Spaces:
Sleeping
Sleeping
# coding=utf-8 | |
# Adapted from | |
# https://github.com/huggingface/transformers/blob/v4.28.0/src/transformers/models/gpt2/modeling_gpt2.py | |
# Copyright 2023 The vLLM team. | |
# Copyright 2023 CTranslate2, and Michael Feil | |
# Copyright 2018 The OpenAI Team Authors and HuggingFace Inc. team. | |
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Inference-only GPTBigCode model compatible with HuggingFace weights.""" | |
from typing import List, Optional, Tuple | |
import torch | |
from torch import nn | |
from transformers import GPTBigCodeConfig | |
from vllm.model_executor.input_metadata import InputMetadata | |
from vllm.model_executor.layers.activation import get_act_fn | |
from vllm.model_executor.layers.attention import PagedAttention | |
from vllm.model_executor.layers.linear import (ColumnParallelLinear, | |
LinearMethodBase, | |
QKVParallelLinear, | |
RowParallelLinear) | |
from vllm.model_executor.layers.sampler import Sampler | |
from vllm.model_executor.layers.vocab_parallel_embedding import ( | |
VocabParallelEmbedding) | |
from vllm.model_executor.parallel_utils.parallel_state import ( | |
get_tensor_model_parallel_world_size) | |
from vllm.model_executor.sampling_metadata import SamplingMetadata | |
from vllm.model_executor.weight_utils import (default_weight_loader, | |
hf_model_weights_iterator) | |
from vllm.sequence import SamplerOutput | |
KVCache = Tuple[torch.Tensor, torch.Tensor] | |
class GPTBigCodeAttention(nn.Module): | |
def __init__( | |
self, | |
config: GPTBigCodeConfig, | |
linear_method: Optional[LinearMethodBase] = None, | |
): | |
super().__init__() | |
self.hidden_size = config.hidden_size | |
total_num_heads = config.num_attention_heads | |
self.tensor_model_parallel_world_size = ( | |
get_tensor_model_parallel_world_size()) | |
assert total_num_heads % self.tensor_model_parallel_world_size == 0 | |
self.num_heads = (total_num_heads // | |
self.tensor_model_parallel_world_size) | |
self.head_dim = self.hidden_size // total_num_heads | |
self.scale = self.head_dim**-0.5 | |
self.multi_query = config.multi_query | |
if self.multi_query: | |
total_num_kv_heads = 1 | |
self.num_kv_heads = 1 | |
else: | |
total_num_kv_heads = total_num_heads | |
self.num_kv_heads = self.num_heads | |
self.kv_dim = self.head_dim * self.num_kv_heads | |
self.c_attn = QKVParallelLinear( | |
self.hidden_size, | |
self.head_dim, | |
total_num_heads, | |
total_num_kv_heads, | |
bias=True, | |
linear_method=linear_method, | |
) | |
self.c_proj = RowParallelLinear( | |
self.hidden_size, | |
self.hidden_size, | |
bias=True, | |
linear_method=linear_method, | |
) | |
self.attn = PagedAttention(self.num_heads, | |
self.head_dim, | |
scale=self.scale, | |
num_kv_heads=self.num_kv_heads) | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
kv_cache: KVCache, | |
input_metadata: InputMetadata, | |
) -> torch.Tensor: | |
qkv, _ = self.c_attn(hidden_states) | |
q, k, v = qkv.split( | |
[ | |
self.hidden_size // self.tensor_model_parallel_world_size, | |
self.kv_dim, self.kv_dim | |
], | |
dim=-1, | |
) | |
key_cache, value_cache = kv_cache | |
attn_output = self.attn(q, k, v, key_cache, value_cache, | |
input_metadata) | |
attn_output, _ = self.c_proj(attn_output) | |
return attn_output | |
class GPTBigMLP(nn.Module): | |
def __init__( | |
self, | |
intermediate_size: int, | |
config: GPTBigCodeConfig, | |
linear_method: Optional[LinearMethodBase] = None, | |
): | |
super().__init__() | |
hidden_size = config.hidden_size | |
self.c_fc = ColumnParallelLinear( | |
hidden_size, | |
intermediate_size, | |
bias=True, | |
linear_method=linear_method, | |
) | |
self.c_proj = RowParallelLinear( | |
intermediate_size, | |
hidden_size, | |
bias=True, | |
linear_method=linear_method, | |
) | |
quant_config = getattr(linear_method, "quant_config", None) | |
self.act = get_act_fn(config.activation_function, quant_config, | |
intermediate_size) | |
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: | |
hidden_states, _ = self.c_fc(hidden_states) | |
hidden_states = self.act(hidden_states) | |
hidden_states, _ = self.c_proj(hidden_states) | |
return hidden_states | |
class GPTBigCodeBlock(nn.Module): | |
def __init__( | |
self, | |
config: GPTBigCodeConfig, | |
linear_method: Optional[LinearMethodBase] = None, | |
): | |
super().__init__() | |
hidden_size = config.hidden_size | |
inner_dim = (config.n_inner if config.n_inner is not None else 4 * | |
hidden_size) | |
self.ln_1 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon) | |
self.attn = GPTBigCodeAttention(config, linear_method) | |
self.ln_2 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon) | |
self.mlp = GPTBigMLP(inner_dim, config, linear_method) | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
kv_cache: KVCache, | |
input_metadata: InputMetadata, | |
) -> torch.Tensor: | |
residual = hidden_states | |
hidden_states = self.ln_1(hidden_states) | |
attn_output = self.attn( | |
hidden_states=hidden_states, | |
kv_cache=kv_cache, | |
input_metadata=input_metadata, | |
) | |
# residual connection | |
hidden_states = attn_output + residual | |
residual = hidden_states | |
hidden_states = self.ln_2(hidden_states) | |
feed_forward_hidden_states = self.mlp(hidden_states) | |
# residual connection | |
hidden_states = residual + feed_forward_hidden_states | |
return hidden_states | |
class GPTBigCodeModel(nn.Module): | |
def __init__( | |
self, | |
config: GPTBigCodeConfig, | |
linear_method: Optional[LinearMethodBase] = None, | |
): | |
super().__init__() | |
self.config = config | |
assert not config.add_cross_attention | |
self.embed_dim = config.hidden_size | |
self.wte = VocabParallelEmbedding(config.vocab_size, self.embed_dim) | |
self.wpe = nn.Embedding(config.max_position_embeddings, self.embed_dim) | |
self.h = nn.ModuleList([ | |
GPTBigCodeBlock(config, linear_method) | |
for _ in range(config.num_hidden_layers) | |
]) | |
self.ln_f = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon) | |
def forward( | |
self, | |
input_ids: torch.Tensor, | |
position_ids: torch.Tensor, | |
kv_caches: List[KVCache], | |
input_metadata: InputMetadata, | |
) -> torch.Tensor: | |
inputs_embeds = self.wte(input_ids) | |
position_embeds = self.wpe(position_ids) | |
hidden_states = inputs_embeds + position_embeds | |
for i in range(len(self.h)): | |
layer = self.h[i] | |
hidden_states = layer(hidden_states, kv_caches[i], input_metadata) | |
hidden_states = self.ln_f(hidden_states) | |
return hidden_states | |
class GPTBigCodeForCausalLM(nn.Module): | |
def __init__( | |
self, | |
config: GPTBigCodeConfig, | |
linear_method: Optional[LinearMethodBase] = None, | |
): | |
super().__init__() | |
self.config = config | |
self.linear_method = linear_method | |
self.transformer = GPTBigCodeModel(config, linear_method) | |
self.lm_head_weight = self.transformer.wte.weight | |
self.sampler = Sampler(config.vocab_size) | |
def forward( | |
self, | |
input_ids: torch.Tensor, | |
positions: torch.Tensor, | |
kv_caches: List[KVCache], | |
input_metadata: InputMetadata, | |
) -> torch.Tensor: | |
hidden_states = self.transformer(input_ids, positions, kv_caches, | |
input_metadata) | |
return hidden_states | |
def sample( | |
self, | |
hidden_states: torch.Tensor, | |
sampling_metadata: SamplingMetadata, | |
) -> Optional[SamplerOutput]: | |
next_tokens = self.sampler(self.lm_head_weight, hidden_states, | |
sampling_metadata) | |
return next_tokens | |
def load_weights(self, | |
model_name_or_path: str, | |
cache_dir: Optional[str] = None, | |
load_format: str = "auto", | |
revision: Optional[str] = None): | |
params_dict = dict(self.named_parameters(remove_duplicate=False)) | |
for name, loaded_weight in hf_model_weights_iterator( | |
model_name_or_path, cache_dir, load_format, revision): | |
if "lm_head.weight" in name: | |
continue | |
if ".attn.bias" in name: | |
# Skip attention mask. | |
# NOTE: "c_attn.bias" should not be skipped. | |
continue | |
param = params_dict[name] | |
weight_loader = getattr(param, "weight_loader", | |
default_weight_loader) | |
weight_loader(param, loaded_weight) | |