# coding=utf-8 # Adapted from # https://github.com/huggingface/transformers/blob/v4.28.0/src/transformers/models/opt/modeling_opt.py # Copyright 2023 The vLLM team. # Copyright 2022 The Fairseq Authors and The HuggingFace Inc. team. All rights # reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Inference-only OPT model compatible with HuggingFace weights.""" from typing import List, Optional, Tuple import torch from torch import nn from transformers import OPTConfig from vllm.model_executor.input_metadata import InputMetadata from vllm.model_executor.layers.activation import get_act_fn from vllm.model_executor.layers.attention import PagedAttention from vllm.model_executor.layers.linear import (ColumnParallelLinear, LinearMethodBase, QKVParallelLinear, ReplicatedLinear, RowParallelLinear) from vllm.model_executor.layers.sampler import Sampler from vllm.model_executor.layers.vocab_parallel_embedding import ( VocabParallelEmbedding) from vllm.model_executor.parallel_utils.parallel_state import ( get_tensor_model_parallel_world_size) from vllm.model_executor.sampling_metadata import SamplingMetadata from vllm.model_executor.weight_utils import (default_weight_loader, hf_model_weights_iterator) from vllm.sequence import SamplerOutput KVCache = Tuple[torch.Tensor, torch.Tensor] class OPTLearnedPositionalEmbedding(nn.Embedding): def __init__(self, num_embeddings: int, embedding_dim: int): # OPT is set up so that if padding_idx is specified then offset the # embedding ids by 2 and adjust num_embeddings appropriately. Other # models don't have this hack self.offset = 2 super().__init__(num_embeddings + self.offset, embedding_dim) def forward(self, positions: torch.Tensor): return super().forward(positions + self.offset) class OPTAttention(nn.Module): def __init__( self, embed_dim: int, num_heads: int, bias: bool = True, linear_method: Optional[LinearMethodBase] = None, ) -> None: super().__init__() self.embed_dim = embed_dim tensor_model_parallel_world_size = ( get_tensor_model_parallel_world_size()) total_num_heads = num_heads assert num_heads % tensor_model_parallel_world_size == 0 self.num_heads = total_num_heads // tensor_model_parallel_world_size self.head_dim = embed_dim // total_num_heads self.scaling = self.head_dim**-0.5 self.qkv_proj = QKVParallelLinear( embed_dim, self.head_dim, total_num_heads, bias=bias, linear_method=linear_method, ) self.out_proj = RowParallelLinear( embed_dim, embed_dim, bias=bias, linear_method=linear_method, ) self.attn = PagedAttention(self.num_heads, self.head_dim, scale=self.scaling) def forward( self, hidden_states: torch.Tensor, kv_cache: KVCache, input_metadata: InputMetadata, ) -> torch.Tensor: qkv, _ = self.qkv_proj(hidden_states) q, k, v = qkv.chunk(chunks=3, dim=-1) key_cache, value_cache = kv_cache attn_output = self.attn(q, k, v, key_cache, value_cache, input_metadata) output, _ = self.out_proj(attn_output) return output class OPTDecoderLayer(nn.Module): def __init__( self, config: OPTConfig, linear_method: Optional[LinearMethodBase] = None, ): super().__init__() self.config = config self.embed_dim = config.hidden_size self.self_attn = OPTAttention( embed_dim=self.embed_dim, num_heads=config.num_attention_heads, bias=config.enable_bias, linear_method=linear_method, ) self.do_layer_norm_before = config.do_layer_norm_before self.self_attn_layer_norm = nn.LayerNorm( self.embed_dim, elementwise_affine=config.layer_norm_elementwise_affine) self.fc1 = ColumnParallelLinear( self.embed_dim, config.ffn_dim, bias=config.enable_bias, linear_method=linear_method, ) quant_config = getattr(linear_method, "quant_config", None) self.activation_fn = get_act_fn(config.activation_function, quant_config, config.ffn_dim) self.fc2 = RowParallelLinear( config.ffn_dim, self.embed_dim, bias=config.enable_bias, linear_method=linear_method, ) self.final_layer_norm = nn.LayerNorm( self.embed_dim, elementwise_affine=config.layer_norm_elementwise_affine) def forward( self, hidden_states: torch.Tensor, kv_cache: KVCache, input_metadata: InputMetadata, ) -> torch.Tensor: # Self Attention residual = hidden_states # 125m, 1.7B, ..., 175B applies layer norm BEFORE attention if self.do_layer_norm_before: hidden_states = self.self_attn_layer_norm(hidden_states) hidden_states = self.self_attn(hidden_states=hidden_states, kv_cache=kv_cache, input_metadata=input_metadata) hidden_states = residual + hidden_states # 350m applies layer norm AFTER attention if not self.do_layer_norm_before: hidden_states = self.self_attn_layer_norm(hidden_states) # Fully Connected residual = hidden_states # 125m, 1.7B, ..., 175B applies layer norm BEFORE attention if self.do_layer_norm_before: hidden_states = self.final_layer_norm(hidden_states) hidden_states, _ = self.fc1(hidden_states) hidden_states = self.activation_fn(hidden_states) hidden_states, _ = self.fc2(hidden_states) hidden_states = residual + hidden_states # 350m applies layer norm AFTER attention if not self.do_layer_norm_before: hidden_states = self.final_layer_norm(hidden_states) return hidden_states class OPTDecoder(nn.Module): def __init__( self, config: OPTConfig, linear_method: Optional[LinearMethodBase] = None, ): super().__init__() self.config = config self.padding_idx = config.pad_token_id self.max_target_positions = config.max_position_embeddings self.vocab_size = config.vocab_size self.embed_tokens = VocabParallelEmbedding( config.vocab_size, config.word_embed_proj_dim, ) # Positional embeddings are replicated (not sharded). self.embed_positions = OPTLearnedPositionalEmbedding( config.max_position_embeddings, config.hidden_size) # Project out & in will be replicated if they exist. if config.word_embed_proj_dim != config.hidden_size: self.project_out = ReplicatedLinear(config.hidden_size, config.word_embed_proj_dim, bias=False, linear_method=linear_method) else: self.project_out = None if config.word_embed_proj_dim != config.hidden_size: self.project_in = ReplicatedLinear(config.word_embed_proj_dim, config.hidden_size, bias=False, linear_method=linear_method) else: self.project_in = None # Note that the only purpose of `config._remove_final_layer_norm` is to # keep backward compatibility with checkpoints that have been fine-tuned # before transformers v4.20.1 # see https://github.com/facebookresearch/metaseq/pull/164 if config.do_layer_norm_before and not config._remove_final_layer_norm: self.final_layer_norm = nn.LayerNorm( config.hidden_size, elementwise_affine=config.layer_norm_elementwise_affine) else: self.final_layer_norm = None self.layers = nn.ModuleList([ OPTDecoderLayer(config, linear_method) for _ in range(config.num_hidden_layers) ]) def forward( self, input_ids: torch.Tensor, positions: torch.Tensor, kv_caches: List[KVCache], input_metadata: InputMetadata, ) -> torch.Tensor: inputs_embeds = self.embed_tokens(input_ids) pos_embeds = self.embed_positions(positions) if self.project_in is not None: inputs_embeds, _ = self.project_in(inputs_embeds) hidden_states = inputs_embeds + pos_embeds for i in range(len(self.layers)): layer = self.layers[i] hidden_states = layer(hidden_states, kv_caches[i], input_metadata) if self.final_layer_norm is not None: hidden_states = self.final_layer_norm(hidden_states) if self.project_out is not None: hidden_states, _ = self.project_out(hidden_states) return hidden_states class OPTModel(nn.Module): def __init__( self, config: OPTConfig, linear_method: Optional[LinearMethodBase] = None, ): super().__init__() self.decoder = OPTDecoder(config, linear_method) def forward( self, input_ids: torch.Tensor, positions: torch.Tensor, kv_caches: List[KVCache], input_metadata: InputMetadata, ) -> torch.Tensor: return self.decoder(input_ids, positions, kv_caches, input_metadata) class OPTForCausalLM(nn.Module): def __init__( self, config, linear_method: Optional[LinearMethodBase] = None, ): super().__init__() self.config = config self.linear_method = linear_method self.model = OPTModel(config, linear_method) self.lm_head_weight = self.model.decoder.embed_tokens.weight self.sampler = Sampler(config.vocab_size) def forward( self, input_ids: torch.Tensor, positions: torch.Tensor, kv_caches: List[KVCache], input_metadata: InputMetadata, ) -> torch.Tensor: hidden_states = self.model(input_ids, positions, kv_caches, input_metadata) return hidden_states def sample( self, hidden_states: torch.Tensor, sampling_metadata: SamplingMetadata, ) -> Optional[SamplerOutput]: next_tokens = self.sampler(self.lm_head_weight, hidden_states, sampling_metadata) return next_tokens def load_weights(self, model_name_or_path: str, cache_dir: Optional[str] = None, load_format: str = "auto", revision: Optional[str] = None): stacked_params_mapping = [ # (param_name, shard_name, shard_id) ("qkv_proj", "q_proj", "q"), ("qkv_proj", "k_proj", "k"), ("qkv_proj", "v_proj", "v"), ] params_dict = dict(self.named_parameters(remove_duplicate=False)) for name, loaded_weight in hf_model_weights_iterator( model_name_or_path, cache_dir, load_format, revision): if "lm_head.weight" in name: continue if name.startswith("decoder."): name = "model." + name for (param_name, weight_name, shard_id) in stacked_params_mapping: if weight_name not in name: continue name = name.replace(weight_name, param_name) # Skip loading extra bias for GPTQ models. if name.endswith(".bias") and name not in params_dict: continue param = params_dict[name] weight_loader = param.weight_loader weight_loader(param, loaded_weight, shard_id) break else: # Skip loading extra bias for GPTQ models. if name.endswith(".bias") and name not in params_dict: continue param = params_dict[name] weight_loader = getattr(param, "weight_loader", default_weight_loader) weight_loader(param, loaded_weight)