json.get("model")
)
return accesslog
class ChatGPTResponseItem(ResponseItemBase):
def to_accesslog(self, accesslog_cls: _AccessLogBase) -> _AccessLogBase:
content = self.response_json["choices"][0]["message"].get("content")
function_call = self.response_json["choices"][0]["message"].get("function_call")
tool_calls = self.response_json["choices"][0]["message"].get("tool_calls")
response_headers = json.dumps(dict(self.response_headers.items()),
ensure_ascii=False) if self.response_headers is not None else None
model = self.response_json["model"]
prompt_tokens = self.response_json["usage"]["prompt_tokens"]
completion_tokens = self.response_json["usage"]["completion_tokens"]
return accesslog_cls(
request_id=self.request_id,
created_at=datetime.utcnow(),
direction="response",
status_code=self.status_code,
content=content,
function_call=json.dumps(function_call, ensure_ascii=False) if function_call is not None else None,
tool_calls=json.dumps(tool_calls, ensure_ascii=False) if tool_calls is not None else None,
raw_body=json.dumps(self.response_json, ensure_ascii=False),
raw_headers=response_headers,
model=model,
prompt_tokens=prompt_tokens,
completion_tokens=completion_tokens,
request_time=self.duration,
request_time_api=self.duration_api
)
token_encoder = tiktoken.get_encoding("cl100k_base")
def count_token(content: str):
return len(token_encoder.encode(content))
def count_request_token(request_json: dict):
tokens_per_message = 3
tokens_per_name = 1
token_count = 0
# messages
for m in request_json["messages"]:
token_count += tokens_per_message
for k, v in m.items():
if isinstance(v, list):
for c in v:
if c.get("type") == "text":
token_count += count_token(c["text"])
else:
token_count += count_token(v)
if k == "name":
token_count += tokens_per_name
# functions
if functions := request_json.get("functions"):
for f in functions:
token_count += count_token(json.dumps(f))
# function_call
if function_call := request_json.get("function_call"):
if isinstance(function_call, dict):
token_count += count_token(json.dumps(function_call))
else:
token_count += count_token(function_call)
# tools
if tools := request_json.get("tools"):
for t in tools:
token_count += count_token(json.dumps(t))
if tool_choice := request_json.get("tool_choice"):
token_count += count_token(json.dumps(tool_choice))
token_count += 3
return token_count
class ChatGPTStreamResponseItem(StreamChunkItemBase):
def to_accesslog(self, chunks: list, accesslog_cls: _AccessLogBase) -> _AccessLogBase:
chunk_jsons = []
response_content = ""
function_call = None
tool_calls = None
prompt_tokens = 0
completion_tokens = 0
# Parse info from chunks
for chunk in chunks:
chunk_jsons.append(chunk.chunk_json)
if len(chunk.chunk_json["choices"]) == 0:
# Azure returns the first delta with empty choices
continue
delta = chunk.chunk_json["choices"][0]["delta"]
# Make tool_calls
if delta.get("tool_calls"):
if tool_calls is None:
tool_calls = []
if delta["tool_calls"][0]["function"].get("name"):
tool_calls.append({
"type": "function",
"function": {
"name": delta["tool_calls"][0]["function"]["name"],
"arguments": ""
}
})
elif delta["tool_calls"][0]["function"].get("arguments"):
tool_calls[-1]["function"]["arguments"] += delta["tool_calls"][0]["function"].get("arguments") or ""
# Make function_call
elif delta.get("function_call"):
if function_call is None:
function_call = {}
if delta["function_call"].get("name"):
function_call["name"] = delta["function_call"]["name"]
function_call["arguments"] = ""
elif delta["function_call"].get("arguments"):
function_call["arguments"] += delta["function_call"]["arguments"]
# Text content
else:
response_content += delta.get("content") or ""
# Serialize
function_call_str = json.dumps(function_call, ensure_ascii=False) if function_call is not None else None
tool_calls_str = json.dumps(tool_calls, ensure_ascii=False) if tool_calls is not None else None
response_headers = json.dumps(dict(self.response_headers.items()),
ensure_ascii=False) if self.response_headers is not None else None
# Count tokens
prompt_tokens = count_request_token(self.request_json)
if tool_calls_str:
completion_tokens = count_token(tool_calls_str)
elif function_call_str:
completion_tokens = count_token(function_call_str)
else:
completion_tokens = count_token(response_content)
return accesslog_cls(
request_id=self.request_id,
created_at=datetime.utcnow(),
direction="response",
status_code=self.status_code,
content=response_content,
function_call=function_call_str,
tool_calls=tool_calls_str,
raw_body=json.dumps(chunk_jsons, ensure_ascii=False),
raw_headers=response_headers,
model=chunk_jsons[0]["model"],
prompt_tokens=prompt_tokens,
completion_tokens=completion_tokens,
request_time=self.duration,
request_time_api=self.duration_api
)
class ChatGPTErrorItem(ErrorItemBase):
...
queue_item_types = [ChatGPTRequestItem, ChatGPTResponseItem, ChatGPTStreamResponseItem, ChatGPTErrorItem]
# Reverse aiproxy application for ChatGPT
class ChatGPTProxy(ProxyBase):
_empty_openai_api_key = "OPENAI_API_KEY_IS_NOT_SET"
def __init__(
self,
*,
base_url: str = None,
api_key: str = None,
async_client: AsyncClient = None,
max_retries: int = 0,
timeout: float = 60.0,
request_filters: List[RequestFilterBase] = None,
response_filters: List[ResponseFilterBase] = None,
request_item_class: type = ChatGPTRequestItem,
response_item_class: type = ChatGPTResponseItem,
stream_response_item_class: type = ChatGPTStreamResponseItem,
error_item_class: type = ChatGPTErrorItem,
access_logger_queue: QueueClientBase,
):
super().__init__(
request_filters=request_filters,
response_filters=response_filters,
access_logger_queue=access_logger_queue
)
# Log items
self.request_item_class = request_item_class
self.response_item_class = response_item_class
self.stream_response_item_class = stream_response_item_class
self.error_item_class = error_item_class
# ChatGPT client config
self.base_url = base_url
self.api_key = api_key or os.getenv("OPENAI_API_KEY") or self._empty_openai_api_key
self.max_retries = max_retries
self.timeout = timeout
self.async_client = async_client
async def filter_request(self, request_id: str, request_json: dict, request_headers: dict) -> Union[
dict, JSONResponse, EventSourceResponse]:
for f in self.request_filters:
if json_resp := await f.filter(request_id, request_json, request_headers):
# Return response if filter returns string
resp_for_log = {
"id": "-",
"choices": [
{"message": {"role": "assistant", "content": json_resp}, "finish_reason": "stop", "index": 0}],
"created": 0,
"model": "request_filter",
"object": "chat.completion",
"usage": {"prompt_tokens": 0, "completion_tokens": 0, "total_tokens": 0}
}
# Response log
self.access_logger_queue.put(self.response_item_class(
request_id=request_id,
response_json=resp_for_log,
status_code=200
))
if request_json.get("stream"):
# Stream
async def filter_response_stream(content: str):
# First delta
resp = {
"id": "-",
"choices": [
{"delta": {"role": "assistant", "content": ""}, "finish_reason": None, "index": 0}],
"created": 0,
"model": "request_filter",
"object": "chat.completion",
"usage": {"prompt_tokens": 0, "completion_tokens": 0, "total_tokens": 0}
}
yield json.dumps(resp)
# Last delta
resp["choices"][0] = {"delta": {"content": content}, "finish_reason": "stop", "index": 0}
yield json.dumps(resp)
return self.return_response_with_headers(EventSourceResponse(
filter_response_stream(json_resp)
), request_id)
else:
# Non-stream
return self.return_response_with_headers(JSONResponse(resp_for_log), request_id)
return request_json
def get_client(self):
return self.async_client or AsyncClient(
base_url=self.base_url,
api_key=self.api_key,
max_retries=self.max_retries,
timeout=self.timeout
)
async def filter_response(self, request_id: str, response: ChatCompletion) -> ChatCompletion:
response_json = response.model_dump()
for f in self.response_filters:
if json_resp := await f.filter(request_id, response_json):
return response.model_validate(json_resp)
return response.model_validate(response_json)
def return_response_with_headers(self, resp: JSONResponse, request_id: str):
self.add_response_headers(response=resp, request_id=request_id)
return resp
def add_route(self, app: FastAPI, base_url: str):
@app.post(base_url)
async def handle_request(request: Request):
request_id = str(uuid4())
async_client = None
try:
start_time = time.time()
request_json = await request.json()
request_headers = dict(request.headers.items())
# Log request
self.access_logger_queue.put(self.request_item_class(
request_id=request_id,
request_json=request_json,
request_headers=request_headers
))
# Filter request
request_json = await self.filter_request(request_id, request_json, request_headers)
if isinstance(request_json, JSONResponse) or isinstance(request_json, EventSourceResponse):
return request_json
# Call API
async_client = self.get_client()
start_time_api = time.time()
if self.api_key != self._empty_openai_api_key:
# Always use server api key if set to client
raw_response = await async_client.chat.completions.with_raw_response.create(**request_json)
elif user_auth_header := request_headers.get("authorization"): # Lower case from client.
raw_response = await async_client.chat.completions.with_raw_response.create(
**request_json, extra_headers={"Authorization": user_auth_header} # Pascal to server
)
else:
# Call API anyway ;)
raw_response = await async_client.chat.completions.with_raw_response.create(**request_json)
completion_response = raw_response.parse()
completion_response_headers = raw_response.headers
completion_status_code = raw_response.status_code
if "content-encoding" in completion_response_headers:
completion_response_headers.pop(
"content-encoding") # Remove "br" that will be changed by this aiproxy
# Handling response from API
if request_json.get("stream"):
async def process_stream(stream: AsyncContentStream) -> AsyncGenerator[str, None]:
# Async content generator
try:
async for chunk in stream:
self.access_logger_queue.put(self.stream_response_item_class(
request_id=request_id,
chunk_json=chunk.model_dump()
))
if chunk:
yield chunk.model_dump_json()
finally:
# Close client after reading stream
await async_client.close()
# Response log
now = time.time()
self.access_logger_queue.put(self.stream_response_item_class(
request_id=request_id,
response_headers=completion_response_headers,
duration=now - start_time,
duration_api=now - start_time_api,
request_json=request_json,
status_code=completion_status_code
))
return self.return_response_with_headers(EventSourceResponse(
process_stream(completion_response),
headers=completion_response_headers
), request_id)
else:
# Close client immediately
await async_client.close()
duration_api = time.time() - start_time_api
# Filter response
completion_response = await self.filter_response(request_id, completion_response)
# Response log
self.access_logger_queue.put(self.response_item_class(
request_id=request_id,
response_json=completion_response.model_dump(),
response_headers=completion_response_headers,
duration=time.time() - start_time,
duration_api=duration_api,
status_code=completion_status_code
))
return self.return_response_with_headers(JSONResponse(
content=completion_response.model_dump(),
headers=completion_response_headers
), request_id)
# Error handlers
except RequestFilterException as rfex:
logger.error(f"Request filter error: {rfex}\n{traceback.format_exc()}")
resp_json = {
"error": {"message": rfex.message, "type": "request_filter_error", "param": None, "code": None}}
# Error log
self.access_logger_queue.put(self.error_item_class(
request_id=request_id,
exception=rfex,
traceback_info=traceback.format_exc(),
response_json=resp_json,
status_code=rfex.status_code
))
return self.return_response_with_headers(JSONResponse(resp_json, status_code=rfex.status_code),
request_id)
except ResponseFilterException as rfex:
logger.error(f"Response filter error: {rfex}\n{traceback.format_exc()}")
resp_json = {
"error": {"message": rfex.message, "type": "response_filter_error", "param": None, "code": None}}
# Error log
self.access_logger_queue.put(self.error_item_class(
request_id=request_id,
exception=rfex,
traceback_info=traceback.format_exc(),
response_json=resp_json,
status_code=rfex.status_code
))
return self.return_response_with_headers(JSONResponse(resp_json, status_code=rfex.status_code),
request_id)
except (APIStatusError, APIResponseValidationError) as status_err:
logger.error(f"APIStatusError from ChatGPT: {status_err}\n{traceback.format_exc()}")
# Error log
try:
resp_json = status_err.response.json()
except:
resp_json = str(status_err.response.content)
self.access_logger_queue.put(self.error_item_class(
request_id=request_id,
exception=status_err,
traceback_info=traceback.format_exc(),
response_json=resp_json,
status_code=status_err.status_code
))
return self.return_response_with_headers(JSONResponse(resp_json, status_code=status_err.status_code),
request_id)
except APIError as api_err:
logger.error(f"APIError from ChatGPT: {api_err}\n{traceback.format_exc()}")
resp_json = {"error": {"message": api_err.message, "type": api_err.type, "param": api_err.param,
"code": api_err.code}}
# Error log
self.access_logger_queue.put(self.error_item_class(
request_id=request_id,
exception=api_err,
traceback_info=traceback.format_exc(),
response_json=resp_json,
status_code=502
))
return self.return_response_with_headers(JSONResponse(resp_json, status_code=502), request_id)
except OpenAIError as oai_err:
logger.error(f"OpenAIError: {oai_err}\n{traceback.format_exc()}")
resp_json = {"error": {"message": str(oai_err), "type": "openai_error", "param": None, "code": None}}
# Error log
self.access_logger_queue.put(self.error_item_class(
request_id=request_id,
exception=oai_err,
traceback_info=traceback.format_exc(),
response_json=resp_json,
status_code=502
))
return self.return_response_with_headers(JSONResponse(resp_json, status_code=502), request_id)
except Exception as ex:
logger.error(f"Error at server: {ex}\n{traceback.format_exc()}")
resp_json = {"error": {"message": "Proxy error", "type": "proxy_error", "param": None, "code": None}}
# Error log
self.access_logger_queue.put(self.error_item_class(
request_id=request_id,
exception=ex,
traceback_info=traceback.format_exc(),
response_json=resp_json,
status_code=502
))
return self.return_response_with_headers(JSONResponse(resp_json, status_code=502), request_id) |