certifaier / vllm /lora /utils.py
bsmit1659's picture
Adding vllm package
ca1ecab
raw
history blame
1.31 kB
import logging
from typing import Tuple
from torch import nn
logger = logging.getLogger(__name__)
def replace_submodule(model: nn.Module, module_name: str,
new_module: nn.Module) -> nn.Module:
"""Replace a submodule in a model with a new module."""
parent = model.get_submodule(".".join(module_name.split(".")[:-1]))
target_name = module_name.split(".")[-1]
setattr(parent, target_name, new_module)
return new_module
def parse_fine_tuned_lora_name(name: str) -> Tuple[str, bool]:
"""Parse the name of lora weights.
args:
name: the name of the fine-tuned LoRA, e.g.
base_model.model.dense1.weight
return:
Tuple(module_name, is_lora_a):
module_name: the name of the module, e.g. model.dense1,
is_lora_a whether the tensor is lora_a or lora_b.
"""
parts = name.split(".")
assert parts[0] == "base_model"
assert parts[1] == "model"
if parts[-1] == "weight":
assert parts[-2] == "lora_A" or parts[-2] == "lora_B"
return ".".join(parts[2:-2]), parts[-2] == "lora_A"
if parts[-1] == "lora_embedding_A" or parts[-1] == "lora_embedding_B":
return ".".join(parts[2:-1]), parts[-1] == "lora_embedding_A"
raise ValueError(f"{name} is unsupported format")