Spaces:
Sleeping
Sleeping
# coding=utf-8 | |
# Adapted from | |
# https://github.com/huggingface/transformers/blob/v4.28.0/src/transformers/models/gpt_neox/modeling_gpt_neox.py | |
# Copyright 2023 The vLLM team. | |
# Copyright 2022 EleutherAI The HuggingFace Inc. team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Inference-only GPT-NeoX model compatible with HuggingFace weights.""" | |
from typing import List, Optional, Tuple | |
import torch | |
from torch import nn | |
from transformers import GPTNeoXConfig | |
from vllm.model_executor.input_metadata import InputMetadata | |
from vllm.model_executor.layers.activation import get_act_fn | |
from vllm.model_executor.layers.attention import PagedAttention | |
from vllm.model_executor.layers.linear import (ColumnParallelLinear, | |
LinearMethodBase, | |
QKVParallelLinear, | |
RowParallelLinear) | |
from vllm.model_executor.layers.rotary_embedding import get_rope | |
from vllm.model_executor.layers.sampler import Sampler | |
from vllm.model_executor.layers.vocab_parallel_embedding import ( | |
VocabParallelEmbedding, ParallelLMHead) | |
from vllm.model_executor.parallel_utils.parallel_state import ( | |
get_tensor_model_parallel_world_size) | |
from vllm.model_executor.sampling_metadata import SamplingMetadata | |
from vllm.model_executor.weight_utils import (default_weight_loader, | |
hf_model_weights_iterator) | |
from vllm.sequence import SamplerOutput | |
KVCache = Tuple[torch.Tensor, torch.Tensor] | |
class GPTNeoXAttention(nn.Module): | |
def __init__( | |
self, | |
config: GPTNeoXConfig, | |
linear_method: Optional[LinearMethodBase] = None, | |
): | |
super().__init__() | |
self.total_num_heads = config.num_attention_heads | |
self.hidden_size = config.hidden_size | |
self.head_size = self.hidden_size // self.total_num_heads | |
self.bias = getattr(config, "attention_bias", True) | |
tensor_model_parallel_world_size = ( | |
get_tensor_model_parallel_world_size()) | |
assert self.total_num_heads % tensor_model_parallel_world_size == 0 | |
self.num_heads = (self.total_num_heads // | |
tensor_model_parallel_world_size) | |
self.query_key_value = QKVParallelLinear( | |
config.hidden_size, | |
self.head_size, | |
self.total_num_heads, | |
bias=self.bias, | |
linear_method=linear_method, | |
) | |
self.dense = RowParallelLinear( | |
config.hidden_size, | |
config.hidden_size, | |
bias=self.bias, | |
linear_method=linear_method, | |
) | |
scaling = self.head_size**-0.5 | |
rotary_dim = int(self.head_size * config.rotary_pct) | |
assert rotary_dim % 2 == 0 | |
rope_theta = getattr(config, "rope_theta", 10000) | |
max_position_embeddings = getattr(config, "max_position_embeddings", | |
8192) | |
self.rotary_emb = get_rope( | |
self.head_size, | |
rotary_dim=rotary_dim, | |
max_position=max_position_embeddings, | |
base=rope_theta, | |
) | |
self.attn = PagedAttention(self.num_heads, self.head_size, scaling) | |
def forward( | |
self, | |
position_ids: torch.Tensor, | |
hidden_states: torch.Tensor, | |
kv_cache: KVCache, | |
input_metadata: InputMetadata, | |
) -> torch.Tensor: | |
qkv, _ = self.query_key_value(hidden_states) | |
q, k, v = qkv.chunk(chunks=3, dim=-1) | |
q, k = self.rotary_emb(position_ids, q, k) | |
k_cache, v_cache = kv_cache | |
attn_output = self.attn(q, k, v, k_cache, v_cache, input_metadata) | |
output, _ = self.dense(attn_output) | |
return output | |
class GPTNeoXMLP(nn.Module): | |
def __init__( | |
self, | |
config: GPTNeoXConfig, | |
linear_method: Optional[LinearMethodBase] = None, | |
): | |
super().__init__() | |
self.dense_h_to_4h = ColumnParallelLinear( | |
config.hidden_size, | |
config.intermediate_size, | |
linear_method=linear_method, | |
) | |
self.dense_4h_to_h = RowParallelLinear( | |
config.intermediate_size, | |
config.hidden_size, | |
linear_method=linear_method, | |
) | |
quant_config = getattr(linear_method, "quant_config", None) | |
self.act = get_act_fn(config.hidden_act, quant_config, | |
config.intermediate_size) | |
def forward(self, hidden_states): | |
hidden_states, _ = self.dense_h_to_4h(hidden_states) | |
hidden_states = self.act(hidden_states) | |
hidden_states, _ = self.dense_4h_to_h(hidden_states) | |
return hidden_states | |
class GPTNeoXLayer(nn.Module): | |
def __init__( | |
self, | |
config: GPTNeoXConfig, | |
linear_method: Optional[LinearMethodBase] = None, | |
): | |
super().__init__() | |
self.use_parallel_residual = config.use_parallel_residual | |
self.input_layernorm = nn.LayerNorm(config.hidden_size, | |
eps=config.layer_norm_eps) | |
self.post_attention_layernorm = nn.LayerNorm(config.hidden_size, | |
eps=config.layer_norm_eps) | |
self.attention = GPTNeoXAttention(config, linear_method) | |
self.mlp = GPTNeoXMLP(config, linear_method) | |
def forward( | |
self, | |
position_ids: torch.Tensor, | |
hidden_states: torch.Tensor, | |
kv_cache: KVCache, | |
input_metadata: InputMetadata, | |
) -> torch.Tensor: | |
attn_input = self.input_layernorm(hidden_states) | |
attn_output = self.attention( | |
position_ids=position_ids, | |
hidden_states=attn_input, | |
kv_cache=kv_cache, | |
input_metadata=input_metadata, | |
) | |
if self.use_parallel_residual: | |
# pseudocode: | |
# x = x + attn(ln1(x)) + mlp(ln2(x)) | |
mlp_input = self.post_attention_layernorm(hidden_states) | |
mlp_output = self.mlp(mlp_input) | |
hidden_states = mlp_output + attn_output + hidden_states | |
else: | |
# pseudocode: | |
# x = x + attn(ln1(x)) | |
# x = x + mlp(ln2(x)) | |
attn_output = attn_output + hidden_states | |
mlp_input = self.post_attention_layernorm(attn_output) | |
mlp_output = self.mlp(mlp_input) | |
hidden_states = mlp_output + attn_output | |
return hidden_states | |
class GPTNeoXModel(nn.Module): | |
def __init__( | |
self, | |
config: GPTNeoXConfig, | |
linear_method: Optional[LinearMethodBase] = None, | |
): | |
super().__init__() | |
self.config = config | |
self.embed_in = VocabParallelEmbedding( | |
config.vocab_size, | |
config.hidden_size, | |
) | |
self.layers = nn.ModuleList([ | |
GPTNeoXLayer(config, linear_method) | |
for _ in range(config.num_hidden_layers) | |
]) | |
self.final_layer_norm = nn.LayerNorm(config.hidden_size, | |
eps=config.layer_norm_eps) | |
def forward( | |
self, | |
input_ids: torch.Tensor, | |
position_ids: torch.Tensor, | |
kv_caches: List[KVCache], | |
input_metadata: InputMetadata, | |
) -> torch.Tensor: | |
hidden_states = self.embed_in(input_ids) | |
for i in range(len(self.layers)): | |
layer = self.layers[i] | |
hidden_states = layer( | |
position_ids, | |
hidden_states, | |
kv_caches[i], | |
input_metadata, | |
) | |
hidden_states = self.final_layer_norm(hidden_states) | |
return hidden_states | |
class GPTNeoXForCausalLM(nn.Module): | |
def __init__( | |
self, | |
config, | |
linear_method: Optional[LinearMethodBase] = None, | |
): | |
super().__init__() | |
self.config = config | |
self.linear_method = linear_method | |
self.gpt_neox = GPTNeoXModel(config, linear_method) | |
self.embed_out = ParallelLMHead( | |
config.vocab_size, | |
config.hidden_size, | |
) | |
self.sampler = Sampler(config.vocab_size) | |
def forward( | |
self, | |
input_ids: torch.Tensor, | |
positions: torch.Tensor, | |
kv_caches: List[KVCache], | |
input_metadata: InputMetadata, | |
) -> torch.Tensor: | |
hidden_states = self.gpt_neox(input_ids, positions, kv_caches, | |
input_metadata) | |
return hidden_states | |
def sample( | |
self, | |
hidden_states: torch.Tensor, | |
sampling_metadata: SamplingMetadata, | |
) -> Optional[SamplerOutput]: | |
next_tokens = self.sampler(self.embed_out.weight, hidden_states, | |
sampling_metadata) | |
return next_tokens | |
def load_weights(self, | |
model_name_or_path: str, | |
cache_dir: Optional[str] = None, | |
load_format: str = "auto", | |
revision: Optional[str] = None): | |
params_dict = dict(self.named_parameters()) | |
for name, loaded_weight in hf_model_weights_iterator( | |
model_name_or_path, cache_dir, load_format, revision): | |
if ("attention.bias" in name or "attention.masked_bias" in name | |
or "rotary_emb.inv_freq" in name): | |
continue | |
param = params_dict[name] | |
if "query_key_value" in name: | |
# NOTE: GPT-NeoX's fused QKV's output_dim has the shape of | |
# (num_heads * 3 * head_size), while the | |
# required shape is (3 * num_heads * head_size). | |
# Thus, we need weight conversion. | |
output_dim = getattr(param, "output_dim", None) | |
num_heads = self.config.num_attention_heads | |
if output_dim is not None: | |
loaded_weight_shape = loaded_weight.shape | |
loaded_weight = loaded_weight.view( | |
loaded_weight_shape[:output_dim] + (num_heads, 3, -1) + | |
loaded_weight_shape[output_dim + 1:]) | |
loaded_weight = loaded_weight.transpose( | |
output_dim, output_dim + 1) | |
loaded_weight = loaded_weight.reshape(loaded_weight_shape) | |
weight_loader = getattr(param, "weight_loader", | |
default_weight_loader) | |
weight_loader(param, loaded_weight) | |