bsmit1659's picture
Adding vllm package
ca1ecab
raw
history blame
5.82 kB
from typing import Any, Dict, List, Optional
import torch
from torch.nn.parameter import Parameter
from vllm._C import ops
from vllm.model_executor.layers.linear import (LinearMethodBase,
set_weight_attrs)
from vllm.model_executor.layers.quantization.base_config import QuantizationConfig
class AWQConfig(QuantizationConfig):
"""Config class for AWQ.
Reference: https://arxiv.org/abs/2306.00978
"""
def __init__(
self,
weight_bits: int,
group_size: int,
zero_point: bool,
) -> None:
self.weight_bits = weight_bits
self.group_size = group_size
self.zero_point = zero_point
if self.weight_bits != 4:
raise ValueError(
"Currently, only 4-bit weight quantization is supported for "
f"AWQ, but got {self.weight_bits} bits.")
self.pack_factor = 32 // self.weight_bits
def __repr__(self) -> str:
return (f"AWQConfig(weight_bits={self.weight_bits}, "
f"group_size={self.group_size}, "
f"zero_point={self.zero_point})")
def get_name(self) -> str:
return "awq"
def get_supported_act_dtypes(self) -> List[torch.dtype]:
return [torch.half]
def get_min_capability(self) -> int:
# The AWQ kernel only supports Turing or newer GPUs.
return 75
@staticmethod
def get_config_filenames() -> List[str]:
return [
"quant_config.json", # E.g., casperhansen/vicuna-7b-v1.5-awq
"quantize_config.json", # E.g., abhinavkulkarni/mosaicml-mpt-7b-instruct-w4-g128-awq
]
@classmethod
def from_config(cls, config: Dict[str, Any]) -> "AWQConfig":
weight_bits = cls.get_from_keys(config, ["w_bit", "bits"])
group_size = cls.get_from_keys(config, ["q_group_size", "group_size"])
zero_point = cls.get_from_keys(config, ["zero_point"])
return cls(weight_bits, group_size, zero_point)
def get_linear_method(self) -> "AWQLinearMethod":
return AWQLinearMethod(self)
def get_scaled_act_names(self) -> List[str]:
return ["gelu", "gelu_fast", "gelu_new", "gelu_pytorch_tanh"]
class AWQLinearMethod(LinearMethodBase):
"""Linear method for AWQ.
Args:
quant_config: The AWQ quantization config.
"""
def __init__(self, quant_config: AWQConfig):
self.quant_config = quant_config
def create_weights(self, input_size_per_partition: int,
output_size_per_partition: int, input_size: int,
output_size: int,
params_dtype: torch.dtype) -> Dict[str, Any]:
if input_size_per_partition % self.quant_config.group_size != 0:
raise ValueError(
"The input size is not aligned with the quantized "
"weight shape. This can be caused by too large "
"tensor parallel size.")
if output_size_per_partition % self.quant_config.pack_factor != 0:
raise ValueError(
"The output size is not aligned with the quantized "
"weight shape. This can be caused by too large "
"tensor parallel size.")
qweight = Parameter(
torch.empty(
input_size_per_partition,
output_size_per_partition // self.quant_config.pack_factor,
device="cuda",
dtype=torch.int32,
),
requires_grad=False,
)
set_weight_attrs(
qweight, {
"input_dim": 0,
"output_dim": 1,
"packed_dim": 1,
"pack_factor": self.quant_config.pack_factor,
})
qzeros = Parameter(
torch.empty(
input_size_per_partition // self.quant_config.group_size,
output_size_per_partition // self.quant_config.pack_factor,
device="cuda",
dtype=torch.int32,
),
requires_grad=False,
)
set_weight_attrs(
qzeros, {
"input_dim": 0,
"output_dim": 1,
"packed_dim": 1,
"pack_factor": self.quant_config.pack_factor,
})
scales = Parameter(
torch.empty(
input_size_per_partition // self.quant_config.group_size,
output_size_per_partition,
device="cuda",
dtype=params_dtype,
),
requires_grad=False,
)
set_weight_attrs(scales, {
"input_dim": 0,
"output_dim": 1,
})
return {
"qweight": qweight,
"qzeros": qzeros,
"scales": scales,
}
def apply_weights(self,
weights: Dict[str, Any],
x: torch.Tensor,
bias: Optional[torch.Tensor] = None) -> torch.Tensor:
qweight = weights["qweight"]
qzeros = weights["qzeros"]
scales = weights["scales"]
pack_factor = self.quant_config.pack_factor
out_shape = (x.shape[:-1] + (qweight.shape[-1] * pack_factor, ))
reshaped_x = x.reshape(-1, x.shape[-1])
# num_tokens >= threshold
FP16_MATMUL_HEURISTIC_CONDITION = x.shape[:-1].numel() >= 256
if FP16_MATMUL_HEURISTIC_CONDITION:
out = ops.awq_dequantize(qweight, scales, qzeros, 0, 0, 0)
out = torch.matmul(reshaped_x, out)
else:
out = ops.awq_gemm(reshaped_x, qweight, scales, qzeros,
pack_factor)
if bias is not None:
out = out + bias
return out.reshape(out_shape)