certifaier / vllm /model_executor /input_metadata.py
bsmit1659's picture
Adding vllm package
ca1ecab
raw
history blame
1.93 kB
from typing import Optional
import torch
class InputMetadata:
"""Metadata for input sequences. Used in PagedAttention.
Args:
prompt_lens: Lengths of prompts.
slot_mapping: The address to write the new KV to of each token.
max_context_len: The maximum context length.
context_lens: the length of attention context for each sequence.
block_tables: The block tables. (Seq id -> list of physical block)
kv_cache_dtype: Data type to store kv cache.
"""
def __init__(
self,
is_prompt: bool,
slot_mapping: torch.Tensor,
prompt_lens: Optional[torch.Tensor],
max_seq_len: Optional[int],
start_loc: Optional[torch.Tensor],
max_context_len: Optional[int],
context_lens: Optional[torch.Tensor],
block_tables: Optional[torch.Tensor],
use_cuda_graph: bool,
kv_cache_dtype: str,
) -> None:
self.is_prompt = is_prompt
self.prompt_lens = prompt_lens
self.max_seq_len = max_seq_len
self.start_loc = start_loc
self.max_context_len = max_context_len
self.slot_mapping = slot_mapping
self.context_lens = context_lens
self.block_tables = block_tables
self.use_cuda_graph = use_cuda_graph
self.kv_cache_dtype = kv_cache_dtype
# Set during the execution of the first attention op.
# FIXME(woosuk): This is a hack.
self.attn_bias = None
def __repr__(self) -> str:
return ("InputMetadata("
f"is_prompt={self.is_prompt}, "
f"max_context_len={self.max_context_len}, "
f"slot_mapping={self.slot_mapping}, "
f"context_lens={self.context_lens}, "
f"block_tables={self.block_tables}, "
f"use_cuda_graph={self.use_cuda_graph}, "
f"kv_cache_dtype={self.kv_cache_dtype})")