Spaces:
Sleeping
Sleeping
# coding=utf-8 | |
# Adapted from | |
# https://github.com/huggingface/transformers/blob/v4.28.0/src/transformers/models/bloom/modeling_bloom.py | |
# Copyright 2023 The CacheFlow team. | |
# Copyright 2022 HuggingFace Inc. team and BigScience workshop. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Inference-only BLOOM model compatible with HuggingFace weights.""" | |
import math | |
from typing import List, Optional, Tuple | |
import torch | |
from torch import nn | |
from transformers import BloomConfig | |
from vllm.model_executor.input_metadata import InputMetadata | |
from vllm.model_executor.layers.activation import get_act_fn | |
from vllm.model_executor.layers.attention import PagedAttention | |
from vllm.model_executor.layers.linear import (ColumnParallelLinear, | |
LinearMethodBase, | |
QKVParallelLinear, | |
RowParallelLinear) | |
from vllm.model_executor.layers.sampler import Sampler | |
from vllm.model_executor.layers.vocab_parallel_embedding import ( | |
VocabParallelEmbedding) | |
from vllm.model_executor.parallel_utils.parallel_state import ( | |
get_tensor_model_parallel_rank, get_tensor_model_parallel_world_size) | |
from vllm.model_executor.sampling_metadata import SamplingMetadata | |
from vllm.model_executor.weight_utils import (default_weight_loader, | |
hf_model_weights_iterator) | |
from vllm.sequence import SamplerOutput | |
KVCache = Tuple[torch.Tensor, torch.Tensor] | |
def _get_alibi_slopes(total_num_heads: int) -> torch.Tensor: | |
closest_power_of_2 = 2**math.floor(math.log2(total_num_heads)) | |
base = torch.tensor( | |
2**(-(2**-(math.log2(closest_power_of_2) - 3))), | |
dtype=torch.float32, | |
) | |
powers = torch.arange(1, 1 + closest_power_of_2, dtype=torch.int32) | |
slopes = torch.pow(base, powers) | |
if closest_power_of_2 != total_num_heads: | |
extra_base = torch.tensor( | |
2**(-(2**-(math.log2(2 * closest_power_of_2) - 3))), | |
dtype=torch.float32, | |
) | |
num_remaining_heads = min(closest_power_of_2, | |
total_num_heads - closest_power_of_2) | |
extra_powers = torch.arange(start=1, | |
end=1 + 2 * num_remaining_heads, | |
step=2, | |
dtype=torch.int32) | |
slopes = torch.cat( | |
[slopes, torch.pow(extra_base, extra_powers)], dim=0) | |
return slopes | |
class BloomAttention(nn.Module): | |
def __init__( | |
self, | |
config: BloomConfig, | |
linear_method: Optional[LinearMethodBase] = None, | |
): | |
super().__init__() | |
self.hidden_size = config.hidden_size | |
self.total_num_heads = config.n_head | |
self.head_dim = self.hidden_size // self.total_num_heads | |
assert self.head_dim * self.total_num_heads == self.hidden_size | |
tp_world_size = get_tensor_model_parallel_world_size() | |
assert self.total_num_heads % tp_world_size == 0 | |
self.num_heads = self.total_num_heads // tp_world_size | |
self.query_key_value = QKVParallelLinear( | |
self.hidden_size, | |
self.head_dim, | |
self.total_num_heads, | |
bias=True, | |
linear_method=linear_method, | |
) | |
self.dense = RowParallelLinear( | |
self.hidden_size, | |
self.hidden_size, | |
bias=True, | |
linear_method=linear_method, | |
) | |
# Create the alibi slopes and slice them. | |
tp_rank = get_tensor_model_parallel_rank() | |
head_start = tp_rank * self.num_heads | |
head_end = (tp_rank + 1) * self.num_heads | |
alibi_slopes = _get_alibi_slopes(self.total_num_heads) | |
alibi_slopes = alibi_slopes[head_start:head_end].tolist() | |
scaling = self.head_dim**-0.5 | |
self.attn = PagedAttention(self.num_heads, | |
self.head_dim, | |
scaling, | |
alibi_slopes=alibi_slopes) | |
def forward( | |
self, | |
position_ids: torch.Tensor, | |
hidden_states: torch.Tensor, | |
kv_cache: KVCache, | |
input_metadata: InputMetadata, | |
) -> torch.Tensor: | |
del position_ids # Unused. | |
qkv, _ = self.query_key_value(hidden_states) | |
q, k, v = qkv.chunk(chunks=3, dim=-1) | |
k_cache, v_cache = kv_cache | |
attn_output = self.attn(q, k, v, k_cache, v_cache, input_metadata) | |
output, _ = self.dense(attn_output) | |
return output | |
class BloomMLP(nn.Module): | |
def __init__( | |
self, | |
config: BloomConfig, | |
linear_method: Optional[LinearMethodBase] = None, | |
): | |
super().__init__() | |
hidden_size = config.hidden_size | |
self.dense_h_to_4h = ColumnParallelLinear( | |
hidden_size, | |
4 * hidden_size, | |
linear_method=linear_method, | |
) | |
quant_config = getattr(linear_method, "quant_config", None) | |
self.gelu_impl = get_act_fn("gelu", quant_config, 4 * hidden_size) | |
self.dense_4h_to_h = RowParallelLinear( | |
4 * hidden_size, | |
hidden_size, | |
linear_method=linear_method, | |
) | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
x, _ = self.dense_h_to_4h(x) | |
x = self.gelu_impl(x) | |
x, _ = self.dense_4h_to_h(x) | |
return x | |
class BloomBlock(nn.Module): | |
def __init__( | |
self, | |
config: BloomConfig, | |
linear_method: Optional[LinearMethodBase] = None, | |
): | |
super().__init__() | |
hidden_size = config.hidden_size | |
self.input_layernorm = nn.LayerNorm(hidden_size, | |
eps=config.layer_norm_epsilon) | |
self.self_attention = BloomAttention(config, linear_method) | |
self.post_attention_layernorm = nn.LayerNorm( | |
hidden_size, eps=config.layer_norm_epsilon) | |
self.mlp = BloomMLP(config, linear_method) | |
self.apply_residual_connection_post_layernorm = ( | |
config.apply_residual_connection_post_layernorm) | |
def forward( | |
self, | |
position_ids: torch.Tensor, | |
hidden_states: torch.Tensor, | |
kv_cache: KVCache, | |
input_metadata: InputMetadata, | |
) -> torch.Tensor: | |
# Layer norm at the beginning of the transformer layer. | |
layernorm_output = self.input_layernorm(hidden_states) | |
# Layer norm post the self attention. | |
if self.apply_residual_connection_post_layernorm: | |
residual = layernorm_output | |
else: | |
residual = hidden_states | |
# Self attention. | |
attention_output = self.self_attention( | |
position_ids=position_ids, | |
hidden_states=layernorm_output, | |
kv_cache=kv_cache, | |
input_metadata=input_metadata, | |
) | |
attention_output = attention_output + residual | |
layernorm_output = self.post_attention_layernorm(attention_output) | |
# Get residual | |
if self.apply_residual_connection_post_layernorm: | |
residual = layernorm_output | |
else: | |
residual = attention_output | |
# MLP. | |
output = self.mlp(layernorm_output) + residual | |
return output | |
class BloomModel(nn.Module): | |
def __init__( | |
self, | |
config: BloomConfig, | |
linear_method: Optional[LinearMethodBase] = None, | |
): | |
super().__init__() | |
self.embed_dim = config.hidden_size | |
# Embedding + LN Embedding | |
self.word_embeddings = VocabParallelEmbedding( | |
config.vocab_size, | |
self.embed_dim, | |
) | |
self.word_embeddings_layernorm = nn.LayerNorm( | |
self.embed_dim, eps=config.layer_norm_epsilon) | |
# Transformer blocks | |
self.h = nn.ModuleList([ | |
BloomBlock(config, linear_method) | |
for _ in range(config.num_hidden_layers) | |
]) | |
# Final Layer Norm | |
self.ln_f = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon) | |
def forward( | |
self, | |
input_ids: torch.Tensor, | |
position_ids: torch.Tensor, | |
kv_caches: List[KVCache], | |
input_metadata: InputMetadata, | |
) -> torch.Tensor: | |
hidden_states = self.word_embeddings(input_ids) | |
hidden_states = self.word_embeddings_layernorm(hidden_states) | |
for i in range(len(self.h)): | |
layer = self.h[i] | |
hidden_states = layer( | |
position_ids, | |
hidden_states, | |
kv_caches[i], | |
input_metadata, | |
) | |
hidden_states = self.ln_f(hidden_states) | |
return hidden_states | |
class BloomForCausalLM(nn.Module): | |
def __init__( | |
self, | |
config: BloomConfig, | |
linear_method: Optional[LinearMethodBase] = None, | |
): | |
super().__init__() | |
self.config = config | |
self.linear_method = linear_method | |
self.transformer = BloomModel(config, linear_method) | |
self.lm_head_weight = self.transformer.word_embeddings.weight | |
self.sampler = Sampler(config.vocab_size) | |
def forward( | |
self, | |
input_ids: torch.Tensor, | |
positions: torch.Tensor, | |
kv_caches: List[KVCache], | |
input_metadata: InputMetadata, | |
) -> torch.Tensor: | |
hidden_states = self.transformer(input_ids, positions, kv_caches, | |
input_metadata) | |
return hidden_states | |
def sample( | |
self, | |
hidden_states: torch.Tensor, | |
sampling_metadata: SamplingMetadata, | |
) -> Optional[SamplerOutput]: | |
next_tokens = self.sampler(self.lm_head_weight, hidden_states, | |
sampling_metadata) | |
return next_tokens | |
def load_weights(self, | |
model_name_or_path: str, | |
cache_dir: Optional[str] = None, | |
load_format: str = "auto", | |
revision: Optional[str] = None): | |
params_dict = dict(self.named_parameters(remove_duplicate=False)) | |
for name, loaded_weight in hf_model_weights_iterator( | |
model_name_or_path, cache_dir, load_format, revision): | |
if name == "lm_head.weight": | |
continue | |
if not name.startswith("transformer."): | |
name = "transformer." + name | |
param = params_dict[name] | |
if "query_key_value" in name: | |
# NOTE: BLOOM's fused QKV's output_dim has the shape of | |
# (num_heads * 3 * head_size), while the | |
# required shape is (3 * num_heads * head_size). | |
# Thus, we need weight conversion. | |
output_dim = getattr(param, "output_dim", None) | |
num_heads = self.config.num_attention_heads | |
if output_dim is not None: | |
loaded_weight_shape = loaded_weight.shape | |
loaded_weight = loaded_weight.view( | |
loaded_weight_shape[:output_dim] + (num_heads, 3, -1) + | |
loaded_weight_shape[output_dim + 1:]) | |
loaded_weight = loaded_weight.transpose( | |
output_dim, output_dim + 1) | |
loaded_weight = loaded_weight.reshape(loaded_weight_shape) | |
weight_loader = getattr(param, "weight_loader", | |
default_weight_loader) | |
weight_loader(param, loaded_weight) | |