certifaier / vllm /outputs.py
bsmit1659's picture
Adding vllm package
ca1ecab
raw
history blame
5.19 kB
from typing import List, Optional
from vllm.sequence import (PromptLogprobs, SampleLogprobs, SequenceGroup,
SequenceStatus)
from vllm.lora.request import LoRARequest
class CompletionOutput:
"""The output data of one completion output of a request.
Args:
index: The index of the output in the request.
text: The generated output text.
token_ids: The token IDs of the generated output text.
cumulative_logprob: The cumulative log probability of the generated
output text.
logprobs: The log probabilities of the top probability words at each
position if the logprobs are requested.
finish_reason: The reason why the sequence is finished.
lora_request: The LoRA request that was used to generate the output.
"""
def __init__(
self,
index: int,
text: str,
token_ids: List[int],
cumulative_logprob: float,
logprobs: Optional[SampleLogprobs],
finish_reason: Optional[str] = None,
lora_request: Optional[LoRARequest] = None,
) -> None:
self.index = index
self.text = text
self.token_ids = token_ids
self.cumulative_logprob = cumulative_logprob
self.logprobs = logprobs
self.finish_reason = finish_reason
self.lora_request = lora_request
def finished(self) -> bool:
return self.finish_reason is not None
def __repr__(self) -> str:
return (f"CompletionOutput(index={self.index}, "
f"text={self.text!r}, "
f"token_ids={self.token_ids}, "
f"cumulative_logprob={self.cumulative_logprob}, "
f"logprobs={self.logprobs}, "
f"finish_reason={self.finish_reason})")
class RequestOutput:
"""The output data of a request to the LLM.
Args:
request_id: The unique ID of the request.
prompt: The prompt string of the request.
prompt_token_ids: The token IDs of the prompt.
prompt_logprobs: The log probabilities to return per prompt token.
outputs: The output sequences of the request.
finished: Whether the whole request is finished.
lora_request: The LoRA request that was used to generate the output.
"""
def __init__(
self,
request_id: str,
prompt: str,
prompt_token_ids: List[int],
prompt_logprobs: Optional[PromptLogprobs],
outputs: List[CompletionOutput],
finished: bool,
lora_request: Optional[LoRARequest] = None,
) -> None:
self.request_id = request_id
self.prompt = prompt
self.prompt_token_ids = prompt_token_ids
self.prompt_logprobs = prompt_logprobs
self.outputs = outputs
self.finished = finished
self.lora_request = lora_request
@classmethod
def from_seq_group(cls, seq_group: SequenceGroup) -> "RequestOutput":
# Get the top-n sequences.
n = seq_group.sampling_params.n
seqs = seq_group.get_seqs()
if seq_group.sampling_params.use_beam_search:
sorting_key = lambda seq: seq.get_beam_search_score(
seq_group.sampling_params.length_penalty)
else:
sorting_key = lambda seq: seq.get_cumulative_logprob()
sorted_seqs = sorted(seqs, key=sorting_key, reverse=True)
top_n_seqs = sorted_seqs[:n]
# Create the outputs.
outputs: List[CompletionOutput] = []
for seq in top_n_seqs:
logprobs = seq.output_logprobs
if seq_group.sampling_params.logprobs is None:
# NOTE: We need to take care of this case because the sequence
# always has the logprobs of the sampled tokens even if the
# logprobs are not requested.
logprobs = None
finshed_reason = SequenceStatus.get_finished_reason(seq.status)
output = CompletionOutput(seqs.index(seq), seq.output_text,
seq.get_output_token_ids(),
seq.get_cumulative_logprob(), logprobs,
finshed_reason)
outputs.append(output)
# Every sequence in the sequence group should have the same prompt.
prompt = seq_group.prompt
prompt_token_ids = seq_group.prompt_token_ids
prompt_logprobs = seq_group.prompt_logprobs
finished = seq_group.is_finished()
return cls(seq_group.request_id,
prompt,
prompt_token_ids,
prompt_logprobs,
outputs,
finished,
lora_request=seq_group.lora_request)
def __repr__(self) -> str:
return (f"RequestOutput(request_id={self.request_id}, "
f"prompt={self.prompt!r}, "
f"prompt_token_ids={self.prompt_token_ids}, "
f"prompt_logprobs={self.prompt_logprobs}, "
f"outputs={self.outputs}, "
f"finished={self.finished}, "
f"lora_request={self.lora_request})")