Spaces:
Sleeping
Sleeping
# coding=utf-8 | |
# Adapted from | |
# https://github.com/huggingface/transformers/blob/v4.28.0/src/transformers/models/gptj/modeling_gptj.py | |
# Copyright 2023 The vLLM team. | |
# Copyright 2021 The EleutherAI and HuggingFace Teams. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Inference-only GPT-J model compatible with HuggingFace weights.""" | |
from typing import List, Optional, Tuple | |
import torch | |
from torch import nn | |
from transformers import GPTJConfig | |
from vllm.model_executor.input_metadata import InputMetadata | |
from vllm.model_executor.layers.activation import get_act_fn | |
from vllm.model_executor.layers.attention import PagedAttention | |
from vllm.model_executor.layers.linear import (ColumnParallelLinear, | |
LinearMethodBase, | |
QKVParallelLinear, | |
RowParallelLinear) | |
from vllm.model_executor.layers.rotary_embedding import get_rope | |
from vllm.model_executor.layers.sampler import Sampler | |
from vllm.model_executor.layers.vocab_parallel_embedding import ( | |
VocabParallelEmbedding, ParallelLMHead) | |
from vllm.model_executor.parallel_utils.parallel_state import ( | |
get_tensor_model_parallel_world_size) | |
from vllm.model_executor.sampling_metadata import SamplingMetadata | |
from vllm.model_executor.weight_utils import (default_weight_loader, | |
hf_model_weights_iterator) | |
from vllm.sequence import SamplerOutput | |
KVCache = Tuple[torch.Tensor, torch.Tensor] | |
class GPTJAttention(nn.Module): | |
def __init__( | |
self, | |
config: GPTJConfig, | |
linear_method: Optional[LinearMethodBase] = None, | |
): | |
super().__init__() | |
self.total_num_heads = config.num_attention_heads | |
self.hidden_size = config.hidden_size | |
self.head_size = self.hidden_size // self.total_num_heads | |
self.qkv_proj = QKVParallelLinear( | |
config.hidden_size, | |
self.head_size, | |
self.total_num_heads, | |
bias=False, | |
linear_method=linear_method, | |
) | |
self.out_proj = RowParallelLinear( | |
config.hidden_size, | |
config.hidden_size, | |
bias=False, | |
linear_method=linear_method, | |
) | |
tp_world_size = get_tensor_model_parallel_world_size() | |
assert self.total_num_heads % tp_world_size == 0 | |
self.num_heads = self.total_num_heads // tp_world_size | |
scaling = self.head_size**-0.5 | |
assert getattr(config, "rotary", True) | |
assert config.rotary_dim % 2 == 0 | |
rope_theta = getattr(config, "rope_theta", 10000) | |
max_position_embeddings = getattr(config, "max_position_embeddings", | |
8192) | |
self.rotary_emb = get_rope( | |
self.head_size, | |
rotary_dim=config.rotary_dim, | |
max_position=max_position_embeddings, | |
base=rope_theta, | |
is_neox_style=False, | |
) | |
self.attn = PagedAttention(self.num_heads, self.head_size, scaling) | |
def forward( | |
self, | |
position_ids: torch.Tensor, | |
hidden_states: torch.Tensor, | |
kv_cache: KVCache, | |
input_metadata: InputMetadata, | |
) -> torch.Tensor: | |
qkv, _ = self.qkv_proj(hidden_states) | |
q, k, v = qkv.chunk(chunks=3, dim=-1) | |
q, k = self.rotary_emb(position_ids, q, k) | |
k_cache, v_cache = kv_cache | |
attn_output = self.attn(q, k, v, k_cache, v_cache, input_metadata) | |
attn_output, _ = self.out_proj(attn_output) | |
return attn_output | |
class GPTJMLP(nn.Module): | |
def __init__( | |
self, | |
intermediate_size: int, | |
config: GPTJConfig, | |
linear_method: Optional[LinearMethodBase] = None, | |
): | |
super().__init__() | |
hidden_size = config.n_embd | |
self.fc_in = ColumnParallelLinear( | |
hidden_size, | |
intermediate_size, | |
linear_method=linear_method, | |
) | |
self.fc_out = RowParallelLinear( | |
intermediate_size, | |
hidden_size, | |
linear_method=linear_method, | |
) | |
quant_config = getattr(linear_method, "quant_config", None) | |
self.act = get_act_fn(config.activation_function, quant_config, | |
intermediate_size) | |
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: | |
hidden_states, _ = self.fc_in(hidden_states) | |
hidden_states = self.act(hidden_states) | |
hidden_states, _ = self.fc_out(hidden_states) | |
return hidden_states | |
class GPTJBlock(nn.Module): | |
def __init__( | |
self, | |
config: GPTJConfig, | |
linear_method: Optional[LinearMethodBase] = None, | |
): | |
super().__init__() | |
inner_dim = 4 * config.n_embd if config.n_inner is None else config.n_inner | |
self.ln_1 = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon) | |
self.attn = GPTJAttention(config, linear_method) | |
self.mlp = GPTJMLP(inner_dim, config, linear_method) | |
def forward( | |
self, | |
position_ids: torch.Tensor, | |
hidden_states: torch.Tensor, | |
kv_cache: KVCache, | |
input_metadata: InputMetadata, | |
) -> torch.Tensor: | |
residual = hidden_states | |
hidden_states = self.ln_1(hidden_states) | |
attn_output = self.attn( | |
position_ids=position_ids, | |
hidden_states=hidden_states, | |
kv_cache=kv_cache, | |
input_metadata=input_metadata, | |
) | |
mlp_output = self.mlp(hidden_states) | |
hidden_states = attn_output + mlp_output + residual | |
return hidden_states | |
class GPTJModel(nn.Module): | |
def __init__( | |
self, | |
config: GPTJConfig, | |
linear_method: Optional[LinearMethodBase] = None, | |
): | |
super().__init__() | |
self.config = config | |
self.embed_dim = config.n_embd | |
self.wte = VocabParallelEmbedding( | |
config.vocab_size, | |
self.embed_dim, | |
) | |
self.h = nn.ModuleList( | |
[GPTJBlock(config, linear_method) for _ in range(config.n_layer)]) | |
self.ln_f = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon) | |
def forward( | |
self, | |
input_ids: torch.Tensor, | |
position_ids: torch.Tensor, | |
kv_caches: List[KVCache], | |
input_metadata: InputMetadata, | |
) -> torch.Tensor: | |
hidden_states = self.wte(input_ids) | |
for i in range(len(self.h)): | |
layer = self.h[i] | |
hidden_states = layer( | |
position_ids, | |
hidden_states, | |
kv_caches[i], | |
input_metadata, | |
) | |
hidden_states = self.ln_f(hidden_states) | |
return hidden_states | |
class GPTJForCausalLM(nn.Module): | |
def __init__( | |
self, | |
config: GPTJConfig, | |
linear_method: Optional[LinearMethodBase] = None, | |
): | |
super().__init__() | |
self.config = config | |
self.linear_method = linear_method | |
assert not config.tie_word_embeddings | |
self.transformer = GPTJModel(config, linear_method) | |
self.lm_head = ParallelLMHead( | |
config.vocab_size, | |
config.n_embd, | |
bias=True, | |
) | |
self.sampler = Sampler(config.vocab_size) | |
def forward( | |
self, | |
input_ids: torch.Tensor, | |
positions: torch.Tensor, | |
kv_caches: List[KVCache], | |
input_metadata: InputMetadata, | |
) -> torch.Tensor: | |
hidden_states = self.transformer(input_ids, positions, kv_caches, | |
input_metadata) | |
return hidden_states | |
def sample( | |
self, | |
hidden_states: torch.Tensor, | |
sampling_metadata: SamplingMetadata, | |
) -> Optional[SamplerOutput]: | |
next_tokens = self.sampler(self.lm_head.weight, hidden_states, | |
sampling_metadata, self.lm_head.bias) | |
return next_tokens | |
def load_weights(self, | |
model_name_or_path: str, | |
cache_dir: Optional[str] = None, | |
load_format: str = "auto", | |
revision: Optional[str] = None): | |
stacked_params_mapping = [ | |
# (param_name, shard_name, shard_id) | |
("qkv_proj", "q_proj", "q"), | |
("qkv_proj", "k_proj", "k"), | |
("qkv_proj", "v_proj", "v"), | |
("gate_up_proj", "gate_proj", 0), | |
("gate_up_proj", "up_proj", 1), | |
] | |
params_dict = dict(self.named_parameters()) | |
for name, loaded_weight in hf_model_weights_iterator( | |
model_name_or_path, cache_dir, load_format, revision): | |
if "attn.bias" in name or "attn.masked_bias" in name: | |
continue | |
for (param_name, weight_name, shard_id) in stacked_params_mapping: | |
if weight_name not in name: | |
continue | |
name = name.replace(weight_name, param_name) | |
# Skip loading extra bias for GPTQ models. | |
if name.endswith(".bias") and name not in params_dict: | |
continue | |
param = params_dict[name] | |
weight_loader = param.weight_loader | |
weight_loader(param, loaded_weight, shard_id) | |
break | |
else: | |
# Skip loading extra bias for GPTQ models. | |
if name.endswith(".bias") and name not in params_dict: | |
continue | |
param = params_dict[name] | |
weight_loader = getattr(param, "weight_loader", | |
default_weight_loader) | |
weight_loader(param, loaded_weight) | |