bsmit1659's picture
Adding vllm package
ca1ecab
raw
history blame
10.3 kB
# coding=utf-8
# Adapted from
# https://github.com/huggingface/transformers/blob/v4.28.0/src/transformers/models/gptj/modeling_gptj.py
# Copyright 2023 The vLLM team.
# Copyright 2021 The EleutherAI and HuggingFace Teams. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Inference-only GPT-J model compatible with HuggingFace weights."""
from typing import List, Optional, Tuple
import torch
from torch import nn
from transformers import GPTJConfig
from vllm.model_executor.input_metadata import InputMetadata
from vllm.model_executor.layers.activation import get_act_fn
from vllm.model_executor.layers.attention import PagedAttention
from vllm.model_executor.layers.linear import (ColumnParallelLinear,
LinearMethodBase,
QKVParallelLinear,
RowParallelLinear)
from vllm.model_executor.layers.rotary_embedding import get_rope
from vllm.model_executor.layers.sampler import Sampler
from vllm.model_executor.layers.vocab_parallel_embedding import (
VocabParallelEmbedding, ParallelLMHead)
from vllm.model_executor.parallel_utils.parallel_state import (
get_tensor_model_parallel_world_size)
from vllm.model_executor.sampling_metadata import SamplingMetadata
from vllm.model_executor.weight_utils import (default_weight_loader,
hf_model_weights_iterator)
from vllm.sequence import SamplerOutput
KVCache = Tuple[torch.Tensor, torch.Tensor]
class GPTJAttention(nn.Module):
def __init__(
self,
config: GPTJConfig,
linear_method: Optional[LinearMethodBase] = None,
):
super().__init__()
self.total_num_heads = config.num_attention_heads
self.hidden_size = config.hidden_size
self.head_size = self.hidden_size // self.total_num_heads
self.qkv_proj = QKVParallelLinear(
config.hidden_size,
self.head_size,
self.total_num_heads,
bias=False,
linear_method=linear_method,
)
self.out_proj = RowParallelLinear(
config.hidden_size,
config.hidden_size,
bias=False,
linear_method=linear_method,
)
tp_world_size = get_tensor_model_parallel_world_size()
assert self.total_num_heads % tp_world_size == 0
self.num_heads = self.total_num_heads // tp_world_size
scaling = self.head_size**-0.5
assert getattr(config, "rotary", True)
assert config.rotary_dim % 2 == 0
rope_theta = getattr(config, "rope_theta", 10000)
max_position_embeddings = getattr(config, "max_position_embeddings",
8192)
self.rotary_emb = get_rope(
self.head_size,
rotary_dim=config.rotary_dim,
max_position=max_position_embeddings,
base=rope_theta,
is_neox_style=False,
)
self.attn = PagedAttention(self.num_heads, self.head_size, scaling)
def forward(
self,
position_ids: torch.Tensor,
hidden_states: torch.Tensor,
kv_cache: KVCache,
input_metadata: InputMetadata,
) -> torch.Tensor:
qkv, _ = self.qkv_proj(hidden_states)
q, k, v = qkv.chunk(chunks=3, dim=-1)
q, k = self.rotary_emb(position_ids, q, k)
k_cache, v_cache = kv_cache
attn_output = self.attn(q, k, v, k_cache, v_cache, input_metadata)
attn_output, _ = self.out_proj(attn_output)
return attn_output
class GPTJMLP(nn.Module):
def __init__(
self,
intermediate_size: int,
config: GPTJConfig,
linear_method: Optional[LinearMethodBase] = None,
):
super().__init__()
hidden_size = config.n_embd
self.fc_in = ColumnParallelLinear(
hidden_size,
intermediate_size,
linear_method=linear_method,
)
self.fc_out = RowParallelLinear(
intermediate_size,
hidden_size,
linear_method=linear_method,
)
quant_config = getattr(linear_method, "quant_config", None)
self.act = get_act_fn(config.activation_function, quant_config,
intermediate_size)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states, _ = self.fc_in(hidden_states)
hidden_states = self.act(hidden_states)
hidden_states, _ = self.fc_out(hidden_states)
return hidden_states
class GPTJBlock(nn.Module):
def __init__(
self,
config: GPTJConfig,
linear_method: Optional[LinearMethodBase] = None,
):
super().__init__()
inner_dim = 4 * config.n_embd if config.n_inner is None else config.n_inner
self.ln_1 = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)
self.attn = GPTJAttention(config, linear_method)
self.mlp = GPTJMLP(inner_dim, config, linear_method)
def forward(
self,
position_ids: torch.Tensor,
hidden_states: torch.Tensor,
kv_cache: KVCache,
input_metadata: InputMetadata,
) -> torch.Tensor:
residual = hidden_states
hidden_states = self.ln_1(hidden_states)
attn_output = self.attn(
position_ids=position_ids,
hidden_states=hidden_states,
kv_cache=kv_cache,
input_metadata=input_metadata,
)
mlp_output = self.mlp(hidden_states)
hidden_states = attn_output + mlp_output + residual
return hidden_states
class GPTJModel(nn.Module):
def __init__(
self,
config: GPTJConfig,
linear_method: Optional[LinearMethodBase] = None,
):
super().__init__()
self.config = config
self.embed_dim = config.n_embd
self.wte = VocabParallelEmbedding(
config.vocab_size,
self.embed_dim,
)
self.h = nn.ModuleList(
[GPTJBlock(config, linear_method) for _ in range(config.n_layer)])
self.ln_f = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon)
def forward(
self,
input_ids: torch.Tensor,
position_ids: torch.Tensor,
kv_caches: List[KVCache],
input_metadata: InputMetadata,
) -> torch.Tensor:
hidden_states = self.wte(input_ids)
for i in range(len(self.h)):
layer = self.h[i]
hidden_states = layer(
position_ids,
hidden_states,
kv_caches[i],
input_metadata,
)
hidden_states = self.ln_f(hidden_states)
return hidden_states
class GPTJForCausalLM(nn.Module):
def __init__(
self,
config: GPTJConfig,
linear_method: Optional[LinearMethodBase] = None,
):
super().__init__()
self.config = config
self.linear_method = linear_method
assert not config.tie_word_embeddings
self.transformer = GPTJModel(config, linear_method)
self.lm_head = ParallelLMHead(
config.vocab_size,
config.n_embd,
bias=True,
)
self.sampler = Sampler(config.vocab_size)
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
kv_caches: List[KVCache],
input_metadata: InputMetadata,
) -> torch.Tensor:
hidden_states = self.transformer(input_ids, positions, kv_caches,
input_metadata)
return hidden_states
def sample(
self,
hidden_states: torch.Tensor,
sampling_metadata: SamplingMetadata,
) -> Optional[SamplerOutput]:
next_tokens = self.sampler(self.lm_head.weight, hidden_states,
sampling_metadata, self.lm_head.bias)
return next_tokens
def load_weights(self,
model_name_or_path: str,
cache_dir: Optional[str] = None,
load_format: str = "auto",
revision: Optional[str] = None):
stacked_params_mapping = [
# (param_name, shard_name, shard_id)
("qkv_proj", "q_proj", "q"),
("qkv_proj", "k_proj", "k"),
("qkv_proj", "v_proj", "v"),
("gate_up_proj", "gate_proj", 0),
("gate_up_proj", "up_proj", 1),
]
params_dict = dict(self.named_parameters())
for name, loaded_weight in hf_model_weights_iterator(
model_name_or_path, cache_dir, load_format, revision):
if "attn.bias" in name or "attn.masked_bias" in name:
continue
for (param_name, weight_name, shard_id) in stacked_params_mapping:
if weight_name not in name:
continue
name = name.replace(weight_name, param_name)
# Skip loading extra bias for GPTQ models.
if name.endswith(".bias") and name not in params_dict:
continue
param = params_dict[name]
weight_loader = param.weight_loader
weight_loader(param, loaded_weight, shard_id)
break
else:
# Skip loading extra bias for GPTQ models.
if name.endswith(".bias") and name not in params_dict:
continue
param = params_dict[name]
weight_loader = getattr(param, "weight_loader",
default_weight_loader)
weight_loader(param, loaded_weight)