certifaier / vllm /engine /metrics.py
bsmit1659's picture
Adding vllm package
ca1ecab
raw
history blame
1.88 kB
from aioprometheus import Gauge
# The begin-* and end* here are used by the documentation generator
# to extract the metrics definitions.
# begin-metrics-definitions
gauge_avg_prompt_throughput = Gauge("vllm:avg_prompt_throughput_toks_per_s",
"Average prefill throughput in tokens/s.")
gauge_avg_generation_throughput = Gauge(
"vllm:avg_generation_throughput_toks_per_s",
"Average generation throughput in tokens/s.")
gauge_scheduler_running = Gauge(
"vllm:num_requests_running",
"Number of requests that is currently running for inference.")
gauge_scheduler_swapped = Gauge("vllm:num_requests_swapped",
"Number requests swapped to CPU.")
gauge_scheduler_waiting = Gauge("vllm:num_requests_waiting",
"Number of requests waiting to be processed.")
gauge_gpu_cache_usage = Gauge(
"vllm:gpu_cache_usage_perc",
"GPU KV-cache usage. 1 means 100 percent usage.")
gauge_cpu_cache_usage = Gauge(
"vllm:cpu_cache_usage_perc",
"CPU KV-cache usage. 1 means 100 percent usage.")
# end-metrics-definitions
labels = {}
def add_global_metrics_labels(**kwargs):
labels.update(kwargs)
def record_metrics(
avg_prompt_throughput: float,
avg_generation_throughput: float,
scheduler_running: int,
scheduler_swapped: int,
scheduler_waiting: int,
gpu_cache_usage: float,
cpu_cache_usage: float,
):
gauge_avg_prompt_throughput.set(labels, avg_prompt_throughput)
gauge_avg_generation_throughput.set(labels, avg_generation_throughput)
gauge_scheduler_running.set(labels, scheduler_running)
gauge_scheduler_swapped.set(labels, scheduler_swapped)
gauge_scheduler_waiting.set(labels, scheduler_waiting)
gauge_gpu_cache_usage.set(labels, gpu_cache_usage)
gauge_cpu_cache_usage.set(labels, cpu_cache_usage)