certifaier / vllm /lora /models.py
bsmit1659's picture
Adding vllm package
ca1ecab
raw
history blame
26.8 kB
import copy
import json
import logging
import math
import os
import re
from typing import (Any, Callable, Dict, Hashable, List, Optional, Tuple, Type,
Union)
import safetensors.torch
import torch
from torch import nn
from vllm.config import LoRAConfig
from vllm.utils import LRUCache, in_wsl
from vllm.lora.layers import BaseLayerWithLoRA, LoRAMapping, from_layer, from_layer_sampler
from vllm.lora.lora import LoRALayerWeights, PackedLoRALayerWeights
from vllm.lora.utils import parse_fine_tuned_lora_name, replace_submodule
logger = logging.getLogger(__name__)
# TODO: The mappings below should be moved to individual model classes.
PACKED_MODULES_CFG = {
"qkv_proj": [
"q_proj",
"k_proj",
"v_proj",
],
"gate_up_proj": [
"gate_proj",
"up_proj",
],
}
TARGET_MODULES_QKV = [
"qkv_proj",
"o_proj",
"gate_up_proj",
"down_proj",
"embed_tokens",
"lm_head",
]
EMBEDDING_MODULES = {
"embed_tokens": "input_embeddings",
"lm_head": "output_embeddings",
}
EMBEDDING_PADDING_MODULES = ["lm_head"]
_GLOBAL_LORA_ID = 0
def convert_mapping(
mapping: LoRAMapping, lora_index_to_id: List[Optional[int]],
max_loras: int, vocab_size: int, extra_vocab_size: int
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, List[int]]:
"""Converts LoRAMapping to index tensors.
Args:
mapping: LoRAMapping mapping rows in a batch to LoRA ids.
lora_index_to_id: List mapping LoRA ids to LoRA indices.
max_loras: Maximum number of LoRAs.
vocab_size: Model vocab size.
extra_vocab_size: Extra vocab size each LoRA can have.
Returns:
A tuple of tensors:
base_indices: Tensor of shape [batch_size] mapping batch rows to
LoRA indices.
sampler_indices: Tensor of shape [batch_size] mapping requests to
LoRA indices for sampler. For generation, this will be the
same as base_indicies. For prefill, this will map requests
to LoRA indices.
sampler_indices_padded: Tensor of shape [batch_size] mapping
requests to LoRA indices for sampler with padding.
Same as sampler_indicies, but -1 is replaced with
max_loras.
embeddings_indices: Tensor of shape [2, batch_size] mapping
requests to embedding indices. First row is for embeddings
added by the LoRAs, second row is for the LoRA.lora_a
embeddings.
indices_len: List of lengths of the above tensors.
"""
indices = list(mapping.index_mapping).copy()
embedding_indices = indices.copy()
lora_indices = indices.copy()
prompt_mapping = [
lora_index_to_id.index(x) if x > 0 else -1
for x in mapping.prompt_mapping
]
lora_idx = None
for i in range(len(indices)):
# TODO index can be slow. optimize
lora_idx = (lora_index_to_id.index(indices[i])
if indices[i] > 0 else -1)
embedding_indices[i] = lora_idx if indices[i] > 0 else 0
indices[i] = i
lora_indices[i] = lora_idx
indices = torch.tensor([indices, lora_indices, embedding_indices],
dtype=torch.long,
device="cuda")
prompt_mapping = torch.tensor(prompt_mapping,
device="cuda",
dtype=torch.long)
embeddings_indices = torch.stack([
indices[2] * extra_vocab_size,
indices[2] * (vocab_size + extra_vocab_size)
])
embeddings_indices[embeddings_indices == -1] = max_loras - 1
base_indices = indices[1]
sampler_indices = prompt_mapping
sampler_indices_padded = sampler_indices.clone()
sampler_indices_padded[sampler_indices_padded == -1] = max_loras - 1
sampler_indices_padded = (
torch.arange(
0, len(sampler_indices_padded), device="cuda", dtype=torch.long) +
(sampler_indices_padded * len(sampler_indices_padded)))
indices_len = (base_indices.shape[-1], sampler_indices.shape[-1],
sampler_indices_padded.shape[-1],
embeddings_indices.shape[-1])
return (base_indices, sampler_indices, sampler_indices_padded,
embeddings_indices, indices_len)
def get_lora_id():
global _GLOBAL_LORA_ID
_GLOBAL_LORA_ID += 1
return _GLOBAL_LORA_ID
class LoRAModel:
"""A LoRA fine-tuned model."""
def __init__(
self,
lora_model_id: int,
rank: int,
loras: Dict[str, LoRALayerWeights],
) -> None:
self.id = lora_model_id
assert (lora_model_id >
0), f"a valid lora id should be greater than 0, got {self.id}"
self.rank = rank
self.loras: Dict[str, LoRALayerWeights] = loras
@property
def extra_vocab_size(self) -> int:
return max(lora.extra_vocab_size
for lora in self.loras.values()) if self.loras else 0
def get_lora(self, module_name: str) -> Optional[LoRALayerWeights]:
"""Get LoRA for a given module by name"""
return self.loras.get(module_name, None)
# (yard1): TODO see if we can derive target_embedding_padding automatically
@classmethod
def from_lora_tensors(
cls,
lora_model_id: int,
rank: int,
lora_alpha: int,
tensors: Dict[str, torch.Tensor],
device: str = "cuda",
dtype: Optional[torch.dtype] = None,
embeddings: Optional[Dict[str, torch.Tensor]] = None,
target_embedding_padding: Optional[int] = None,
) -> "LoRAModel":
"""Create a LoRAModel from a dictionary of tensors."""
pin_memory = str(device) == "cpu" and not in_wsl()
loras: Dict[str, LoRALayerWeights] = {}
for tensor_name, tensor in tensors.items():
module_name, is_lora_a = parse_fine_tuned_lora_name(tensor_name)
if module_name not in loras:
lora_embeddings_tensor = None
if embeddings:
embeddings_module = next(
(k for k in EMBEDDING_MODULES if k in module_name),
None)
if embeddings_module:
lora_embeddings_tensor = embeddings[
EMBEDDING_MODULES[embeddings_module]].to(
device=device, dtype=dtype)
if pin_memory:
lora_embeddings_tensor = (
lora_embeddings_tensor.pin_memory())
loras[module_name] = LoRALayerWeights(module_name, rank,
lora_alpha, None, None,
lora_embeddings_tensor)
if is_lora_a:
loras[module_name].lora_a = tensor.to(device=device,
dtype=dtype).t()
if pin_memory:
loras[module_name].lora_a = loras[
module_name].lora_a.pin_memory()
else:
loras[module_name].lora_b = tensor.to(device=device,
dtype=dtype).t()
if any(name in module_name
for name in EMBEDDING_PADDING_MODULES
) and target_embedding_padding is not None:
lora_b = loras[module_name].lora_b
assert target_embedding_padding >= lora_b.shape[1]
addition = target_embedding_padding - lora_b.shape[1]
loras[module_name].lora_b = torch.nn.functional.pad(
lora_b, (0, addition))
if pin_memory:
loras[module_name].lora_b = loras[
module_name].lora_b.pin_memory()
for lora in loras.values():
lora.optimize()
return cls(lora_model_id, rank, loras)
@classmethod
def from_local_checkpoint(
cls,
lora_dir: str,
lora_model_id: Optional[int] = None,
device: str = "cuda",
dtype: Optional[torch.dtype] = None,
target_embedding_padding: Optional[int] = None) -> "LoRAModel":
"""Create a LoRAModel from a local checkpoint."""
lora_config_path = os.path.join(lora_dir, "adapter_config.json")
lora_tensor_path = os.path.join(lora_dir, "adapter_model.safetensors")
lora_bin_file_path = os.path.join(lora_dir, "adapter_model.bin")
new_embeddings_tensor_path = os.path.join(
lora_dir, "new_embeddings.safetensors")
new_embeddings_bin_file_path = os.path.join(lora_dir,
"new_embeddings.bin")
if os.path.isfile(lora_tensor_path):
tensors = safetensors.torch.load_file(lora_tensor_path)
elif os.path.isfile(lora_bin_file_path):
tensors = torch.load(lora_bin_file_path)
else:
raise ValueError(f"{lora_dir} doesn't contain tensors")
embeddings = None
if os.path.isfile(new_embeddings_tensor_path):
embeddings = safetensors.torch.load_file(
new_embeddings_tensor_path)
elif os.path.isfile(new_embeddings_bin_file_path):
embeddings = torch.load(new_embeddings_bin_file_path)
with open(lora_config_path) as f:
config = json.load(f)
rank = config["r"]
lora_alpha = config["lora_alpha"]
return cls.from_lora_tensors(
lora_model_id=get_lora_id()
if lora_model_id is None else lora_model_id,
rank=rank,
lora_alpha=lora_alpha,
tensors=tensors,
device=device,
dtype=dtype,
embeddings=embeddings,
target_embedding_padding=target_embedding_padding,
)
class LoRAModelManager:
"""A manager that manages multiple LoRA-fine-tuned models."""
def __init__(
self,
model: nn.Module,
max_num_seqs: int,
max_num_batched_tokens: int,
vocab_size: int,
lora_config: LoRAConfig,
lora_target_modules: Union[str, List[str]] = TARGET_MODULES_QKV,
packed_modules_mapping: Dict[str, List[str]] = PACKED_MODULES_CFG,
):
"""Create a LoRAModelManager and adapter for a given model.
Args:
model: the model to be adapted.
max_num_seqs: the maximum number of sequences model can run in a
single batch.
max_num_batched_tokens: the maximum number of tokens model can run
in a single batch.
vocab_size: the vocab size of the model.
lora_config: the LoRA configuration.
lora_target_modules: the target modules patterns to be adapted.
Support both single module name and a list of module names.
packed_modules_mapping: the mapping for packed modules. vLLM
packs some modules into one module, e.g., qkv_proj
is packed of q_proj, k_proj, and v_proj. These modules
have a single layer in the original model, but they are split
into multiple layers in the adapted model.
"""
self.lora_config = lora_config
self.max_num_seqs = max_num_seqs
assert self.capacity >= self.lora_slots
self.max_num_batched_tokens = math.ceil(max_num_batched_tokens / 8) * 8
self.lora_index_to_id: List[Optional[int]] = [None] * self.lora_slots
self.vocab_size = vocab_size
self.base_indices = torch.empty(self.max_num_batched_tokens,
dtype=torch.long,
device="cuda")
self.sampler_indices = torch.empty(self.max_num_batched_tokens,
dtype=torch.long,
device="cuda")
self.sampler_indices_padded = torch.empty(self.max_num_batched_tokens,
dtype=torch.long,
device="cuda")
self.embeddings_indices = torch.empty(2,
self.max_num_batched_tokens,
dtype=torch.long,
device="cuda")
self.offsets = []
# 4 is the number of indicies tensors defined above
# base_indices, sampler_indices, sampler_indices_padded,
# embeddings_indices
self.indices_len = [None] * 4
self.model: nn.Module = model
self.lora_target_modules: List[str] = ([
lora_target_modules
] if isinstance(lora_target_modules, str) else lora_target_modules)
self.lora_target_modules = copy.deepcopy(lora_target_modules)
self.packed_modules_mapping = copy.deepcopy(packed_modules_mapping)
self.packed_modules: Dict[str, List[str]] = {}
self.modules: Dict[str, "BaseLayerWithLoRA"] = {}
self._registered_loras: Dict[int, LoRAModel] = {}
# Dict instead of a Set for compatibility with LRUCache.
self._active_loras: Dict[int, None] = {}
self._last_mapping = None
self._create_lora_modules()
self.model.lora_manager = self
@property
def capacity(self) -> int:
return self.lora_config.max_cpu_loras
@property
def lora_slots(self) -> int:
return self.lora_config.max_loras
def __len__(self) -> int:
return len(self._registered_loras)
def activate_lora(
self,
lora_id: int,
) -> bool:
"""Move LoRA into a GPU buffer to be used in the forward pass."""
if lora_id in self._active_loras:
return False
first_free_slot = next(
((i, lora_id) for i, lora_id in enumerate(self.lora_index_to_id)
if lora_id is None), None)
if first_free_slot is None:
raise ValueError("No free lora slots")
index, _ = first_free_slot
self._active_loras[lora_id] = None
lora_model = self._registered_loras[lora_id]
logger.debug(
f"Activating LoRA. int id: {lora_model.id}, slot index: {index}")
self.lora_index_to_id[index] = lora_model.id
for module_name, module in self.modules.items():
module_lora = lora_model.get_lora(module_name)
if module_lora:
module_lora.optimize()
module.set_lora(index, module_lora.lora_a, module_lora.lora_b,
module_lora.embeddings_tensor)
else:
module.reset_lora(index)
return True
def _deactivate_lora(self, lora_id: int):
try:
index = self.lora_index_to_id.index(lora_id)
self.lora_index_to_id[index] = None
except ValueError:
pass
def deactivate_lora(self, lora_id: int) -> bool:
"""Remove a LoRA from a GPU buffer."""
if lora_id in self._active_loras:
self._deactivate_lora(lora_id)
self._active_loras.pop(lora_id)
return True
return False
def _add_lora(self, lora: LoRAModel) -> bool:
self._create_merged_loras_inplace(lora)
self._registered_loras[lora.id] = lora
def add_lora(self, lora: LoRAModel) -> bool:
"""Add a LoRAModel to the manager CPU cache."""
if lora.id not in self._registered_loras:
if len(self._registered_loras) >= self.capacity:
raise RuntimeError("No free LoRA slots.")
self._add_lora(lora)
return True
return False
def remove_lora(self, lora_id: int) -> bool:
"""Remove a LoRAModel from the manager CPU cache."""
# TODO: should we check active lora?
self.deactivate_lora(lora_id)
return bool(self._registered_loras.pop(lora_id, None))
# TODO see if this can be vectorized
def _set_lora_mapping(self, mapping: LoRAMapping) -> None:
(base_indices, sampler_indices, sampler_indices_padded,
embeddings_indices,
indices_len) = convert_mapping(mapping, self.lora_index_to_id,
self.lora_slots + 1, self.vocab_size,
self.lora_config.lora_extra_vocab_size)
self.base_indices[:base_indices.shape[0]].copy_(base_indices)
self.sampler_indices[:sampler_indices.shape[0]].copy_(sampler_indices)
self.sampler_indices_padded[:sampler_indices_padded.shape[0]].copy_(
sampler_indices_padded)
self.embeddings_indices[:embeddings_indices.
shape[0], :embeddings_indices.shape[1]].copy_(
embeddings_indices)
# Maintain the reference
self.indices_len[:] = indices_len
def set_lora_mapping(self, lora_mapping: LoRAMapping) -> None:
if self._last_mapping != lora_mapping:
self._set_lora_mapping(lora_mapping)
self._last_mapping = lora_mapping
def list_loras(self) -> Dict[int, LoRAModel]:
"""List all registered LoRAModels."""
return dict(self._registered_loras)
def get_lora(self, lora_id: int) -> Optional[LoRAModel]:
return self._registered_loras.get(lora_id, None)
def remove_all_loras(self) -> bool:
"""Remove all LoRAModels from the manager."""
self._registered_loras.clear()
self.lora_index_to_id = [None] * self.lora_slots
self._active_loras.clear()
def _create_lora_modules(self):
for module_name, module in self.model.named_modules():
if not self._match_target_modules(module_name):
continue
new_module = replace_submodule(
self.model, module_name,
from_layer(module, self.lora_slots, self.lora_config,
self.model.config))
# (yard1): TODO make this more robust
if "lm_head" in module_name:
sampler_module = self.model.get_submodule("sampler")
new_module = replace_submodule(
self.model, "sampler",
from_layer_sampler(sampler_module, module, self.lora_slots,
self.lora_config, self.model.config))
self.register_module(module_name, new_module)
self._register_packed_modules(module_name)
new_module.set_mapping(self.base_indices, self.sampler_indices,
self.sampler_indices_padded,
self.embeddings_indices, self.indices_len)
def register_module(self, module_name: str, module: "BaseLayerWithLoRA"):
assert isinstance(module, BaseLayerWithLoRA)
self.modules[module_name] = module
def create_dummy_lora(self, lora_id: int, rank: int) -> LoRAModel:
"""Create zero-initialized LoRAModel for warmup."""
model = LoRAModel(lora_id, rank, {})
for module_name, module in self.model.named_modules():
if not self._match_target_modules(module_name) or not isinstance(
module, BaseLayerWithLoRA):
continue
parts = module_name.split(".")
if module_name not in self.packed_modules:
if parts[-1] in EMBEDDING_MODULES:
input_dim = (module.base_layer.org_vocab_size +
self.lora_config.lora_extra_vocab_size if
hasattr(module.base_layer, "org_vocab_size")
else module.base_layer.weight.shape[1])
output_dim = module.base_layer.embedding_dim if hasattr(
module.base_layer,
"embedding_dim") else module.base_layer.weight.shape[0]
embeddings_tensor_dim = (module.base_layer.embedding_dim if
hasattr(module.base_layer,
"embedding_dim") else
module.base_layer.weight.shape[1])
lora = LoRALayerWeights.create_dummy_lora_weights(
module_name,
input_dim,
output_dim,
rank,
module.lora_a_stacked.dtype,
"cpu",
embeddings_tensor_dim=embeddings_tensor_dim)
else:
lora = LoRALayerWeights.create_dummy_lora_weights(
module_name,
module.lora_a_stacked.shape[-1],
module.lora_b_stacked.shape[-2],
rank,
module.lora_a_stacked.dtype,
"cpu",
)
lora.optimize()
else:
parts = module_name.split(".")
replacements = self.packed_modules_mapping[parts[-1]]
subloras = []
for i, r in enumerate(replacements):
lora = LoRALayerWeights.create_dummy_lora_weights(
module_name + "." + r,
module.lora_a_stacked[i].shape[-1],
module.lora_b_stacked[i].shape[-2],
rank,
module.lora_a_stacked[i].dtype,
"cpu",
)
lora.optimize()
subloras.append(lora)
lora = PackedLoRALayerWeights.pack(subloras)
model.loras[module_name] = lora
return model
def _match_target_modules(self, module_name: str):
return any(
re.match(
r".*\.{target_module}$".format(target_module=target_module),
module_name) or target_module == module_name
for target_module in self.lora_target_modules)
def _register_packed_modules(self, module_full_name: str) -> None:
parts = module_full_name.split(".")
module_name = parts[-1]
replacements = self.packed_modules_mapping.get(module_name)
if not replacements:
return
prefix = ".".join(parts[:-1])
self.packed_modules[module_full_name] = [
prefix + "." + r if prefix else r for r in replacements
]
def _create_merged_loras_inplace(self, lora_model: LoRAModel) -> None:
for module_name, new_module_names in self.packed_modules.items():
replacement_loras = []
has_replacement = False
for r in new_module_names:
lora = lora_model.get_lora(r)
replacement_loras.append(lora)
if lora:
has_replacement = True
if not has_replacement:
continue
for i in range(len(replacement_loras)):
if replacement_loras[i]:
continue
replacement_loras[i] = None
lora_model.loras[module_name] = PackedLoRALayerWeights.pack(
replacement_loras)
class LoRALRUCache(LRUCache):
def __init__(self, capacity: int, deactivate_lora_fn: Callable[[Hashable],
None]):
super().__init__(capacity)
self.deactivate_lora_fn = deactivate_lora_fn
def _on_remove(self, key: Hashable, value: Any):
logger.debug(f"Removing LoRA. int id: {key}")
self.deactivate_lora_fn(key)
return super()._on_remove(key, value)
class LRUCacheLoRAModelManager(LoRAModelManager):
"""A model manager that manages multiple LoRAs with LRU cache."""
def __init__(
self,
model: nn.Module,
max_num_seqs: int,
max_num_batched_tokens: int,
vocab_size: int,
lora_config: LoRAConfig,
lora_target_modules: Union[str, List[str]] = TARGET_MODULES_QKV,
packed_modules_mapping: Dict[str, List[str]] = PACKED_MODULES_CFG,
):
super().__init__(model, max_num_seqs, max_num_batched_tokens,
vocab_size, lora_config, lora_target_modules,
packed_modules_mapping)
self._registered_loras: LoRALRUCache = LoRALRUCache(
self.capacity, self.deactivate_lora)
self._active_loras: LoRALRUCache = LoRALRUCache(
self.lora_slots, self._deactivate_lora)
def list_loras(self) -> Dict[int, LoRAModel]:
"""List all registered LoRAModels."""
return dict(self._registered_loras.cache)
def add_lora(self, lora: LoRAModel) -> bool:
"""Add a LoRAModel to the manager."""
if lora.id not in self._registered_loras:
self._add_lora(lora)
was_added = True
else:
# We always touch to update the LRU cache order
self._registered_loras.touch(lora.id)
was_added = False
return was_added
def activate_lora(
self,
lora_id: int,
) -> bool:
if lora_id not in self._active_loras and len(
self._active_loras) >= self.lora_slots:
self._active_loras.remove_oldest()
result = super().activate_lora(lora_id)
# We always touch to update the LRU cache order
self._active_loras.touch(lora_id)
return result
def remove_oldest_lora(self) -> bool:
if len(self._registered_loras) > 0:
self._registered_loras.remove_oldest()
return True
return False
def create_lora_manager(
model: nn.Module,
max_num_seqs: int,
max_num_batched_tokens: int,
vocab_size: int,
lora_config: LoRAConfig,
target_modules: Union[str, List[str]] = TARGET_MODULES_QKV,
lora_manager_cls: Type[LoRAModelManager] = LoRAModelManager,
**kwargs) -> LoRAModelManager:
"""Create a LoRA adapter for a given model."""
if not getattr(model, "supports_lora", False):
raise ValueError(f"Model {type(model)} is not supported for LoRA.")
lora_manager = lora_manager_cls(
model=model,
max_num_seqs=max_num_seqs,
max_num_batched_tokens=max_num_batched_tokens,
vocab_size=vocab_size,
lora_config=lora_config,
lora_target_modules=target_modules,
**kwargs)
return lora_manager